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The problem of an electron in the presence of an intense monochromatic electromagnetic field is studied
from the standpoint of the exact Green's function for the electron in relativistic quantum mechanics. It is
shown that the electron acquires a mass increment above the field-free mass. The Green's function is derived
and investigated at some length. It is initially derived in a form which is very different from the free-electron
Green s function. This form is shown to yield an interesting momentum relation for the electron, and to lead
to a seeming level structure of the electron. The Green's function is then transformed to a difkrent form in
which the electromagnetic-Geld effects are manifest as corrections to the free-electron result. This form makes
evident the field-strength and electron-momentum conditions which lead to significant quantitative de-
viations from the free-particle case. Most of the detailed discussion is devoted to the case of the scalar
"electron, "but results are also given for the spinor electron.

I. INTRODUCTION

HE problem of an electron in an intense plane-
wave electromagnetic field has now acquired a

considerable literature and also aroused some contro-
versy. The Grst work. on the problem was the exact
solution by Volkov' in 1935 of the Dirac equation in the
presence of a plane-wave field. There was a long pause
(in the course of which several other authors independ-
ently solved the same problem) before the next step,
which was the use of the Volkov wave functions as a set
of basis states for the perturbative solution of a physical
problem. Kith this technique, Sengupta' calculated the
Compton-scattering process, one of the present authors'
solved the problem of electron pair production by
colliding photon beams, and Nikishov and Ritus'
worked out these processes as well as electron-pair
annihilation. Brown and Kibble' and Goldman' also
calculated Compton scattering by this same method of
perturbing the Volkov states. All of these calculations
were done with a monochromatic background Geld (i.e.,
the Geld encompassed within the Volkov solution), and
they are all mutually consistent. Furthermore, they all
share the interesting features that an index occurs which
serves to count the number of photons from the back. -

ground Geld which participate even though the field is
not quantized and normally not described in terms of
photons; and the mass of the electron in the presence of
the Geld is increased by an amount which depends upon
the strength'of the field.
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Controversy arose primarily because of the ap-
pearance of a quite different method of treating the
same physical processes. Using the Feynman rules of
quantum Geld theory, Compton scattering was calcu-
lated' on the assumption that the background field was
so strong that its photons could not be depleted, and that
interactions with the background field would dominate
all self-field radiative e6ects. It was then possible to
find closed-form sums for electron self-energy effects to
all orders in the background Geld. Under these circum-
stances it would be expected that field theory would give
the same results as first-quantized relativistic quantum
mechanics. However, in Ref. 7 no momentum or mass
shifts were found. This motivated Kibble to ascribe
this lack to the use of an infinite plane-wave field in
Ref. 7, whereas Brown and Kibble' had tried to cast
their calculation in the form of an infinite-field limit of
a field of finite extent. However, this explanation is not
compatible with the other work' ' using the (inGnite
Geld) Volkov solution, as well as the Brown-and-Kibble
paper itself, in which exactly the Volkov solution is
obtained by their limiting process. The problem is re-
moved in a recent paper by the present authors' (which
will be referred to hereafter as I) in which it is shown
that a class of diagrams was omitted in Ref. 7 and that
this class of diagrams yields exactly the momentum
dependence and mass shift found in the first-quantized
approach.

One point has become quite clear in these investiga-
tions of electrodynamics with a strong plane-wave Geld.
That is that the interesting features which arise in cal-
culating physical processes in terms of Grst-order per-
turbation theory with Volkov states, instead of the con-
ventional second-order perturbation theory with free-
particle states, are inherent in the Volkov solution

' Z. Pried and J. H. Eberly, Phys. Rev. 136, 3871 (1964).' T. W. B.Kibble, Phys. Rev. 138, 8740 (1965).' J. H. Eberly and H. R. Reiss, Phys. Rev. 145, 1035 (1966);
referred to as I in the text.
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itself. Thus the present paper is devoted to a detailed
study of the properties and physical implications of the
Volkov problem per se. Specifically, the present paper
gives a direct demonstration of the existence of the mass
shift of an electron propagating in a monochromatic
plane-wave Geld, and contains a study of the properties
of the exact Green's function for this problem. It has
also been found' that the Volkov wave functions them-
selves exhibit some extremely interesting properties that
hitherto have not been remarked upon. This investiga-
tion of the Volkov wave functions, however, is deferred
to a subsequent paper now being prepared.

