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Integrating by parts we obtain
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Inserting the upper and lower limits we get
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which in turn can be written as
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Electric- and Magnetic-Charge Renormalization. I
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An important question in the field theory of electric and magnetic charge is the relative renormalization
of the two kinds of charges. A general view of renormalization, as a scale change introduced in proceeding
from the field to the particle level of description, indicates the universality of charge renormalization. This
is confirmed by an explicit calculation of the long-range interaction of static charges.

HE quantization of electrical charge produced by

the existence of magnetic charge can be con-

sidered at two different dynamical levels. There is the

fundamental, or field level, and the phenomenological,

or particle level. Similar considerations operate to

produce the analogous but distinct quantization
conditions!

eogo/he=n0=0,1,2, - -+,
eg/hc=n=0,1,2, -+ -.

The distinction between particle charges e,g and the
charges eq,go carried by fields or combinations of fields
is described as charge renormalization. It is a con-
sequence of the physical process of vacuum polarization.
Can this mechanism produce a renormalization of

* Supported in part by the Air Force Office of Scientific Research
under Contract No. A.F. 49(638)-1380.

1 The field theory is presented in J. Schwinger, Phys. Rev. 144,
1087 (1966). A nonrelativistic particle formulation is described in
another paper (to be published).

magnetic charge different from that of electrical charge?
I have already argued to the contrary,® by asserting
that charge renormalization is a property of the
electromagnetic field, not of any specific entity that
interacts with it. Currents induced in the vacuum tend
to counteract the inducing field. When observed at some
distance from their sources, fields are thereby effec-
tively reduced in scale and the single scale factor
determines the renormalization of all charges.

This note is devoted to an explicit verification of that
general field viewpoint. We evaluate the long-range
interaction of static charges, as modified by vacuum
polarization phenomena, and confirm that

efeo=g/g0=C<1.
The first section is concerned with the renormalization
of the electromagnetic field, as produced by interaction
with both electric and magnetic currents.

2 J. Schwinger, Proceedings of the Third Coral Gables Conference
on Symmeiry Principles at High Energy, January, 1966 (W. H.
Freeman and Company, San Francisco, California, 1966).
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FIELD RENORMALIZATION

We consider the vacuum expectation value of the
product of two field strengths,

(F l"'(x)F Ak (x’» = <F we T @y

In the second version, all field operators are referred to
a common point, and P* is the energy-momentum
operator of the system. The explicit introduction of the
physical energy-momentum spectrum gives the four-
dimensional momentum integral form

B )P = / %dmze,-pw)
X (PP +m2)ns (P)F s (8)

where the factor §(p*+m?)n. (p), m*>0, makes explicit
the physical restriction to nonspacelike momenta and
positive energy. The tensor F,,(p) is the matrix
element, with respect to the states (F,, and F\), of the
projection operator for all states with the specified
momentum. As such, it is a Hermitian, non-negative
matrix. We also require invariance of the vacuum
expectation value under complex conjugation and
space-time reflection, the so-called 7CP operation. Its
consequence is the reality of the matrix,

F#v.kn(P)=Fuv,>\x(?)*=F>\K,uV(p);

and symmetry appears as the appropriate form of the
Hermitian property. The elements of the matrix are
also antisymmetrical in ¢ and », X and «.

Covariance with respect to the group of proper,
orthochronous Lorentz transformations specifies the
form of Fuy . Itis

Fuo (D)= (puprgw— Doorgunt Prpegin— pupegin) A (m?)
+ (g;t)\gwc_ gﬂ)\g,ux)mzA ,(mz) - euv)\xm2A " (mZ) y

where the three weight functions 4, 4/, A" are real.
The totally antisymmetrical tensor e, is normalized by

0123 — + 1.

To impose the positiveness requirement on this matrix,
we consider some submatrices. Thus

Fo3,05=[(p°0— (ps)*]A—m?4’
=[(p)*+ (p2)*]4+m*(4—4")
must be positive for all p; and p,. Hence
Am?) >0, mA(m")—A"(m*)]>0.
Similarly,
Fio,10=[ (p1)%+ (p2)2]A+m24’

implies that
m*4' (m?)>0.

On including the nondiagonal element

Fos,1e=m?4" (m?) ,
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positiveness of the two-dimensional submatrix requires
that
m*(A—AYm?A'— (m*4"")2>0.

Thus, in addition to the generally valid inequality
A (m?) >0, we have for all m2>0,

A>A7>0, (A—ANA"> (A7)

There are no other general positiveness restrictions, as
we shall recognize from a more specific physical interpre-
tation of these weight functions.

