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A quantum-mechanical formalism is developed to calculate the electric Geld produced in the vicinity of a
metallic object through the influence of the earth's gravitation. The Geld is proportional to the gradient of
the ground-state energy eigenvalue of the object with respect to the position of a test charge located at the
field point. This expression can be reduced to the solution of a problem in classical electrostatics, and is
valid as well for a superconductor. Simple explicit results are obtained for the field within a closed metallic
shell of arbitrary shape, and outside of a metallic sphere. In the former case, the field is uniform and equal
to mg/e, directed so as to exert an upward force on an electron; m and e are the electron mass and charge,
and g is the acceleration of gravity. This result is of importance in connection with current experiments on
the free fall of electrons and positrons, and leads to the expectation that shielded electrons will not fall,
while shielded positrons will fall with acceleration 2g. Some comments are made on the gravitation-induced
electric Geld near a nonconductor, and on the field near a rapidly rotating solid.

I. INTRODUCTION

1

CONSIDERATION of experiments now under way~ on the free fall of electrons and positrons' has
raised the question whether or not the necessary metallic
shield produces an electric Geld that affects the falling
particles, because of the inhuence of the earth's gravita-
tion on the metal. ' It is apparent that each electron
and nucleus in the metal must be acted on by an
average electric Geld of such magnitude that it exactly
balances its weight. Thus the quantum-mechanical
expectation value of the electric field on an electron of
mass m and charge —e must be —(mg/e)s, where g is
the acceleration of gravity and z is a unit vector in the
upward direction. Since the electrons occupy most of
the volume, the metal is nearly filled with this field,
which would then be expected to be present also within
a shield having the form of a metallic shell. On the
other hand, a nucleus of mass M and charge Zt, ex-
periences an average electric field +(Hag/Ze)9, and it
might well be asked if the presence of this field alters
the earlier conclusions. It seems likely that it does not,
since the nuclei are well localized and occupy a very
small fraction of the total volume, and moreover are
separated from the region outside the metal by conduc-
tion electrons. ' Nevertheless, it seems worthwhile to
see how the electric Geld outside of a metallic object
can actually be calculated, when account is taken of
gravitation and of the constraints that support the
weight of the object.

We start in Sec. II with the full quantum-mechanical
Hamiltonian for the interacting electrons and nuclei of
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the metal, and include the gravitational potential
energy of the earth and the potential energy associated
with the supporting constraints. The expectation value
of the electric field at any point outside is easily
expressed in terms of the ground-state eigenfunction of
the metal. It is then shown that if a classical test charge
is added to the system at the point at which the Geld
is to be calculated, this field, is proportional to the
gradient of the ground-state eigenvalue of the new
Hamiltonian with respect to the position of the charge.
In this way the Geld is related in Sec. III to the changes
in positions of the electrons and nuclei that are induced
by the test charge, and hence to the solution of a
problem in classical electrostatics. Simple explicit
solutions are obtained in Sec. IV for the field within a
closed metallic shell of arbitrary shape, and outside of
a metallic sphere. A correction that arises from penetra-
tion of the electric field of the test charge into the metal
is estimated in Sec. V, and shown to be negligible.

II. FORMULATION OF THE PROBLEM

The metal is assumed for simplicity to be monatomic,
although the formalism is easily extended to alloys.
The Hamiltonian of the object in the earth's gravitation
may then be written IIs+II,+V, where the three terms
represent the isolated object, the gravitational interac-
tion with the earth, and the supporting constraints,
respectively. Bo is the sum of the kinetic-energy
operators for all the electrons (coordinates r;) and all
the nuclei (coordinates r„), together with the potential
energy of interaction between them; it need not be
written down explicitly. II, is given by the expression

IIg mg Q, s,+Mg Q„——s„.

A specific model must be chosen for V. We assume
that the supporting constraints may be treated classi-
cally, and that they are elastic and nonconducting. The
metallic object moves as a rigid body against these
constraints, in such a way that motion in any direction
develops a proportional restoring force in accordance
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with a symmetric elasticity tensor. V is then a function
of the r; and r„which need not be speci6ed. We shall
only be concerned with the gravitation-induced.
electric field produced by the object itself, not the
constraints. The 6eld. of the latter would have to be
added in separately if the constraints are close enough
to the field point to be of interest (see Sec. VI).