In the present paper, the Green's function is derived
Grst for the scalar electron. This Green's function has
some very interesting properties. It is found to be quite
diGerent in form from the usual electron propagator, and
it is shown to imply an interesting momentum relation
for the electron. The Green's function is given initially
in the form of a fourfold momentum integral. When the
p' integration is done, the form of the result is no longer
greatly diferent from the free-particle case, but is
clearly a generalization of the usual free-particle result.
There are, however, important differences between the
free-particle case and the present result. It is shown that
when a particular combination of electromagnetic Geld
and electron parameters approaches unity, that quanti-
tative deviations from free-particle behavior should be-
come manifest. Also, it is found that an index appears
which denumerates photons in the unquantized electro-
magnetic Geld, and the electron exhibits properties
which can be interpreted as representing a level struc-
ture. The scalar-particle Green's function derived here
is shown to be consistent with the calculation of I in the
sense that the leading contribution of the Green's func-
tion derived here is identical to the diagonal elements
of the Green's operator derived by Geld-theoretic
techniques in I.

Finally, the exact Green's function is presented for a
spinor electron in a plane-wave Geld. This Green's
function is found to be related to the scalar case in a
manner analogous to (but much more complicated
than) the relation between the Green's functions for
free scalar and spinor particles.

II. EQUATION OF MOTION

In this paper we consider the problem of an electron
in an intense monochromatic electromagnetic Geld. The
calculation is done within the framework of relativistic
quantum mechanics. The case of circular polarization of
the electromagnetic Geld will be treated, with only
occasional remarks about the differences introduced by
plane polarized waves. In addition, since we show that
the scalar "electron" exhibits many interesting proper-
ties which are preserved (and complicated) in the more
diflicult spinor case, we shall consider primarily the

"H. R. Reiss, Bull, Am. Phys. Soc. 10, 712 (1965);and a paper
currently being prepared.

scalar case. The spinor electron is treated brieQy at the
end of the paper. The name "electron" will be applied
to both the scalar and spinor particles.

We wish to regard the electromagnetic Geld as being
so intense that it can be treated as an external (or back-
ground) field. A scalar particle is described, therefore,
by the Klein-Gordon equation

j(i8„e—A )' m—'5/=0 (2 1)

e= 2-'i'(0, e,a i)e.2 (2.5)

In Eqs. (2.4) and (2.5), e; represents a unit three-
vector along one of the spatial axes x'. Substitution of
the polarization vector (2.5) in (2.2) gives A'= —2u',
since e'= e~'= 0 and ~„e&*=—1.Thus, with the deGnition

mA'=-', e'a 2the right-hand side of Eq. (2.3) follows

from the interaction Lagrangian density

Zr —— 2i eA „P"8Q Am—'P~f—(2 6)

The second term in (2.6) is exactly of the form of a mass
counterterm, and can be viewed as constituting a finite-
mass renormalization of the electron due to the presence
of the external electromagnetic Geld. The Klein-Gordon
equation (2.3) now takes the form

L(iB„)'—M'5f= 2ieA„8+, (2.7)

where 3P=nP+AnP.
The language used in arriving at the results (2.6) and

(2.7) was chosen so as to be applicable to the 6eld-

where m is the electron mass and A„ is the four-vector
potential

A p
=8 Re (t~e +) . (2.2)

In Eq. (2.2), a is a real scalar amplitude factor, e„ is the
polarization vector of the electromagnetic field, and
y=k x, with k„ the propagation vector of the electro-
magnetic Geld. We use units such that A=c=1, and the
metric employed is such that the scalar product of two
four-vectors k„and x„ is k x=0„x&=k'x'—k x.

Equation (2.1) may be written in the form

[(i8„)'—nP5= (2ieA„BI" e'A'gi —(2.3)

when the Lorentz condition is imposed on A„. In this
form, Eq. (2.3) has the appearance of the dynamical
equation for the field operator P, as well as for the wave
function P, although we adopt the latter point of view
here. The terms on the right-hand side of (2.3) are the
result of the photon-electron interaction. This inter-
action is seen" to involve a vector coupling A„BQ and
a scalar coupling A'P. When the electromagnetic field is
circularly polarized, the scalar coupling term exhibits a
particularly simple form. If the electromagnetic Geld is
taken to be in the x' direction, so that the propagation
four-vector is

k~=~k~; k~= (1,e,), (2 4)

then circular polarization can be described by the
polarization vector
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theoretic case as well as to the case of ordinary quantum
mechanics which is treated here. When the occupation
number of any single mode of the photon Geld is so
large that changes in that number can be neglected, then
the result (2.6) can be proved also in the field-theoretic
case. This conclusion is demonstrated (although in an
indirect way) in I. In a Feynman-diagram approach,
the A' term with circular polarization leads to diagrams
with one photon absorbed and one photon emitted at
the same vertex. The replacement of m' by M' identi-
cally removes all such diagrams.

