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MAGNETI C —CHARGE RENORMALIZATION. I

In the second version, all Geld operators are referred to
a common point, and Pf" is the energy-momentum
operator of the system. The explicit introduction of the
physical energy-momentum spectrum gives the four-
dimensional momentum integral form

(F„,(x)Fg, (x')& = (dp)
dm'e'J'&~" &

(2m)'
X~(p'+ ')q, (p&F„.. .(p),

where the factor 8(p'+m')g+(p), m'&0, makes explicit
the physical restriction to nonspacelike momenta and
positive energy. The tensor F„„q„(p)is the matrix
element, with respect to the states (F„„andFq.), of the
projection operator for all states with the speci&ed
momentum. As such, it is a Hermitian, non-negative
matrix. We also require invariance of the vacuum
expectation value under complex conjugation and
space-time reQection, the so-called TCP operation. Its
consequence is the reality of the matrix,

Fol', xK(p) Fov, xK(p) Fxg, ov(p) y

and symmetry appears as the appropriate form of the
Hermitian property. The elements of the matrix are
also antisymmetrical in p and ~, X and ~.

Covariance with respect to the group of proper,
orthochronous Lorentz transformations speciGes the
form of I"„„,q„.It is

F". (P)= (P.p g- PP g"+P P —g. P.p g )A(m'—)
+ (g„qg„„g„~g„„)—m'A '(m') p„„q„m—'A "(m'),

where the three weight functions A, A', 3" are real.
The totally antisyLnxnetrical tensor e„„&,„

is normalized by

zoup —+l

To impose the positiveness requirement on this matrix,
we consider some submatrices. Thus

FIELD RENORMALIZATION

We consider the vacuum expectation value of the
product of two Geld strengths,

(LF"(*»F (*')]&=
(dp)

dm'e'~(~ —*'~

(2~)'

X~(p'+m'). (p)F„,~.(p),

where p(p) states the algebraic sign of p'. At equal
times, only a term in F„„,q„ that is linear in p can
contribute. All such terms have the weight factor
A (m'). The nonvanishing structures are

i(P—"(x), F(„(x')]&
= (bga„—b "Bi)S(x—x') dm'A (m')

and comparison with the well-known equal-time
commutators of Geld strengths gives

dm'A (m') =1.

One consequence of the sum rule should be noted in
relation to the positiveness requirements. The existence
of the integral implies that A(m') is no more singular
than b(m') in the in6nitesimal neighborhood of m'=0.
Accordingly, m'A(mp) vanishes at m'=0, and the
combinations m'A'(m'), m'A "(m'), which appear
explicitly in F„,,z„,are also zero at m'=0.

In the general form that embodies both electric and
magnetic currents, the Maxwell equations are

positiveness of the two-dimensional submatrix requires
that

m'(A —A')m'A' —(m'A")'& 0

Thus, in addition to the generaDy valid inequality
A (mo) &0, we have for all m') 0

A&A'&0, (A —A')A'& (A")'.

There are no other general positiveness restrictions, as
we shall recognize from a more speciGc physical interpre-
tation of these weight functions.

One further general relation exists, in the form of a
sum rule. It is a consequence of the equal-time com-
mutation relations among Geld strengths. In view of
the reality of Ii„„,~„,

Fo,o = L(p')' —(p )']A —m'A. '

= ((pg)'+ (pp)P]A+mm(A —A') where
g Ppv —~p g CPyv

must be positive for all pq and p2. Hence

A (mo) &0, mod (m') —A'(m')7&0.

Similarly,

Fu, n= L(pi)'+ (pp)']A+m'A'

implies that
m'A'(m') )0.

On including the nondiagonal element

Fop, gp=m A "(m ),

strppv ~ gp Acp2 Xa ~

Given the speciGcation of the vacuum expectation value
(F„„(x)F&„(x')&by means of the matrix F„„,&„,we can
derive the three vacuum expectation values: (j„(x)
Xj,(x')), (j„(x)*j„(x')),and (*j„(x)*j„(x')),which are
analogously expressed in terms of matrices j„„(p),
*j„„(p),and **j„„(p).The latter are obtained as

j„„(p) m'A, (m')
*j"(p) '= (p.p. p'g") m'A. p(m')—
**j„„(P) mPA p(m')
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where (m') 0)

A, (m') =A (m') —A'(m2) &0,
Ag(m2) =A'(m')) 0,

A,g(m') =A "(m2), (A,g)'&A, A, .

Just these inequalities are regained on remarking that
the matrices which specify the current vacuum expecta-
tion values are also subject to positiveness require-
ments, as illustrated by

are effectively reduced, or renormalized, by the universal
constant

C=A,~~2&i,

where Ao must also be a ratio of integers.
To aid the work of the next section we shall present

vacuum expectation values, illustrated by

(j„(x)j„(x'))= (g„„a'—8„8„)dm'A, (m') 6&+& (x x—',m')
&

joo(p) = p'm'A, (m') &0,

**j„(p)= p'm'A, (m') &O.

6&"~(x,m') = (dp) .
e'&*5 (p'+ m') q~ (p),

(2')'

The inference that A, and A, are non-negative, for
nP) 0, is supplemented by (A „)'&A,A, . This is
obtained by considering an arbitrary linear combination
of the currents ji' and ~ji'. The equality sign applies
only if electric and magnetic currents are identical, apart
from a numerical constant.

