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It is shown that in evaluating the transition probability of a multiple-photon process involving more than
two photons, the contributions of the part of the interaction Hamiltonian that is quadratic in the vector
potential of the radiation Geld may be neglected if the vector potential of the radiation field is assumed to be
constant in the region of space that we consider.

I. INTRODUCTION

w E consider a system of particles that is described
by a Hamiltonian X, having a set of eigen-

values e„and corresponding eigenfunctions C, and a
radiation Geld that is described by a Hamiltonian X~.
We denote the stationary states of Xf by comparing
them with a reference state (0), which we assume to
have zero energy. For example, in the state (X&, ,X„;
pi, ,t| ) the photons li; are added to the radiation
field and the photons p,; are removed from the radiation
6eld with respect to the state (0). A photon X is deter-
mined by a unit vector eq, which represents the direction
of polarization, and by a vector k), with a magnitude kq

equal to the photon energy and with a direction which
describes the direction of propagation. The stationary
states of the operator X=K +BC' can now be repre-
sented as (n,A), where the 6rst symbol refers to the
stationary states of X and the second symbol refers to
the radiation 6eld, .

We take it that at a time /=0 our system is in the
state (0,0) and we seek to determine the time propor-
tional transition probability to an arbitrary different
state (n,A). lt can be derived' that this transition
probability is given by

w, k= (2&/h) ffn, e (+0,0) fff4, e (+0,0) b (~0,0 ~,lL) (l)

where the quantities U are determined by the set of
equations

~-(&)=&-;0.0+ Z &-;effe(&)l'(& &e) (—2)
P&(0,0)

Here i' is the Dirac l function

i (x) = lim(x+iy)~0

and the summation is to be performed over all stationary
states of R +3!f except the initial state (0,0). The
H, p are matrix elements of the interaction operator
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X;„t, which is given as

+int + ++
K'=g(iQ;h/M, c)(A; V;),

X"=g;(Q s/v2 Mc') (A;)'.

Here the summations are to be performed over all
particles with charges Q, and masses M;, and A; is the
vector potential of the radiation field acting on the jth
particle.

Let us now make the customary assumption that our
system of particles is conGned to a 6nite region of space
and that the vector potential A of the radiation 6eld
may be taken as constant in this region. In that case
the 6rst term, X', of X;„~has nonzero matrix elements
H, e' only if the sta.tes cv and ii differ by one photon and
if they have different eigenstates of X . The second
term, X", of X ~ has nonzeromatrix elements H .p"
only if the states n and l3 differs by two photons and if
they contain the same eigenstates X .,

"are also differ-
ent from zero but they do not play any role in our
present discussion.

It is well known' that in two-photon absorption or
emission processes II"does not contribute to the transi-
tion probability. Recently' we found that in three-
photon absorption processes 8" does not contribute
either. We began to wonder whether these seemingly
accidental cancellations could perhaps be special cases
of a more universal property of multiple-photon proc-
esses. As a result of our subsequent investigations we
prove the following interesting theorem in this paper:

In evaluating the time proportional tra-rssition proba
bility betweers two states (0,0) and (n,A), where A arsd 0
dvff'er by a number of photons that es diferent from two,
all contributions of the operator H" may be disregarded.

This means that in deriving theoretical descriptions
of multiple-photon processes it is allowed to replace
X; ~ by X' at the outset of the calculation; in most
cases this will simplify the problem to a great extent.
We should add that our theorem is valid only if the
vector potential A of the radiation 6eld may be taken to
be constant, but this condition is satisGed in most cases
that we are concerned with.

' H. F. Hameka, Physica 32, 779 (1966).
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II. GENERAL CONSIDERATIONS AND
THREE-PHOTON PROCESSES

We have seen that the transition probability W„,z of
Eq. (1) may be derived from the solution of the set of
equations (2). Since we assume that the matrix elements

H, s and the quantities U (Ep, p) are significantly
smaller than the terms i'(Ep p E ) we follow the cus-
tomary iterative procedure for solving Eq. (2). If we
substitute Eq. (2) into itself we obtain

U.(&)=H.;o,o+ Z H'pi(, E &—p)
P+0,0

X LHp; o, o+ Q Hp;,i'(&—&~)]
qg(o, o)

Ke have to repeat these substitutions as many times as
is necessary, that is until we have obtained a direct path
from the state n = (N,A) to the state (0,0) by means of a
succession of steps via intermediate states P,

, etc. :

(n,~)~p~& S (0,0).