The same hm' mass shift occurs in the linearly
polarized case, even though the Am' mass renormaliza-
tion does not remove the A' term entirely. Linear
polarization can be described by real space-like e„ in
Eq. (2.2), in which case

e'A'= —e'a' cos222= —d,2222 ——',e'a' cos2y. (2.8)

The mass renormalization removes the Grst term on the
right-hand side of (2.8). The effect of the remaining
part of e'2' is explicable from the e+"~ terms in cos2q.
In Feynman-diagram language, the mass normalization
removes the vertices involving one photon in and one
pboton out, but does not aGect vertices with two
photons absorbed or vertices with two photons emitted.

Ql. GREEN'S FUNCTION —SCALAR ELECTRON

is obtained, where

C(22) =i(2p k)-'(2ep A —p'+M'),
D= i (2p k) '

The solution of this equation is

I=exp C (n)dn
ill I

(3 4)

v= D exp
2I2t

e(n)dn dP.

All the integrations indicated in (3.4) can be carried out
explicitly when A& represents a monochromatic plane
wave. It should be observed that the lower limit q" in
both integrals over n is quite immaterial as long as it is
the same in both integrals, as it must be in order that
22v satisfy the differential equation (3.3). The reason
q" is immaterial is that all dependence on it vanishes
when the product of I and v is formed after the evalua-
tion of the n integrals. Hence we shall indicate only an
upper limit of integration for the 0. integrals.

To evaluate f(22, 22') explicitly, we introduce the
explicit expression for A & given by Eqs. (2.2) and (2.5).
The result of the integration over 0. is then

An exact result for the Green's function of Eq. (2.1)
will be calculated for circular polarization, i.e., when 3„
is specified by the particular choice (2.5) for the
polarization vector in (2.2). The equation to be solved
is written most simply in the form which follows from
Eq. (2.7),

(8„8~+M2+2ieA „8~)g(x,x') = —8(z—x'). (3.1)

The boundary conditions to be satisGed will be discussed
when they are imposed upon the general solution. We
begin by setting

g(x,x')=(2 ) ' O'P e ' ""&f(22,(p'). (3.2)

C (n)dn= ii' sin(P p) i—(rP, —

with the deGnitions

ie'&=cap 2/(p k),
p=arctanL(p Ime)/(p Ree)1,
= (p' —M')/(2p k).

The solution f(q, q') now takes the form

f= (2ip k) ' expt —it' sin(q —p))

(3.5)

The reason for this choice is that f is a function of
momentum only, in the free-particle case, and departure
from free-particle behavior is a consequence of the
presence of 2 I", which is a function of q =k x only. The
substitution of the assumed solution (3.2) into (3.1)
gives

&( dP exp/if' sin(P —p)+io. (y—P)j.

If we make the change of integration variable 8+24.
= y —p, where 0&8&22r and l is an integer, then for
large values of q —y' we have

f= (2ip k) 'exp/ —i—i' sin(y —p)]
d4P e '"' * *' k(p' M' 2ep A)f+2iP—kf'—1j=0, —I j

e2Tsld

0
d8 expt —ii' sin(8+ p —y)+is 8). (3.6)

f'+~(v )f=D (3.3)

where f'=Bf/Bq. This equation can be identically
satisGed by setting the square bracket in the integrand
equal to zero. In this fashion the Grst-order differential
equation

The quantity I. in the upper limit on the sum over l
denotes the smallest integer containing (q —22')/22r.

Now we suppose that the source point y' goes to —~
(or, equivalently, the field point-source point separation
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q
—(p' goes to ao). This corresponds to the large space-

time interval that is customarily introduced into
scattering problems. Here it signiGes explicitly that the
electron has passed through many wavelengths of the
electromagnetic Geld in propagating from x' to x. Then
the upper limit L—1 of the sum in (3.6) becomes o).
By adding a positive imaginary part to 0., the sum over
/ is made to converge to

g(x,*')=
(2~)4

d4p e ia—(x—x')

x~ .(-fV.+.(f)
X Q e-'"(' -4) (3 11)

2p k sin2ra

Green's function for the scalar electron is

Q e2miir —P 'e2wi (rr+re)7 1—
0

(3.7)

The first thing to be noted about the solution (3.11)
is that for r=0 the result

A positive imaginary addition to 0- is equivalent to the
replacement

M'~ M' —ia, 4-+0+. (3.8)

The 8 integral in Eq. (3.6) becomes

d8 exp)—2f sin(8+ p —42)+ia-87

—~is ( q2
—p)

21l'+p

dn exp( —if sinn+io. n) (3.9)

when the change of variables a(=8+ p (p is —employed.
We shall see that 0- is required to be an integer, which
means that the integrand in (3.9) has period 22r. Since
the interval of integration is also 2x, the limits of inte-
gration may thus be translated an amount p

—p, i.e.,

As in the free-particle case, (3.8) corresponds to a causal
Green's function. The explicit consequences of (3.8) are
shown in the next section. We employ (3.7) in the form

(1—e2~") '= —2'ie-'~~/sin2ro .