One further general relation exists, in the form of a
sum rule. It is a consequence of the equal-time com-
mutation relations among field strengths. In view of
the reality of Fuy e,

d
([F,.y(x),FM (x’)]) = / éz))—admzeip(x_z,)

Xo(p+m?)e(p)Fu e (p),

where e(p) states the algebraic sign of p°. At equal
times, only a term in F . that is linear in p° can
contribute. All such terms have the weight factor
A (m?). The nonvanishing structures are

—i([F%(x), Fim(x')])
= (80— 0.,n¥01)d (x— x')/dm’A (m?)

and comparison with the well-known equal-time
commutators of field strengths gives

f dm?A (m?)=1.

One consequence of the sum rule should be noted in
relation to the positiveness requirements. The existence
of the integral implies that 4 (m?) is no more singular
than 8(m?) in the infinitesimal neighborhood of m?=0.
Accordingly, m24 (m?) vanishes at m?=0, and the
combinations m24’(m?), m2*A"(m?), which appear
explicitly in F, \, are also zero at m?=0.

In the general form that embodies both electric and
magnetic currents, the Maxwell equations are

0, Frr= ]'M R 0, *Fuy—= *ju ,
where
*Euy — %EMVXKFM .

Given the specification of the vacuum expectation value
(Fu(x)F(x")) by means of the matrix Fy, , we can
derive the three vacuum expectation values: (7,(x)
X jo(#)), {Fu(®) *j»(x")), and (*ju(x) *7,(2")), which are
analogously expressed in terms of matrices f,.(p),
*7.w(p), and **4,,(p). The latter are obtained as

Jw (P ) mA., (mz)
*Fw(P) 1= (pupr— 1*8uw)y M*A o(m?) ¢,
**Ju (. m*4 o (m?)
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where (m2>0)
A.(m?)=A(m*)—A'(m*) 20,
Ay(m*)=A4"'(m?) 20,
Aog(m?)=A"(m?), (Aeg)l<Acd,.
Just these inequalities are regained on remarking that
the matrices which specify the current vacuum expecta-

tion values are also subject to positiveness require-
ments, as illustrated by

Joo(p)=p*m?4 . (m*) >0,

* jo0(p) = pPmPA,(m?) > 0.

and

The inference that 4, and 4, are non-negative, for
m?>0, is supplemented by (4.)2<A4.4,. This is
obtained by considering an arbitrary linear combination
of the currents j* and *j* The equality sign applies
only if electric and magnetic currents are identical, apart
from a numerical constant.

From the weight functions A4.(m?), 4,(m?), m*>0,
which have a direct physical meaning in terms of
current excitations, we construct

m2>0: A(mA)=A,m*)+A,(m?).

The complete form recognizes the exceptional nature of
m?=0,

Am2)=Ad(m*)+A.(m)+4,(m?), (4020),

and the sum rule determines 4o, a number lying in the
interval between zero and unity,

1=A0+/w dm*[A (m®)+A,(m2)].

If m?*=01is to be in the physical spectrum, it is necessary
that

/‘” dm?[A . (m¥)+A4,(m?)]<1.
0

The vacuum expectation value (Fo(x)Fr(z")),
describing the correlation of electromagnetic field
fluctuations in the vacuum, can now be exhibited as
the additive superposition of four contributions. Three
of these, which are computed from 4., A4, and 4.,
characterize the field fluctuations that accompany
current fluctuations. They all have the energy-momen-
tum property #*>0. The fourth contribution, propor-
tional to 4o and uniquely associated with m?=0,
describes the role of the photon in establishing correla-
tions between phenomena in different space-time
regions. If only the latter agency is significant, the
process of vacuum polarization produces an effective
reduction of field strengths by the factor 4 /2. Since the
long-range interaction of charged particles operates
through this mechanism, we anticipate that all charges
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are effectively reduced, or renormalized, by the universal
constant
C=4,"<1,

where 4o must also be a ratio of integers.
To aid the work of the next section we shall present
vacuum expectation values, illustrated by

()71 ) = (gu—3,3,) f dm? A (n)AD (o ),

d
A (gm?)= / (2 P))seim‘s (p*+m?)ns(p),

(

in the form of vacuum expectation values of time-
ordered products, a Green’s function structure. Now