The operator for the electric Geld at the point ro is

We wish to calculate the expectation value of this Geld

operator for the stationary ground-state eigenfunction
of the Hamiltonian Ho+H, +V. Our procedure consists
in adding a classical test charge q to the system at the
point ro. This charge may be thought of as being
Gxed in position, and of having inGnitesimal strength
in the sense that the limit q

—+ 0 is ultimately to be
taken. The total Hamiltonian is then H=Hp+H&+H&
+V, where

earth's gravitation, and. this 6eld is expected to be
proportional to g for small g. Thus we wish to calculate
the part of the energy eigenvalue E that is proportional
to gq, and then substitute this into Eq. (5) to find the
gravitation-induced electric Geld.

III. REDUCTION TO A PROBLEM IN
CLASSICAL ELECTROSTATICS

The gq-proportional part of E may be found by
treating B,and II, as perturbations, both to Grst order.
It is convenient to omit H~ initially and work with the
Hamiltonian Ho+H, +V, and then to include H, to
first order. We refer to the ground-state eigenfunctions
of Ho+ V and of Ho+H, +V as i/0 and ig„respectively;
both are appropriately symmetrized and normalized
to unity. Electron and nuclear densities (numbers per
unit volume) may be defined for each eigenfunction:

po "(r)= IA, e I'2 ~'(r —r')«,
qe qZe

He= —Z —+Z
~0 " ~0@

It follows from Eqs. (2) and (3) that

E(ro) = —(1/q) kVO, Hj,

(3)
po..'"'(r) = IA,.I'2 ~'(r —r.)«.

The relation between the densities calculated with and
without IJ~ may be written

where Vo is the gradient operator associated, with the
coordinate ro.

Suppose now that we are able to 6nd. the stationary
ground-state eigenfunction f of H that has the energy
eigenvalue Z. Both f and Z depend parametrically on q
and ro. The expectation value of Eq. (4) for this P is

1
f(«)4«

=—(1/q)&OE,

where the integration is over all the r; and r„, but not
over ro. The last step follows since V()E is a c number
that can be taken outside of the integral, and P is
normalized to unity.

In the limit q-+0, g approaches the ground-state
eigenfunction of Ho+H, +V, so that the left side of
Eq. (5) approaches the desired expectation value of the
electric Geld at ro. Also, from general perturbation-
theoretic arguments, the ro-dependent part of 8 is
proportional to q for small q. Thus the right side of
Eq. (5) approaches a well-defined limit as q

—+0. We
are interested in the electric Geld produced by the

p
(eN) (r) , p (8,N) (r)+qp (e,N) (r)+.0(qa)

Uncharged Metallic Object

If we assume that the object is electrically neutral,
then the only charge it contains is the surface-charge
density induced by q, which may be calculated, from
classical electrostatics. In this case, the force exerted on
the object by q is proportional to q2, and the difference
between ij, and $0 that arises from motion of the
object against the elastic constraints represented. by V
is also proportional to q'. lt then follows from Eqs. (6)
that this contribution to p, ('~)(r) is of order q', so
that V does not contribute to pi('~) (r).

Insofar as the penetration of the electric Geld of q
into the metal can be neglected, 4 the nuclei are shielded
from this Geld by the conduction electrons. Thus the
nuclear density change pi(~)(r) caused by q is zero.
The electron-density change pi('&(r) is proportional to
the induced surface-charge density referred. to above,
which is classically calculable.

We now wish to calculate the Grst-order change in
the ground. -state energy eigenvalue when H, is included;
this is simply the expectation value of H, for the
eigenfunction f,. There is of course a difference between
f (the eigenfunction of the total Hamiltonian) and f,
that is of 6rst order in g, since the object moves against
the elastic constraints when gravitation is included.

This point is considered in Sec. V, @&here the neglect of the
penetrating Geld is justiGed.
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However, the corresponding change in the energy
eigenvalue is of order g', and hence can be neglected.