1 2rJ,(f)J,(f)
g(')(x—x')= d4pe '&'(* ") (3.12)

(22r) 4 2p' k sln2r0'

is identical to the Green's function derived in Ref. 9
with the use of Feynman rules. Only for the single term
r=0 does the Green's function depend solely on the
difference x&—x&'. This carries the implication that
g"'(x—x') is the propagator for an electron with mo-
mentum unchanged by the electromagnetic Geld, and
thus it constitutes that part of the Green's function
which derives from the "external-6eld self-energy" of
the electron propagating in the presence of the electro-
magnetic Geld. Even in this unchanged momentum case,
the modi6cations resulting from the external 6eld are
manifest in the strikingly diGerent appearance of Eq.
(3.12) and the conventional free-electron result, given

by Eq. (3.2) with f= (P'—2242) '.
A direct way to see the eGect of an explicit dependence

on x& as well as x&—x&' in the complete Green's function
(3.11) is to Fourier transform to the momentum-space
Green's function,

p(q, q') = (22r) 2 d4x e"* d4x'e "' 'g(x, x').

27r+p 4p

dn exp( if sinn—+ion)

2x

d(2 exp( —if sinn+ia. n)
0

=22r1, (—f) =22re' 'J (f) (3.10)

We look 6rst at the case when there is no dependence
other than on x&—x&', as in g(')(x—x'). The result then
is, trivially,

~z .(f)s.(f)
&")(q,q')= . ~(q—q'), (3 13)

(22r)4 2q k sin2ro.

when o is an integer. When Eqs. (3.7) and (3.10) are
incorporated into Eq. (3.6), the result is

f= (2p. k sin2ra) '2rJ, (f)
&&expt —if sin((a —p)+io ((p—p)7.

The exponential function here can be expressed as

where the o and f parameters are now understood to be
functions of q& rather than p&. For the complete Green's
function of Eq. (3.11), the corresponding momentum
space Green's function is

1 - ~J .(f)J.„(f)
S(q,q') = P e"&8(q q'+rk) . —

(22r)4 r=~ 2q k sin2ro.

(3.14)

exp/ —zf sin(y —p)+io (22—p)7= p J,(f) "e

When the summation index r is shifted an amount o-,

and the final result for the f(ip, ip') function thereby ob-
tained is substituted into Eq. (3.2), we find that the

It should be observed that, because f«1 in most cir-
cumstances, the result is usually dominated by the
0 =0, r =0 term. The signi6cant conclusion that follows
from Eq. (3.14) is that the Green's function describes
not only the propagation of an electron between x&' and
x& with unchanged momentum q=q', but it also de-
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scribes real interactions in which the electron can
physically absorb or emit r photons of the external
electromagnetic Geld. Thus the index r has been identi-
Ged as a photon-number index which counts the net
number of photons absorbed or emitted by the electron.

~
—ip. (~x')

d4p
(2gp) 4 p2 —yP+ j4

(2m)'

exp[4p (x—x') wiE(x' —x")1
(4.1)

where E= (p'+m')'I', and the upper choice of ambigu-
ous sign holds if x'—x"&0 while the lower choice holds
if x'—x"(0.

The poles of (3.11) are at 0 =/=integer, which gives,
when the deGnition of 0 is introduced,

(p ik)'= M—' i4—
Equation (4.2), which also arises in the self-energy
calculation of I, states than an electron in interaction
with a plane-wave electromagnetic Geld does not
possess a uniquely deGned momentum vector. Equation
(4.2) is interesting also because it does not arise in
perturbation theory in any Gnite order, but arises only
in an exact solution as is done here, or in a closed form
evaluation of an infinite sum, as in I.

The locations of the poles of the integrand of (3.11)
in the complex po plane come from Kq. (4.2). The poles
are at

po=i~~ph2 —2i p4+(a)2 —i'y2 (4.3)

where h = (p'+3P) Ii' is defined in analogy with
8= (p +tg ) I . All poles glveil by tile positive sqllare
root in (4.3) lie below the real axis, and those given by
the negative square root lie above the real axis, as
intended. With this understood, we shall no longer write
the ie term. When h&)~l44~, the positive branch of
(4.3) gives poles at

p'= @+i~L1—(p'/h) l. (4 4)

IV. SINGLE INTEGRATION OF
GREEN'S FUNCTION

The Green's function we have derived in Eq. (3.11) is
greatly diGerent in appearance from the standard result
for a free electron. Pet we shouM expect that the
physical consequences of calculating with (3.11) should
di6er from the usual free-particle case only by the
appearance of new terms involving parameters like
54I4~/4II'. The qualitative similarity of (3.11) to the
usual free-particle case can be made manifest by carry-
ing out one of the integrations indicated by J d'p. Per-
forming this integration also serves to clarify other
points of physical lllterest, .