From the weight functions A, (m'), A, (m'), m')0,
which have a direct physical meaning in terms of
current excitations, we construct

m')0: A(m')=A, (m')+A (m').

in the form of vacuum expectation values of time-
ordered products, a Green's function structure. Now

(j.( )j.(*'))+=a+( —*')j,( )j.( ')

+q (x-x )j.(x )j„(x),
and

imp(x —x')(g 8'—8 8)6&+&+ig (x—x')(g „8' 88„—)h&
—

&

= (g„„8'B„B—„)6++ (g„„+e„m„)8 (x x')—,

where 6+(x—x', m') is the outgoing wave Green's
function

The complete form recognizes the exceptional nature of
m2=0

7

~, (xm )=
(2n-)' p'+m' —ie,~o

i((j„(x)j,(x'))~)—(g„„+N„m„)b(xx') —dm'm'A. (m')

A (m ) A 0~(m )+A e(m )+Ag(m ) y (A o&0), and g„„+n„m„repree stsnthe spatial projection of the
metric tensor. Accordingly,

and the sum rule determines Ao, a number lying in the
interval between zero and unity,

1=Ap+ dm2[A. (m')+A, (m')5. = (g 8' 88 ) —dm'm'A (m')6 (x—x' m')

If m =0 is to be in the physical spectrum, it is necessary in which the four-dimensional delta-function term
that appears to maintain the divergenceless nature of the

left-hand side of this equation. Thus,
d ~PA. (m)+A, (m)5&1

&.(j"(x)j~(x'))+= &(x'—*")Lj'(x) j~(x')5

The vacuum expectation value (F„„(x)Fq.(x')),
describing the correlation of electromagnetic Geld

fluctuations in the vacuum, can now be exhibited as
the additive superposition of four contributions. Three
of these, which are computed from A„A„andA„,
characterize the Geld fluctuations that accompany
current fluctuations. They all have the energy-momen-
tum property m2&0. The fourth contribution, propor-
tional to Ao and uniquely associated with m'=0,
describes the role of the photon in establishing correla-
tions between phenomena in different space-time
regions. If only the latter agency is significant, the
process of vacuum polarization produces an e6ective
reduction of field strengths by the factor Ao'". Since the
long-range interaction of charged particles operates
through this mechanism, we anticipate that all charges

and it is necessary that (x'=x")

(ir j'(x)j z (x') 5)= 81,5 (x x') d —m2' mA( m),

which can be verified. directly. It is known that the
additional term expresses a necessary dependence of
the current operator upon an external potential, and
that the whole combination is generated automatically
by the quantum action principle. ' That is of some
importance, for the individual parts seem to require
the existence of J'dm'm'A, (m'), whereas it is only the
existence of J'dm'A, (m')&1 that is required of the
complete Green's-function structure.

' J. Schwinger, Phys. Rev. 130, 406 (1963).
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In addition to the lowest energy value of the sy' stem
we shall be interested in the additional angular momen-
tum of this system in the direction of the singularity
line. It is given by (throughout the relativistic Geld

discussion, charge is measured in rationalized units
and h=c=1)

K= (1/4n. ) (dx) (j'+J') (x) (dx') (*j'+oJ') (x') .

Accordingly we discuss a system with effective Hamil-
tonian

S,(0+I 0 )&= o(0+I —dxoS,H
I
0 )'

or

where

bg I &0nIO+&~= odg'—(bgH&~,

&SH&'=&0, IDIO &'/&o, lo &'.

The explicit form is

oS, ln(o, lo &&

(dh) (dh')(5 J'(x)$(h x') (&j')+—J') (x')

where co is an arbitrary parameter, and examine the
dependence of the vacuum transformation function
(0+IO &~ upon the external charge distribution. It is
supposed that the system is initially in the vacuum
state IO ), and that an arbitrarily prescribed charge
distribution is established adiabatically by suitable
separation of initially compensating charge distribu-
tions. After a time sufhcient to register the static
properties of this system has elapsed, the charge distri-
bution is adiabatically recombined, thereby regaining
the vacuum state (0+I. Alternatively, we can con-
centrate upon a macroscopic but 6nite region of space,
and move charges into and then out of this region,
always suKciently slowly that the quasi-static character
of the situation is maintained.