Each term that occurs in the lmal expression for U (E)
is completely determined by the intermediate states and
by their order. Remember here, that each successive
pair of intermediate states, for instance P and y, can
only differ by one photon if they are connected by a
matrix element Hp., ~' or by two photons if they are
connected by Hs, ,".In the latter case the states P and

y should not diBer in their electronic parts. It proves to
be convenient to identify the various terms of U„,z by
pathways that are the reverse of Eq. (6). Naturally
these two descriptions are entirely equivalent.

In order to introduce our notation for the subsequent
general proofs let us 6rst discuss briefly the case of a
three-photon process, where we calculate the prob-
ability of a transition between the states (0,0) and
(1, +p&, &pp, +li&). Here U is a sum of terms that are
constructed from one-photon jumps only, such as

(0,0) ~ (m, +p,) —+ (nz', +p&, +pp) ~
(1, ~~, ~~p, ~&), (7)

and terms that contain both a two-photon and a one-
photon jump. The latter terms can be combined in
pairs: A typical example is

(0,0) ~ (0, +p,„ap,p) ~ (1, apd=pp, el~,),
(0,0) ~ (1, +X,) -+ (1, +p, , +imp, el~,). (g)

It follows from Eq. (5) that the explicit form of these
terms is

tA'e have now

()soiop+Ill p+PS &p+~1p &p+P1p+P2i+~1 y

Ho, o;i,g&.,=Ho, +„.g»; ~,+„,~»,gi„(10)
so that the sum of the two terms of Eq. (9) can be
written as

H]Sg,

where HI is immaterial and SI is

&i=i'(&o, o &o—,y„,y»)+t (~o.o K—.yi,). (12)

We may assume that the arguments of the i functions
are always different from zero; otherwise we would have
direct transitions to one of the intermediate states and
that is not what we want to consider. Hence

Si=iii +op,
oi'= —(ak +k )-'
ap'= (pp —piwk)„) '.

Ke see tha, t these terms depend only on the photon
energies and consequently we introduce a more con-
venient notation. Ke write

Gl (kpg+k») ) 82 (po pi kgb) ) (14)

with the understanding that for positive values of k
the corresponding photon is added to the radiation 6eld
and for negative values of k the corresponding photon is
removed from the radiation field with respect to the
state (0). It is obvious that

Si———(pp —pi —k„,—k„,—k),,)
X[(k»+k„,)(pp —pi —ki,)] '. (15)

It also follows from Eq. (1) that Wi, »,»,&„contains a
factor 8(pp —pi —k„,—k» —ki,), where the argument of
the 5 function is the same as the factor that is contained
in S~. Since always

zS(z) =0,
we conclude that the term H~Si does not contribute to
the transition probability. Consequently all contribu-
tions of the operator B" to the transition probability
of a three-photon process cancel.

In the following section we will generalize the above
proof to multiple-photon process containing one double-
photon jump. This result can be used to extend the
proof to photon processes with two double-photon
jumps. Finally we will show how the result can be
generalized to all multiple-photon processes.

III. MULTIPLE-PHOTON PROCESSES WITH
ONE DOUBLE-PHOTON JUMP

H 0 f Oi 0 j~1p+Py —0,+P1,+@2', I /+Pl ~+PC p+~I

f'(&o, o
—&o,+»,+»)

Ho, o; I,yacc

t (~o,o
—&i,+i,)

In this section we study the contributions to the
transition probability of a multiple-photon process that

(9) can be constructed from one double-photon jump and
a certain number of one-photon jumps. For a four-
photon process these contributions can be separated
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N

p~ ——P k;.
(0,0) ~ (0,~ium) ~ (I,uu ~4) ~ (2,~a 2lb &4),

(0,0) —+ (I,Xg) —+ (I,pgpghg) —+ (2,p)y2hg4),

(0,0) ~ (I,Xg) -+ {2,XgX2) —+ (2,pgpghgh2) .
(17) It follows easily now that

S~+,= (b~-k. p~—)-'S~+(II~+ )-',
11~= (&x—P~) (b2 —Pa) (4r PN—)The sum of these three contributions to U2, »,»,x, ,x, (&0,0)

can again be written as H252, where H2is immaterial and

into groups of three; one such group is characterized by if we dehne
the paths

(25)

(2&)

S2=&P++a +& '
o,'= —(k„)-&(b,—k„—k,)-~,
ap'= (by —kg) '(bg —k„—kg) ',
&3'=(4—kx) '(4—kg —k2) '.