We shall be interested in making comparisons with
the well-known result for the free-particle Green's
function that

This means that there are evenly spaced poles about the
point p'=8. On the other hand, if ~ko~))h,

p'= 2lco —p' (4.5)

if /&0, so that the poles continue to be evenly spaced
although with increased interval. When ~ku~))h and
l(0, the poles are at

p'= p'+L@'—(p')'j/( —2i ) (4.6)

, , „&-.(f)&...(f)
2' 2p k siniro.

(4.8)

over the contour indicated in Fig. 1. In the neighbor-
hood of one of the poles,

n =I+ (P' PI') (80—/BP') I

where pio is the value of p'at the ithpole as found from
Eq. (4.3). Since the derivative is

(~~/~P')I= (P @ '(PI' ~i)

then the denominator of (4.8) contributes

2p k siniro =m. (—1)'(po—pio)2(pi4 —44l)

in the vicinity of each pole. The result of carrying out
the contour integral is then

I,= Wi PI exPL —iPI4(x' —x")$
X!(p'- i)-%(r)~.,(t. ), (4.9)

where the sum over 3 should go between negative and
positive limits whose magnitude is of the order of tn/&o.

However, because the magnitude of the summand de-
cays very rapidly as ~l

~

becomes large, the limits on the
i summation will be taken to be simply —~ to +~.
The upper choice of ambiguous sign in (4.9) refers to
(x'—x")&0, and the lower choice to ((x'—x")(0.Of

In this case the poles lie progressively closer to each
other as —3 increases, and there is an accumulation
point at p'= p'. Analogous results hold for the negative
root in (4.3). In this case,

p'= —6+l(A/1+ (p'/h) j (4 7)

when h» ll441; Eq. (4.5) holds true when /(0 and
—kv))$; and Eq. (4.6) pertains when l&0 and. lm»8.

It should be noted that for optical' photons,
~
l~

~

= h

implies a value of l=3&10', with the implication that
a single electron has absorbed or emitted this many
photons. Clearly then, the presumption that the
electromagnetic Geld is not depletable can no longer be
sustained, and the entire basis for the calculation be-
comes invalid. The same is true for the calculation in I.
The eGects we are describing would cut themselves oB
through local depletion of the electromagnetic Geld.
Therefore, we shall not be concerned with the possibility
/s f

& b.
We now explicitly carry out the integral
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Im po pO

FEG. 1.Contour of integration in the
complex ' plane for: (a) (x'—x"}&0,
and for b) (x —x '))0. J 3 Re po wp3 Re p

(b)

course the selection of the proper solution for pp must For the special case of the self-energy Green's func-
be made correspondingly. From Fqs. (44) and (47), tion, i e., whenr=0, the result arising from the insertion
we may set of Eq. (4.11) into (3.11) is

pP= +8+lcoLiw (p'/8) j,
where here and in the following work the ambiguous
signs are ordered as indicated above. Then the expo-
nent in (4.9) becomes

exp( ip P (x'—x")j=—expfwi 8(x' x")$—
Xexp( —ilco(x —x ')L1%(p'/8) 1).

Since, generally, (p'(/8«1 and ~leo(/8&&1, then we

may set
(pP —~l)—'= +8-'

in Eq. (4.9).The term ko (p'/8) has been retained in the
exponential (4.9) because it makes a qualitative differ-
ence in the result. It can be shown that retention of this
term in (pP—&vl)

' produces a similar, but much smaller
effect. In the same fashion, we Gnd that

t ~=«l p'I/(~8 p')~=io—
is an adequate approximation to insert as the argument
of the Bessel coefficients in (4.9), and has the signal
advantage of being independent of i. Now I„in (4.9) can
be written as

I„=——',i8 ' expt &i8(x' x")j-
Xzl ~*"Jl(f0)Jl+.(t 0), (4 1o)

where

y = —a) (x'—x")L iw (p'/8) j,
and P is independent of l. The sum in Eq. (4.10) can
be evaluated explicitly by Graf's addition formula
(cf., e.g., Ref. 11) to yield the final result for I„ that
I„=—~~i8—' exp[ai8(x' x")5e ""—&~~&J,(-w), (4.11)

with
m=2' 0 sin-,'y.