The quantum action principle describes the depend-
ence of the transformation function upon the external
charge distributions, contained in the effective Hamil-
tonian, by

where the current operators are identi6ed as

j(x)=e(3e/e'g(x+-,")p eg(x——',o)

Xexp ie dxy A(xy)
s—$e

*j(x)=g(3e/e')X(x+-'o)y eX(x—-'o)

Xexp ig
~pe

dxg B(x~)

and the e limiting process is understood. In writing this,
we have introduced a simpli6cation concerning the line
integral of a, (x—x'), which is permissible only if x—x'
and the singularity line never coincide in direction. The
two points x and x refer, in application, to the neighbor-
hoods of two distinct charge distributions which are
widely separated. Accordingly, we have only to ensure
that n is not parallel to the line connecting the two
charges.

To reduce the length of this transformation function
formula, we de6ne a modi6ed quantity

(0+I I
o-)'= &o+Io-)' exp o (d*)(d*')l3Jo(h) &(h—*')

XJo(*')+-', 'Jo(*)n(x —*') *Jo(*')

+coJo(h)8(go go ) oJo(h')]

which obeys a similar variational equation, from which
all terms that refer only to the external charges are
removed. Then, in order to make explicit that (jo(h)&~
and (co(x)&~ are currents induced by the presence of
the external charges, we apply a second variation:

Qq' ln(0+I I0 )~

(dx) (dx') L8J'(x) S(x—x') 8&j'(h'))

+8 *J'(x)X)(x x')5(*j'(—x'))+5J'(x)a.(x x') b(*j (—x'))

—b(j(x)& a, (x—x')5 *J'(x')

+~5Jo(h)S(S—d')b&*y(h'))

+~&(jo(h)&S(a—S')S 'J'(*')j.

+h *J'(x)$(x—x') (&*jo)+~J')(x')

+8J'(x)a, (x—x') (*j(x'))—(j(x)) a, (x—x')

x 5 *J'(h')+rA J'(x)5(x'—x') (&*j')+*J')(x')

+o)(&jo)+J')(x)8(ho x')b *J'(x')j—,

e shall assume that the induced charges and currents
are linear functionals of the external charge distribu-
tions, supposing that the dominance of this part can be
realized by suitable restrictions on the charges.

The action principle supplies time-ordered operator
expressions for these induced quantities. Thus

~&j'(h))'= ~L&0+ I j'(*)I0-&'/&o+ I
o-)'j
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The quasi-static condition also selects the three-
dimensional projections of i((j j)+) and i((j j)+), the
residues after integration over relative time coordinates.
We can then relate the vector and scalar structures, as
indicated by

'((j (*)j (*'))+) (& &—~ ~ ) (I/ —&) ((j'(*)j'( '))+)

orq ln dyadic notatlonp

'(((*)I(*)),&-( ~) (~")(It-~)'((j ()j (*)),&
The vector operations can be transferred to the two
a factors, which gives the scalar product of two V x a,
vectors. By inserting the relation

~ xa, = v—n+h

successively, we obtain the static equivalence

(dx")(dx'")a (x"—x) p((j(x")j(x'"))+).a,(x"'—x')

product h, (x"—x) h, (x'"—x') are practically' identical
the product vanishes, unless the line connecting the
speci6ed charges has practically the same direction as
the singularity line. It is just this possibility that has
has already been excluded.

As a consequence of these substitutions, it appears
that E, and E~ are identical,

x ~(*-*")L((j'(*")j'(*'")).&
+p((*j'(x") 'j'(x'"))+&j&(x"'—*') .

Furthermore, we can exploit the short-range nature of
the function of x—x"' that emerges from the x"' integra-
tion to replace x"' by x, in the function $(x'"—x').
The result is simply

R,(x,x') =E,(x,x')=(I—Ap)X)(x—x')

Xn(x"'—x')— (dx") (dx"')h, (x"—x)

xL(lg —v'") '((j ( ")j'( '")) q h. (
"'—')

Z.,(x,x )=—(I—a p) ~(xP—xP') .

The 6nal form of the quasi-static transformation
function is now obvious:

with an analogous result for magnetic currents. We have (0+ I 0-) =exp &~p (dpx) (dx') Lk~'(x) &(x—x')

seen that
XP(x')+-' ~J (x)x&{x—*') 'P(x')

+Ms'(x)S(d —*') *P(x')j .
(d») &(x"—»)i((j'(x~)j'(x'"))+)

dm'nfl, (m') 6+(x" x'", m') . —

Only the time integral is of concern here. It is given
for each m by

The single time integral actually contained in the
exponential function identiGCS the lowest eigenvalue of
the Hamiltonian operator, P'+4~~E. The Coulomb
interaction energies and the additional angular momen-
tum of clectnc and magnetic charges are evident, with
the phenomenological measure of RH charges exhibiting
the additional factor

Accordingly, this function is of short range, as speci6ed
by the inverse of a mass that is characteristic of the
vRcuum polarization ploccss. We arc 1Qtclcstcd ln thc
interaction of charges separated by much larger
distances. Slncc 'the two points s Rnd x ln thc

This derivation of the universal charge-renormaliza-
tion constant completes our discussion. '

~ I should also emphasize the importance of the operational
definitions of charges that have been used. The expectation values
of total charge operators vrould be quite misleading as a guide to
renormalization.