Here vt'e have introduced the abbreviations

%C derive the general form of S~ by way of induction.
If we assume that

S~= —(b~—k„—p~)Lk„II~] ',
then it follows from Eq. (26) that

&+a= (4r+i k, p—sr+i)—p,II~+x] '

Hence,

~n, =&0 &n p

k„=k„,+k„„
k;=k)„..

&2= up'(bg —k„—kg) ',
ams= a2'(bg —k„—kg)-'.

Since Eq. (2/) ls valid fol E= 1 and E=2 we may con-
clud. e from Eqs. (27) and (28) that our assumption of
Fq. (27) is valid for all values of X.

emote that S~ contains the factor (&~—k„—pN),
w'lllc11 is )ust thc cnclgy diBcrcncc between thc 1Ilitial

and final states of the transition. Since this factor is also
the argument of the b function, which occurs in Eq. (1)
for the transition probability we conclude that the terms

Hg5g do Ilot COIltributc to thc transltlon probability.

S.=(& —k.—k )-'S,+(b,—k,)- (b,—k,—k,)- . {20)

By substituting Eq. (15) we obtain

S2= —(82—k„—kg —k2)

XL(k„) (b&—kg) (82—kg —k2)]-'. (21)

The erst facto r of Eq. {21) is again identical with the
argument of the 5 function that occurs in the expression
for the transition probability and consequently B252
does not contribute to the transition probability.

Let us now proceed to a (X+2)-photon process. Here
vIC combine aQ contributions to U where the Anal
electronic state E is reached. via a specific succession
of intermediate electronic states, vthich we call 1, 2,
3 ~ ~ (iver

—1). The sum of these contributions can be
written as H~S~, where B~ is immaterial and

IV. MULTIPLE-PHOTON PROCESSES WITH
TWO DOUBLE-PHOTON JUMPS

The first nontrivial case where we encounter two
double-plioton Jumps ls a five-photon process. Thc three
contributions to U that we have to consider here corre-
spond to the paths

(0 0) & (0 p1p2) + (1 @1@2~1}~ (1 P192P1PP'1}

(0,0) ~ (I,~z) ~ (I,pzpbi) ~ (I,p&papipht), (29)

(0,0) ~ (0,uu 2) ~ (0,uu 2~v 2) ~ (I,~u 2u~ p2~i) .

The sum of these three contributions can be written as
Hi'Tq, where Hi' is immaterial and Tq is

Ti= h'+4'+ba',
bg'= —(k ) '(bg —k„—kg) ',
bg' (bg —kg) '——(bg —k„—kg) '

b '=(k„) '(k„+k,) '.
In the case of a (X+3)-photon process we define in a
similar fashion, the sum

It is easily derived. that

From a comparison of Eqs. (8) and (30) it follows

easily that
(23)

b '= (bg —k —kg)
—'ag' b2' ——(bg —k„—kg) 'u2', (31)

g .X+1 (b k p )-lgN.
(j= 1, 2, 3, , 7+1),

&~+~ "=(b~ p~) '(bm —p2) '—
X (bs p3) ' ' ' (bB+1 pP+1)

Tg (bg —k„—kg) 'Sy+(——k„) '(k„+k,) '. (32)

(24) Substitution of Eq. (15) gives

2;= (bg —k„—k,—kg) t k„(k„+k,) (br —kg)] '. (33)
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Since the erst term of Tj is the energy difference be-
tween the initial and anal states the contribution to the
transition probability is zero.