"IIf'ghe' Transcendental Functions, edited by A. Erdelyi (Mc-
Gram-Hill Book Company, Inc. , New York, 1953), Vol. II, p. 45.

g&»(x,x') =—
(2~)'

expPip (x—x') Wi8(x' —x")j
X d'p Jp(w) . (4.12)

2h

When [ID~&&1, then ~urn&&1 and Jo(w) 1. Thus Eq.
(4.12) differs from Eq. (4.1) for the usual free-particle
Green's function essentially only by the substitution of
8 for E (i.e., M for m). However, even in this case,
with Jp(m)=1, the presence of Jo(w) in (4.12) is none-
theless interesting since m differs for the particle and
antiparticle poles. Explicitly, m is given by

2«ip ei
R'c =— sin t

——,'cu (x,—x()') (1~p'/h) g.
(~8 p')~—

The fact that Jo(m+) must be used in (4.12) for the case
(x'—x"))0 and Jo(w ) must be used for (x'—xo')(0
means that we Gnd a fundamental asymmetry between
electrons and positrons which does not occur in the free-
particle case. However, this asymmetry is reversed
when the sign of p' reverses, so that we again achieve a
symmetry in this broader sense. When f'0 is small,
another consequence of the Jo(m) factor in (4.12) can
be shown by expanding Jo(w) as

J (u) =1—(-'~)'= (1—-'i 0')+-'l 0' cos4 (4 13)

The e8ect of the cosP term is to introduce 8+&v and
8—a& into the exponential in (4.12) as well as the
original 8. Further terms in the expansion (4.13) lead to
further small correction terms containing successively
higher multiples of ~ multiplying (x'—x") in the
exponential. Hence, even though (4.12) closely re-
sembles the free-particle result (4.1), the rnultiple-
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photon eRects can still be put into evidence. %e should
point Gilt 'tllR't a 11101'c cxtcnslvc cxpallsloll tllall (4.13)
is not to be trusted, since further terms @rill be of the
same order as quantities which frere neglected in
RITlvlllg Rt Eq. (4.12). FOI' lllstRllcc lll golllg floIII
Eq. (4.9) to Eq. (4.10), a term lol(p'/h) was dmpped
from plo —a&l. Including this gives a correction propor-
tlollal to cos(2$)JI(w) to be added to Jo(w) 111 Eq.
(4.12). This term in J~(Io) can be represented appmxi-
mately as (p'/8) (ol/8) ', {'o'-sing. Its effect is thus much
like the last term in (4.13), but with smaller amplitude.

The complete result for the Green's function after
the p' integration is performed follows from employing
I„in Eq. (3.11).I„is de6ned by (4.8) and appmximately
evaluated 111 (4.11).%lien 't1118 ls done, tllc slllllllla'tloll

over the index r is in the form of a generating function
for the Bessel coeScients. That is, vm have

g J„(Io)e 't'«~ ~& '—"&I'* »=—exp[—ilo cos(—,p+k x—p)j
=exp{i{.,[sin(y+p x—p) —sin(k. x—p)j}, (4.14)

vrhere the last form follows from the de6nition of m in

(4.11). Therefore, the complete Green's function is

given by

g(x,x') =-
(2m.)'

cxp[iy (x x')W—i8(x' x")j-
d8

28

Xcxp{i{'0[»n(4+& *—p) —»n(&'x —p)j}. (4 15)

If the exponential function from Eq. (4.14) is expanded
when t 0 is small, the 6rst term will dominate. Equation
(4.15) then becomes [as did Eq. (4.12)] the same as
the free-particle result (4.1) with M in place of m.
Corrections to this lovrest-order result are, however,
more important for the complete Green's function than
for the self-energy part. The 6rst correction here is of
6rst order in t'o rather than second order. This last fact
was evident at a much earlier stage. In Eq. (3.12) for
the self-energy part, the dominant contribution for
small t comes from the pole at o =0, since Jo'({)=1.
The 6rst correction comes from the poles at 0=+j.,
w111cll lead to JI ({)= (g{) By coIlt~ l'Rst, Eq. (3.11) fol'

the complete Green's function shovrs that the dominant
contribution at fT=O and r=0 can be corrected by the
pole at 0-=0 vrith r=+1,or by the poles at 0.=&1 vrith

r=%1.Each of these four combinations gives a correc-
tion proportional to t'

Equation (4.15) exhibits the same sort of asymmetry
as (4.12) between particle and antiparticle parts. How-

ever, since the exponential factor exhibited in Eq. (4.14)
depends on both x'—x" (thmugh p) and on x'—x', a
mixing of coordinates is present in the complete Green's

function that does not occur for the self-energy part.
The signi6cance of this has already been discussed.

In the above discussion, vie have repeatedly men-

tioned. the case when t is small. This is not always ap-

plicable, however, as we shall shoe&. For an order of
magnitude evaluation, we can set p k =elol. Then since
Ip eI =2 &IpII, we have

I &I = (~N '/~')'"(I p. l/~)

where p& is the component of the electron's three-
momentum perpendicular to the electromagnetic 6eld
direction. At present, the maximum available value of
AeP/m1 from a pulsed-ruby laser is about 10 s. Hence,
an electron beam of about 20 keV is adequate to yield
I {I

=1.The results presented in Eqs. (4.12) and (4.15)
are valid for the parameter magnitudes me are quoting
here. Thus, values of It'I of the order of unity may be
employed in these equations, and clearly lead to major
deviations from the free-particle Green's function.

