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Further evidence for the universality of charge renormalization is derived by examining the photon
radiation and the static interaction of prescribed transverse currents.

N a previous note bearing this title,' evidence was

presented that electric and magnetic charges are
renormalized by the same factor. The long-range
interaction of quasi-static prescribed charges was used
as an operational definition of charge. Two aspects of
that calculation invite further consideration. The re-
normalized electric charge, for example, which is
derived in this calculation and from general field
considerations, differs fundamentally from the expec-
tation value of the total charge operator.? There is no
explicit reference in the latter to the vacuum polari-
zation effect of magnetic charges. An independent
verification of the universality of renormalization would
be desirable to confirm the irrelevance of the total
charge operator, at least in these considerations of
external charges. Then, there is the use of a linear
approximation in connecting induced charges and
currents with the external charges. The reliability of
this treatment might be suspect through the impossi-
bility of weakening quantized total charges. It would
be useful to consider another aspect of charge in which
the strength of couplings could be varied continuously.
For these reasons, we turn our attention to external
currents, which can be made arbitrarily weak, and
examine the operational definitions of charge associated
with photon radiation and Amperian interactions.

It is sufficient to consider external electric currents
J(x), which obey

v-J(2)=0.

The dependence of the vacuum transformation function
upon the external current is specified by
J
o,

5 In{0,|0_) =1 / (dx)8] () - (A(x))7,

8{04|0_)y'= 'i<0+ / (dx)8Y (x)- A ()

or

where

A()=AT (2)+ / (@) aalo—=) * ).

The analogous equation that refers to external electric
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1 J. Schwinger, preceding paper, Phys. Rev. 151, 1048 (1966).

2 The two approaches differ even in electrodynamics without
magnetic charge, but they are reconciled by further discussion of
the renormalization of potentials.
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charge might have been written

0 In{0,]0_)7= —i/ (dx)8T° (x){A°(x))”
with
49(2)= / (@)D (=) (P+-19) ()
+/ (@) au(a— ) Hi ().

If charge renormalization is indeed universally given
by field strength renormalization, one should be able
to make this more evident by constructing the potentials
in terms of field strengths. We know that

VRAW=H@+ [ @)he=a) )
and the corresponding electric field relation is

——60A(x)—-VAO(x)=E(x)+/(dx’)hn(x—x') x *j(x').
Now let us write

V xA(x)= H(x)-l—/ (dx)hy(x—2)V'-H(x')

=Vx / (@2 )ha(x—2") x H(2'),

since
V-ho(x—2")=—08(x—2x").

This gives the construction
T
A(x):( / (da)ha (v—27) xH(x’)) ,

in conformity with the gauge condition?
v-A(x)=0.

The actual selection of the transverse part can be
omitted, however, for this is automatically performed
in integrated multiplication with the transverse J(x).
The explicit form of the scalar potential can be pre-

3Qur notation is somewhat unfortunate in that A(x) and
AT(x) are both transverse vectors. The latter is specifically
defined as the vector potential that represents H7 (x).
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sented as

AO(x)=/(dx’)S)(x—x’)v'-E(x’)—l—/(dx’)a,,(x——x’)

=V xE@)—a/H(x)]

which is equivalent to?
A0(0)= / (@) ha(e—2)-E()
— 60/ (dx)an(x—2')-H(z').

The application of the action principle to transverse
external currents has none of the conceptual compli-
cations of the charge discussion. We are not impeded
by charge conservation in perturbing the initial vacuum
state, nor is there any difficulty in justifying a linear
regime for induced properties. The result is

<o+;o_>J=exp[i~;— f (@) (@)I()
-i<<A<x>A<x'>)+>.J(x')]

and

i((A(®)A@))4)

=— / (d2) (do1 Yha (x—21) x 5 (HL (o01) H (1) )+

xhy (2 —21).

The information about field strength vacuum expec-
tation values asserts that

HEEAE)),)=— (xV)- <v'x>[AoD+<x—x'>
+ / (A A ) A, (o, mﬂ)]

+ / dm*m?4 ,(m?) Ay (x— ', m?)

where
Dy (x)=A4.(x,0).