It is useful to make a comparison with the next case
of a six-photon process. Here we consider the six
contributions

(0 0) ~ (0 pli142) ~ (1 ill»2~1) ~ (1 iti»2plp2~1) ~
(2iplit42plp2~1~2) i

(oio) ~ (Ii~1)~ (Iipl442~1) ~ (Ii44lp2pip2~1) ~
(2ip»2plp2I11~2) i

(oio) ~ (oip»2) ~ (oii14»2plp2) ~ (Iipip2plp2lll) ~
(2ipl»plp2l11~2) i

(34)
(oiO) ~ (0&p»2) ~ (Ii»»~1) ~ (»P»2"1"2)~

(2iillli142plp2~112) i

(0,0) ~ (1,X,) ~ (I,»P2X1) ~ (2,p»2X, X2) ~
(2i»P2plp2~1li2) i

(o,o) ~ (I,x,) ~ (2,x,x,) ~ (2,p»27, I 2) ~
(2,P»2pl P2~11~12) ~

3f
q2r ——g k, '.

(41)

In Sec. III we considered the case where %=1 and it
follows from Eq. (27) that the corresponding sum,
which we de~ote now by S&,&, may be written as

Sl,N = (—I) '(4r —kl' —pN)[ki'IIN7 ' (42)

The case M= 2 was discussed in Sec. IV and the corre-

sponding sum, which we denote now by 52,~ instead of
T2, is according to Eq. (39)

V. FURTHER GENERALIZATIONS

We are now in a position to generalize the previous
results to a (2M+X)-photon process, where we consider
M double-photon jumps and E one-photon jumps. We
take it that the double-photon jumps involve the
photons (Pl,pl'), (»,p2'), ~, etc., and we introduce the
abbreviations

k,' =k„,+k„,'. ,

If we compare the first three terms with Eq. (29) we

Gnd that their sum can be written as S2N( , 1) (bN q2 pN)[qlq2IIN] (43)

bi'+ bi'+ bi'= (&1—k„—k,—kl)-'Tl.

The last three terms of. Eq. (29) should be compared
with Eq. (17) and their sum is

In deriving this result we made use of Eq. (32), which

we write in our new notation as

S2,1 (bi ql pl) Sl,i+ (—I)'(&2)

b42+b22+b42= (82—k„—kl —k2) 'S2.

The sum T2 of all terms b is therefore

(36)
wl'th

Xu= gcg2' (45)

T,= (b,—k„—k p
—p,)-'T,+ (82—k„—p2)-'S2. (37)

It is easily shown that in the general case we can
follow the same procedure, and that the result is then

It can be d.erived from Eq. (29) that

S2,,= (b,—q2
—pl)- S, ,+ (—1) (x,)-, (46)

S2r+1,1= (bi —q2r —pi) 'S2r, i—(—1) (X~4.2) '. (47)

It is again possible to derive the general expression
for T& by means of induction. If we assume that S~,l= (—1) (bi—q2r —pi)[X2r(&1—pi)] ' (4g)

TN+1 (bN k p k p pN)

+ (be 1 k pN+1) SN+1 ~ (38)
By induction it can be shown that S~,~ is given by

TN= (bN —k„—kp —pN)[k„(k„+kp)IIN] ', (39) Let us now rewrite Eq. (38) in our new notation:

then it may be derived from Eqs. (27) and (39) that S2,N+i= (4r q2 pN)—'S2—N,
+ (bN+1 ql pN4. 1)S1N+1 (49),

TN+1 (bN+1 kp k p pN+1) [kp (kp+ k p) IIN+13 ' (40)

Since Eq. (39) is valid also for le=1 we may conclude
that our assumption of Eq. (39) is correct for all

values of E.
The first term of Eq. (39) represen, ts again the energy

difference between the initial and, final states of the
transition; it follows therefore that in multiple-photon,
processes the terms that correspond to two double-

photon jumps do not contribute to the transition
probability.

It may be verified that this relationship can be
generalized. to

Sir+1,N+1 (bN qM4-1 pN) SM4.1N,
+ (bN+1 qM pN+1)S31,N+1 ~ (50)

By means of induction we can now derive the general

expression

SivN= ( 1) ,(bN qM pN)[~MIIN] ~ (51)
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We see that S~,~ always contains a factor which is
equal to the energy difference between the initial and
final states and therefore, that it does not contribute to
the transition probability. It follows that the term 3'."
of Eq. (4) may always be disregarded in evaluating
transition probabilities of the type (0,0) —+ (23,A) if

m/0, and if the vector potential of the radiation field

may be assumed to be constant in the region that we
consider.