A further fact should be emphasized. %e have
generally had in mind photon 6elds of optical frequency
or higher, so that one vvould expect an electron to
propagate essentially as a free particle even in the
presence of the Geld. This is true when t is small. On the
other hand, for microwave or rf 6elds, t' is generally very
large and the electron does not behave at all like a free
particle. This is to be expected for a charged particle in
the presence of classical electric and magnetic 6elds.

V. GREEN'8 FUNCTION —SPINOR ELECTRON

The second-order Dirac equation for the Green's
function of a spinor particle is

[(ia„—eA „)(iaN —ed ~)—eP—-', eo„„P~")G(x,x')
= S(x—x'), (5.1)

wher«„, =~[y„,y,J, and I'I'" is the electromagnetic 6eld
tensor, F""=8"A"—8"A". Since Eq. (5.1) csn
factored into

('& ~—e& ~ —~)[(iv ~—ev ~+&)G(x,x')]
= b(x—x'),

vye 6nd that the Green's function for the 6rst-order
Dirac equation G(x,x'), which satis6es

(f'y 8 ey 2 m)C(x x') = i'I(—x x')— —

is given directly by

Q(x,x') = (iy 8 ey A+—m)G(x, x') (5.2)

By following our earlier procedure, @re are led again to
Eq. (3.3), where C (y) is replaced now by

@(q)=i(2p k) '[2ep A —p'+3P+iey k(d/dIp)y A j,

Eqllatloll (5.1) call bc solved by I'cfcl'cIlcc to thc
solution of the scalar electron case in (3.1).The f;cnsor

product term in (5.1) can be reduced to

-'o .FI'"=iy k(d/dq)y A.
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and we shall denote the solution by g(y) instead of
f(4p). lt can be veri6ed readily that the solution is still
given by Eq. (3.4), even though 0'(y) contains matrix
quantities. The result for the 0, integral in the solution
for g(y) becomes

4 (44)de4=if sin(p —p) —iop —(2p k) 'ey ky A(p)

where in both I and e we have

v A(v)=ha(v « '"+v'*e'"),
with the e& appropriate to circular polarization.

Exactly as in the scalar case, we form the ue product
with Eqs. (5.3) and (5.4), change variable of integra-
tion, obtain a sum over an index 1, and sum it to get the
result

4r exp/ if—Sin(4o —p)+io (y—p)]

2p k s&n~o.

instead of (3.5). The explicit form taken by N(4p) is

44=[1+(2p k) .'ey ky A(y) j
Xexpr if—sin(p —p)+ioq] (5 3) eay k

X 1+ (7'« "+7'e e ")
4p k

eay kJ,+ Ly ee '&J, 4+y e*e'&J +4] . (5.5)
4p k

exp' if sin(q —p)+io(4o —p)j=g J +,(f)e '"

The reason this simple form is possible is that the
transversality condition k 2 =0 implies that p kp A
= —y Ay k, and the null nature of k& means that
(y.k)'=0. Therefore, if an exponential in y ky A is
expanded in a power series, all terms beyond the erst

We then introduce the representation

The function e takes the form

r=(2ip k) ' dPP1 (2p k)—'ey ky A(P)j
and multiply it into the 6rst square bracket in (5.5) to

XexpLif sin(P —p) ioP5, —(5.4)

expL —if sin(q —p)+io(p —p) j$1+eay k(4p k)
—'(y ee '"+v e*e'")j

=p e "&4»(J,+,+cay k(4p k) 'py ee '&J,+„4+y e'e&J,+„+ j)4. (5.6)

Finally, inserting the result (5.6) into Eq. (5.5) yields

7l eay k
g= P e

—4«4» J,J,+„+ Ly « '~(J, 4Jg+r+J-aAyr —4)
2p k sinn. o r=~ 4p k

+v e'~e(J .+,J,+„+J,J.+,+,)j, (5.7)

where all the Bessel functions have argument f. The
sum over the single product of 3essel functions,J,J +„, has now expanded to a sum over 6ve such
products. The Green's function for the second-order
Dirac equation (5.1) follows directly from (5.7).

Equation (5.2) speci6es that the spinor electron
Green's function for the 6rst-order Dirac equation is
found from

where the prime on g indicates diBerentiation with
respect to q. The simple properties y k%'=y kC, where
C is given in Eq. (3.3), and p kg=7 kf, where f is the
solution (3.4), lead to the chain of equalities

y kg'=y k(D 4'g)=y k(D Cg)— —
=q k(D ef)=z kf'. —

Hence, the senor Green's function is

G(x,g')=(iy a ey A+m—)(24r)

X d'p e *"""'g(y, 4o').