The transversality of the current implies the following
equivalence with respect to integration,

[J(@) xhy(x—2x1) ] % Vi — J ()8 (x— 1)

4 The potentials obtained by discarding both the time derivative
term of 4° and the subtractive longitudinal part of A refer to
the axial gauge based on the direction n. This alternative gauge
will be discussed in another publication.
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which results in

{(A@)A))4) — AoDy (x—4')

+ / (A A g) () Ay (o3, )

+/ (dx1) (dxy”) (1—nn)n-hy (x—x)n-hy (¢’ — 1)
X / dmm2A ;(m?) Ay (x1—x1, m?) .

There are two kinds of uses for this transformation
function. In the first one we evaluate the probability of
radiation by the current distribution as the comple-
ment to the probability that the vacuum state persists
despite the effect of the current,

l<0+10—>J12=exp[~ / (@) (@I )
-Imi((A(x)A(x'm-J(x')] .

Energy-momentum conservation is made explicit by
the property

2 ImA, (x,m?) = /

(dp)
(2m)?
Let us assume that the current cannot supply enough
energy to create a neutral pair of magnetically charged
particles (our whole discussion is predicated on the
assumption that this is a restriction). Then all terms
containing 4, disappear from the imaginary part.’ The
stronger energetic restriction involved in a similar

omission of 4, leaves one with the possibility of photon
radiation only. It is measured by

€73 (p2+m?) .

|<o+|o_>f|z=exp[_,40 f (@) (@)1 (%)
-ImD, (x—x")J (x’)] .

This is the conventional radiation formula, with
physical currents identified as 4,/2J(x) in conformity
with the universal charge renormalization constant.

The second application refers to the energy of quasi-
static currents. The energy is identified in the phase of
the transformation function,

<o+]o_)Jgexp[—i / deE]

& This is true of the term containing the functions hy, despite
the additional spatial dependence that they introduce. Being
instantaneous time functions, they can only transmit the energy
supplied by the currents.
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and

E= —1 /(dx) (@x)J (x)
2 00
[ /_ ] dx°¢<<A(x>A<x'>>+>]-J<x'>.

The time integral of A, (x,m?),m?*>0, is a short-ranged
potential, whereas

/ i dx*D, (x) = D(x),

the Coulomb potential. We consider the interaction
energy of two static current distributions, J; and J,,
which are separated by a distance large compared with
that characterizing the vacuum polarization mechanism.
The term containing h,(x—x)h,(x'—xy"), x;~xy/, can
only contribute if x—x’ and n have practically the
same direction. This possibility has been excluded to
simplify the treatment. Then,

B A, / () @) )- Dx—x)Ia(x),

which has the anticipated renormalization constant.

In order to unify the treatment of specified distri-
butions we shall reconsider the interaction energy of
static electric charges, for example, using the methods
of this paper. One can discard the last term of

540w = ] (@) (o) - 3B (52))7

—a, / (@) an(r—2) - 3(H (),

in view of the quasi-static character of the charge
distribution. But it should not be assumed that 9,H
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is completely ineffective in
S(E @Y=~ [ () ) BE).)
o (' — 2 )0 () — v / (@2 D(x—a")oT°(x')

+ f () (@ )i (B (@) O HL (1))
cag (&' —x,)0T0(2),
since
@)Y= 005 BEH ),
(v %) (o—1),

according to the equal-time commutation relations of
E and H. The latter contribution combines with the
gradient term, which expresses the explicit dependence
of E on J°, and it appears that the interaction energy of
two quasi-static charge distributions can be calculated
from

/donm: —/ (dx) (dx1> (dx’) (dxl’)Jl" (x)hn(x— xl)

LB () E (1)) —8 (21— 1) ]
Now ha (& —a1) T ().
HE@)E@))s)—b(x—a")= (908~ VV’)

X I:A oDy (x— x')+/dm2(A A7) (M)A (x—a, m“’)]

“/ dmPmPA o (m?) Ay (x— o', m?)

and the introduction of the physical context leads
immediately to the expected result

E =>4, / (dx) (@x")J L (x) D (x—x") T L (x').