VI. THE CASE n=O

In the previous derivations it was more or less under-
stood that we intended the material states 0 and n of
the transition (0,0) —+ (ss,ll) to be different. Even
though we did not use this assumption explicity, we
considered only pathways between 0 and e that con-
tained at least one intermediate electronic state. If m= 0
this procedure does not cover all possibilities; in this
case we can construct a path

(0,0) ~ (O,P3 l') ~
(01PlPl'PaP2') . . (O,PlPl'P2P2'. . )PslP~') (52)

if we consider a (21V)-photon process. We may conclude
therefore that our previous considerations are valid also
for m=0 if the path between the initial and final states
contains at least one intermediate material state that is
different from the state 0, but that in the case n=0 we

should in addition investigate also pathways of the type
of Eq. (52).

Let us therefore set out to study the contributions to
Up, ~ ~& &2~2 ...&&,&& that result from the terms of the type
of Eq. (52). If 1V is equal to unity the only term of this

type corresponds to

contributions

(0,0) ~ (O,PlPl') ~ (O,PlPl'P2P2') ~
(0)PlPl P2P2 P3P3 ) y

(0,0) —+ (O,P2P2') ~ (O,PlPl P2P2 ) ~
(O,PlPl P2P2 PsPs ) ~

(0,0) ~ (O,psps') ~ (O,papa psps ) ~
(O,PlPl'P2P2'P3Ps'), (56)

(0)0)~ (0)P2P2') ~ (O,P2/2P3P3) ~
(0)P3Pl P2P2 PsPs ) g

(00) (0 ') (0 P 'P P ')

(O,P3Pl PaPa PsPs ) &

(0,0) ~ (O,P,P, ') ~ (O,PlPl'P, P, ') ~
(01PlP1 P2P2 P3P3 ) ~

It is easily seen, that the sum Es(1,2,3) that corresponds
to this situation can be written as

Es(1,2,3) = —[(kl'+ka') 'Ka(1)2)

+ (ks'+k2') 'E'2(3, 2)+ (kl'+k3') 'Ea(1,3)]. (57)

The result is

Ks(1,2,3)= (kl'+k2'+kl')(kl'k2'kl') '. (58)

We may write Eq. (56) also as

E,(1,2,3)= —[(k,'+k, ')—'E, (1,2)]
+[P(1,3)+P(2)3)][(kl'+ka') 'Ea(1)2)j ~ (59)

where P(i,j) is an operator which means that we have
to replace k, ' by k in the expression upon which it
works. It can be verified that this result may be
generalized to

ksl+l(1, 2) ~ ~ ~ )X+1)= —[1++P(j)$)j
(0,0) ~ (O,PlPl'),

and its contribution is not necessarily zero. Remarkably
enough this is the only case where the term X" can
contribute to the transition probability.

If iV=2 we have to take the sum of the two
contributions

X[(kl'+ka'+ +kN') 'Ky(1, 2, ,1')j. (60)

From this recurrence relation and from Eq. (58) lt can
now be derived by means of induction that

Ez(1)2) )1V) = (—1)~ '(kl'+k2'+ +kg')
X (kl'ka'. kg') '. (61)

(0,0) ~ (O,pu l') ~ (O,pl 3'papa'),

(010)~ (0)P2P2 ) ~ (01PlPl P2P2 ) ~

(54)

Since the factor (kl'+kl'+ +k&') is the energy
difference between the initial and final states of the
transition we may conclude that E~ does not contribute
to the transition probability.

This sum can again be written as H2E2, where H~ is
immaterial and

Ea(1,2)= —[(kl') '+(ka') 'j
= —(kl'+k2') (kl'ka') '. (55)

Here k is defined in Eq. (41).
In the case %=3 we should take the sum of the six

VII. CONCLUSION

The above derivations show that for any multiple-
photon process that involves more than two photons
the operator 3'." of Eq. (4) does not contribute in any
way to the transition probability if the vector potential
of the radiation field is assumed to be constant in the
region of space that we are concerned with.