Since B„give nin Kq. (1), is a sum of single-particle
terms, its expectation value may be simply expressed in
terms of the densities (6):

(10) for that part of the gravitation-induced electric
field that arises from Q, and hence provides a useful
check on the formalism. The interesting part of the
field is given by substitution of (8) into (5); we now
consider two examples.

P,B,&gr=esg sp('&(r)d'r+Mg sp, ("&(r)d'r. (7)

The gq-proportional part of this is obtained by sub-
stituting gp(('"&(r) for p, (""&(r) in Eq. (7), to obtain

mgq spy('&(r)d'r.

Charged Metallic Object

Suppose now that the object has a total charge Q,
and the supporting constraints are again nonconducting
and elastic. When g and q are zero, this charge produces
an electric field at ro, which we call Eo(ra). Inclusion
of H, gives rise to the force

—P.o(ro)+0(C')

exerted on the object by q. Thus the difference between

P, and fa that arises from the motion of the object
against the constraint potential V is now of order q,
instead of q' as before. This means that in addition to
the electron-density change p(('&(r) that is proportional
to the induced surface-charge density mentioned in the
preceding subsection, there is also a contribution to
p, ('"&(r) from displacement of the object as a whole.

We call this displacementdo, with elastic constraints,
which may be represented by a symmetric tensor ~~,

we have
do= —w~ Eo(ra).

Then the part of the expectation value (7) of B, that
arises from this contribution to p, (' "&(r) is

Mph do= —Mpgg9 3 Eq(ra), (9)

where Mo is the total mass of the object. Substitution
into Eq. (5) should give the change in the electric field
at ro that is caused by the combination of the earth' s
gravitation, theconstraints, and the charge Q. That this
is indeed the case may be seen by noting that when
gravitation is introduced, the object is displaced by
the vector

da ———Maga S.

The consequent change in electric Geld at ro is

—(d, V,)E,(r,)=M,g(R 3 V,)E,(r,),

IV. EXPLICIT SOLUTIONS

The gravitation-induced electric Geld can be cal-
culated in terms of the surface charge density a(r)
induced on the object by the test charge g. Once a(r)
is known, the electron-density change may be found
from the relation

—ed(('&(r)d'r=a(r)dA,

where dA is a diGerential element of surface area.
Substitution into Eqs. (8) and (5) then shows that the
expectation value of the electric Geld may be obtained
from an appropriate electrostatic potential, in accord-
ance with the relations

SSg
y(ra) = — sa(r)dA.

Field within a Closed Metallic Shell

Let E,(r) be the electric field at the point r, that is
produced by the test charge q at a point r& that lies
within a closed metallic shell of arbitrary shape. When
r is on the inner surface of the shell, E,(r) is perpendic-
ular to the surface, and the surface-charge density is
given by the relation

4ma(r)dA= —E,(r) dA, (12)

where the vector dA is along the outward normal. The
total charge associated with this a(r) is —g. There is
also a surface-charge density induced on the outer
surface of the shell, which integrates to q. However, its
distribution over the outer surface is independent of
the position ro of the test charge. Thus it only con-
tributes an additive constant to Q(ra), and can be
ignored.

Gauss' theorem may be applied to any vector W in
the form

(y W&4'»= fW44,

where the two integrals are over the entire inner volume
and inner surface of the shell, respectively. With the
substitution W=sE„Gauss' theorem gives

since3 is symmetric. When accountis taken of the fact
diat Va&(Eo(rp) =0, it is easily seen that this is equal
to the result obtained by substituting (9) into (5).

The preceding discussion shows that our calculational where use has been made of Eq. (12). Now V E, is
procedure yields the correct but uninteresting result equal to zero except at ro, and its volume integral over
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a region that includes this point is 4mq. Thus the second
term on the left side of Eq. (13) is 4s.qzp. The first term
on the left side may be written J'J'Chdy J'E„Cs. The
s integral is zero, at least for paths of integration that
do not pass through the point ro, since the inner surface
is an equipotential; it can be shown without difhculty
that the point ro is not in fact exceptional.