Carrying out the indicated operations leads to a factor
in the integrand given by

(y p —ey A+m)g+(y k)g',

G(g, x')=(24r) ' d4p e 44' ~~"&

X[(y P ey A+m)g+y kf'—j (5 8)

where g is given by Eq. (5.7) and

f'=~(2p k i s~n)-o'g, ( ir)e '~4~~&J (f)—J (f)
The denominator of the integrand in (5.8) contains
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sine.a, exactly as in the scalar electron case, so that the
singularities on the real axis for a p' integration remain
unchanged. here. The appearance of (y p —ey. 2+m)
in the integrand. of the Green's function is no surprise,
but the additive term p 0f' is 'a novel feature. Consider-
able further structure is introduced into the Green's
function by the somewhat complicated character of the
function g.

VI. DISCUSSION

In this paper the dynamics of an electron in the
presence of an intense monochromatic plane-wave
electromagnetic Geld have been explored. The approach
employed was to examine the consequences of the exact
quantum-mechanical equation of motion in which the
electromagnetic Geld was included as a potential. A
considerable amount of physical information could be
deduced even though no cross sections were calculated,
and, no perturbations were introduced.

It was shown that the somewhat controversial mass
shift of the electron due to the intense electromagnetic
Geld can be exhibited directly in the equation of motion
of the electron or in the Lagrangian density which leads
to this equation. In the Lagrangian density which
deGnes the problem, the mass shift appears explicitly
as a Gnite-mass renormalization term.

The properties of the exact Green's function for the
electron were examined in order to achieve a better
understanding of the explicit intense-field effects ex-
perienced by the electron. A salient feature of this
Green's function is that it exhibits a multiplicity of
poles in a complex p' space, which in turn implies the
relatively complicated kinematical relationship (p —lk)s
=m'+6m'. There is a separate contribution to the
Green's function by each integer /, which decreases
rapidly as ~l~ becomes large.

It was shown that the momentum-space Green's
function contains a delta function connecting different
values of the p parameter separated by integer multiples
of the electromagnetic Geld quantum. This property
may be regarded as ascribing to the electron a uniformly
spaced level structure whose levels are tagged with the
index r, and which are symmetrical about r=0. The
electron can absorb radiation from the electromagnetic
Geld, or experience induced emission, to an r&0 level.

Because the original expression obtained for the
Green's function of an electron in an intense Geld
differed so radically from the free-particle case, it was
recast in a form which emphasized the nature of the
intense-field effects as corrections to the free electron
problem. ModiGcations of several types to the free-
particle case were exhibited among these corrections,
including self-energy effects, exchanges of energy be-
tween the electron and the electromagnetic Geld, and a
certain asymmetry between particle and antiparticle

states. It was shown that these modiGcations to the
free-particle Green's function could become important
even for nonrelativistic electrons, given a su%ciently
intense (but realizable) electromagnetic field. Explicit
spin effects of the electron were examined also, although
brieQy.

The Green's function derived here is applicable also
in the very low-frequency or classical limit of electro-
magnetic Gelds, in which case the electron's behavior is
not at all like the free-particle behavior. This Green's
function, which includes the complete coupling between
the electron and an external plane-wave Geld, provides
a novel approach to the classical problem. It comple-
ments the usual classical treatment in which one uses
the Green's function for the electromagnetic Geld in the
presence of a source due to the electron, i.e., the
Lienard-Wiechert potentials. This will be explored in a
separate investigation.

The work presented in this paper refers to the case
where the electromagnetic Geld consists of a mono-
chromatic plane wave, Glling all of space. The question
can be raised whether the results achieved here will
persist (albeit in modified form) when the electro-
magnetic Geld consists of a wave packet, or whether
they are peculiar to the purely monochromatic case.
This question has been answered in the sense that a
wave-packet electromagnetic Geld of narrow width in
frequency and of Gaussian form has been explored" "in
terms of the mass-shift effect and in terms of the pole
behavior of the Green's function in a complex p'. It was
found" that the mass shift of an electron at the center of
a Gaussian wave packet has the same value as in the
monochromatic case, and this value decreases very
slowly even in the small amplitude "tails" of the packet.
It was also found" that the poles in the p' plane in the
monochromatic case appear as damped resonances of
small width in the wave-packet calculation. These
results are being prepared for publication by one of the
present authors. The signiGcance of these conclusions
is that the monochromatic results given in the present
paper are essentially valid even for a packet of electro-
magnetic waves, provided that this packet is of narrow
width in frequency.
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