Thus Eqs. (11) and (13) show that g(rp) = (mg/s)zp,
and hence that

&~(rp))~= —(~g/s)z (14)

everywhere within the shell. This result is in agreement
with the qualitative discussion given in Sec. I.

Field outside of a MetalHc Sphere

The charge density induced at a point on the surface
of a metallic sphere of radius R by a charge q at a
dlstailce r'p floiil tile ceiltei' (Fp) E) ls

q
-1 ro' —~'

(8)=
4rrE rp (rp'+E' —2rpE cos8)"'

where 8 is the angle between the radial hnes to q and.

to the point on the surface. The total charge associated
with this o (8) is zero. The integration in the second of
Eqs. (11)is readily performed, and leads to the potential

y(rp) =mgRP cos8p/srps,

where 8O is the angle between the radial line to the
point ro and the upward direction. This is just the
potential that would be produced by an electric dipole
of moment mgR% located at the center of the sphere
and oriented along the positive s axis. It is also the
potential that would be obtained by matching an
exterior solution of Laplace's equation to the potential
that corresponds to the uniform field —(mg/e)z inside

the sphere. ~

It was assumed in Sec. III that the nuclei are
shielded from the 6eld of the test charge q by the
conduction electrons. There will be, however, some

penetration of the electric 6eld, which will both displace
and polarize the ions (nuclei plus tightly bound elec-
tronic clouds). In order to gauge the importance of this
eBect, we must estimate the ratio of the contributions
for a typical element dA of surface area of the two terms
on the right side of Eq. (7).

Both of these contributions are proportional to E„
the electric Geld on the surface produced by q. The
electron term may be written

sisgla dA/e = rlgtE pdA/4m @, (15)

4' So@added As proof. It can be shown from Eqs. (1i) that the
latter procedure is valid in general, not just for a sphere. This
provides an alternate treatment for metallic objects of arbitrary
shape, and incidentally sirnpliaes the derivation oi Eq. (14).

where l is a typical vertical height through which the
electrons that make up the surface-charge density 0.

have been displaced.
The ion-displacement part of the nuclear term may

be estimated by first assuming an attenuation factor P
such that the sum of the electric Gelds penetrating to
all layers of ions is PE,. Next, we assume that each
ion has an effective charge Z'e and a restoring force
constant E, so that the sum of the deQections of all
layers of ions is PEpZ'e/K. The number of ions in each
layer in the element dA of surface area is Ã@'dA, where
X is the number density of ions. Thus if this area
element is horizontal, the contribution to the second
term of (7) from ion displacement has its greatest
value and is equal to

MgPE, Z'elPIPdA/K.

K may be estimated from the Einstein temperature Og
of the metal by means of the expression K=M (k8Jr/h)s,
where k is Boltzmann's constant and, k is Planck's
constant divided by 2~.

The ion-polarization part of the nuclear term may be
estimated by assuming that the induced dipole moment
results entirely from displacement of the nucleus with
respect to the center of charge of the electronic cloud, .
Then the sum of the deQections of all layers of nuclei is
pEppr/Ze, where n is the ionic polarizability. The
maximum contribution to the second term of (7) from
ion polarization is then

MgPE~N"'dA/Zs.

Th«atio of (17) to (16) is rrK/ZZ'e' For coppe. r, '
with 8~=240'K, we obtain X=105 in cgs units. A
reasonable value for n is 2& IO "cm', and Z' is expected,
to be between 1 and 2. We then Gnd that this ratio is
roughly equal to 0.02. Thus, ion polarization can be
neglected in comparison with ion displacement.

The ratio of (16) to (15) is 4rrM e'PZ'1V'~'/mK/. For'
copper, with X=8.45X10ss atoms/cm', we find that
this ratio is roughly equal to (P/l)X10 '. Since P is
expected to be appreciably less than unity, and. / is
at least of order 10 cm in a typical experiment, Geld
penetration can safely be neglected.

VI. CONCLUDING REMARKS

The principal conclusion of this paper follows from
Eq. (14): that free electrons are not expected to fall
under gravity if they are within a closed metallic
shell of arbitrary shape, since their weight is exactly
balanced by the gravitation-induced electric 6eld
produced by the metal. In similar fashion, free positrons,
if they have normal gravitational properties, should,
fall with acceleration 2g. In actuality, the metallic
shell does not have to be completely closed in order for
these results to be valid to good"approximation. Explicit
calculations for other con6gurations, such as a long
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vertical cylindrical tube with open ends, couM be
carried out if warranted by an experimental situation.
It should also be noted that there is nothing in the
present calculation that precludes its applicability to
superconducting objects. 'b

One aspect of the role of the supporting constraints
was alluded to early in Sec. II, but not discussed further.
This is the fact that there is a gravitation-induced
electric Geld associated with them as well as with the
object that they support. If the object is a closed
metallic shell and the constraints are on the outside,
it is apparent that they have no effect on the Geld
inside. In general, if the constraints are themselves
metallic, they may be considered as extensions of the
object, and suKciently remote parts contribute a
negligible amount to the Geld. However, the Geld
around the sphere of Sec. IV will depend, to some
extent on the size, shape, and orientation of the
constraints.

While the general theory developed, in this paper is
applicable to nonconducting objects and constraints as
well, the calculation would differ considerably in detail.
Since it seems likely that stray charges wouM greatly

4b Nore oÃdegsn proof For a discus. sion of a related phenomenon,
see B.S. De%'itt, Phys. Rev. Letters 16, 1092 (1966}.

complicate any measurement of the gravitation-induced
electric Geld near a dielectric, no attempt has been made
to obtain a theoretical result. There is, however, one
situation that can be approached in a straightforward
manner: that in which various metallic parts of the
object and constraints are separated by thin non-
conducting wafers. Their direct contribution to the
Geld can be made very small by making the wafers very
thin, and they then serve merely to permit the metallic
parts to be at di6erent potentials under the inhuence
of the test charge, and to prevent the Qow of induced
charge from one part to another.

It is natural to think. of enhancing the gravitation-
induced. electric Geld by substituting for gravitational
force the much larger centrifugal force that can be
obtained, by rapid rotation. However, we have been
unable to obtain a treatment as simple and, general as
that presented. here, in the case of a rotating solid.
This does not perhaps seem surprising when it is
remembered that a rotating superconductor has
qualitatively different properties from a rotating normal
metal, ' while as we have seen they have the same
behavior with respect to gravitation when at rest.

' F. London, SNperggsds (Dover Publications, Inc. , New York,
1961),Vol. 1, p. 78.
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The shape of the primary cosmic-ray spectrum at very high energies and its connection with the spectra
of high-energy y-rays and muons in the atmosphere have been discussed. Using a simple formulation for cal-
culating secondary spectra arising from power-law primary spectra cutoff at arbitrary points, it is shown

that a specific two-component model for the primary spectrum explains the present observations on the
high-energy y-ray spectrum at all altitudes and the muon spectrum at sea level, without invoking any
change in the character of the interactions at high energies. Such a spectrum is also consistent with air-
shower observations.

1. INTRODUCTION

A BOVE 100 GeV the methods which have been so
far used for measuring the energy of primary

cosmic-ray particles are essentially calorimetric in char-
acter. For energies greater than 10" eV air showers

are used, while below this the current information comes
from the study of the energy going into the soft com-

ponent in interactions produced by a primary particle
in heavy-metal emulsion assemblies and arrangements

using absorbers and ionization chambers. Transforming

*A preliminary version of this paper was presented at the
International Cosmic Ray Conference in London in 1965.

a measured particle energy spectrum into an energy-
per-nucleon spectrum requires additional information
on the chemical composition of the primary nuclei as a
function of energy, which is usually not available. How'-

ever, the following statements may be made regarding
the chemical composition:

(i) The relative number of high-energy interactions
produced by primary particles of dMerent charges in
large emulsion assemblies exposed at the top of the
atmosphere suggests that, at least up to 10rs eV/
nucleon, the primary composition is not very different
from that found at low energies.