(Fu (@) 7o (@)= n4 (2 — ") fu (%) 4 (x")
+a-(w—x")jy(x") ju(x),

and

iny (x—2") (gw0%— 8,0,) AP +in_(x— ') (g0 — 8,9,) AT
= (gud’—0,9,) A4+ (gwt num)8(x—x),

where A,(x—x',m?) is the outgoing wave Green’s
function
dp) 1

A 2) - ( PLDT.
)= ,/ (2mr) s pPmP—ie

and gu+n.m, represents the spatial projection of the
metric tensor. Accordingly,

1( (.7 » (x) Jv (x’))-#)_ (g wt ”#nv)a (x_ x') / am*m?4 . (mz)

e>+0

= (g,02—9,9,) / dmPm?A o(m2) Ay (x— %', m?)

in which the four-dimensional delta-function term
appears to maintain the divergenceless nature of the
left-hand side of this equation. Thus,

90u(7* () (%)= 8 (2" —2")[ 1 (x), Ji (&) ]

and it is necessary that (x°=x")
L0, D=0 [ aninia o),

which can be verified directly. It is known that the
additional term expresses a necessary dependence of
the current operator upon an external potential, and
that the whole combination is generated automatically
by the quantum action principle.® That is of some
importance, for the individual parts seem to require
the existence of JS'dm?m?4 ,(m?), whereas it is only the
existence of Jdm?4,(m?)<1 that is required of the
complete Green’s-function structure.

8 J. Schwinger, Phys. Rev. 130, 406 (1963).
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When charge densities are considered, the additional
delta-function term does not appear, and

HG @) RNy = -7 [ I A ) A (ot 1)

An alternative version of this result is obtained with
the aid of the static Green’s function, defined in space-
time by the differential equation

—V2D(x—x")=08(x—x"),
and having the explicit form
1
Dx—a)=(x"—2")———.

47| x—x'|
Itis

f (82D (5= 2 (o) 2 ()3
= / dm*m?d ,(m?) Ay (x—a', m2).

A particularly useful consequence is found on integrat-
ing over all space-time. Since (72> 0)

/ @A, (o) =1/m,

we get
/ () (@) D (r— i) 2 (0))) = / dnt A (m),
and similarly

/ (dac) (o) D (w—2)i{ (* 7 (20)*1° (")) = / dm*A . (m?).

Thus,
Ao=1— f () (d) D (o—2) TGP () 7 (@)1
PP

We add one disconnected remark about space-parity
and the electromagnetic field. The only parity-violating
term in Fy . (p) is the one with weight factor A4,,.
This contribution is isolated by considering the pseudo-
scalar E-H, for

—HE()-H()=—3H(x)- E@"))
= / dm?mPA oy (m2) A (x— ', m?).

An electromagnetic parity violation, in the specific
sense of a nonvanishing vacuum expectation value of
the pseudoscalar field combination, can occur only if
magnetic charge exists, and if it is correlated with
electrical charge.

MAGNETIC-CHARGE RENORMALIZATION. I

1051

CHARGE RENORMALIZATION

We consider a system composed of a spin-§ field ¢ (x),
carrying electrical charge e (a subscript is omitted),
a spin-% field X(x) that carries magnetic charge g, and
externally specified quasi-static electric and magnetic
charge distributions, J°(x) and *J°(x). The energy
density operator for this system is

T (%) =3 (E*+H?) (v)+ Bi/ ) (w+3€)y- e (x—F¢)
z+}e
Xexp[ie / dx,- A(xl)]-l—me\/'/ ()¢ (x)

+ Gi/ )R e+ X (r—Be)
z+3e
xexp[ig / dx B<xx>j|+mgz ©x(),
z—3%e

where each e is independently averaged over all direc-
tions before becoming of arbitrarily small magnitude.
Here

A)=AT()+ / (@) an oo (2T (),

B(x)= B"(x)— / (@) anld =) P+ ),
and

H(x)=H"(2)— v / (@)D (5— ') (* 0+ 77) (&)
—VxAw)— / (@ Yha(a— ) (54T (),
E(x)=E7(x)— v [ (@)D (=) P40 ()

——vxB()+ [ (@) haled —2) P+ ()«

The vector functions a,(x—«’) and h,(x—=x’) contain
the factor 6 (#°—29"). They obey the differential equation

V xa,(x)=—VD(x)+h,(x),

where h,(x), the three-dimensional factor of h,(x), is a
two-dimensional distribution localized on the semi-
infinite line x=n|x| and having the direction of n. It
is completely specified by the surface integral enclosing
the origin,

/ds-h,,<x)=—1.

These properties of h,(x), combined with the gauge
condition V- 20(x)=0,

fully determine a,(%).
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In addition to the lowest energy value of the system
we shall be interested in the additional angular momen-
tum of this system in the direction of the singularity
line. It is given by (throughout the relativistic field
discussion, charge is measured in rationalized units
and A=c¢=1)

K= (1/4n) f @) (P70 @) / () (040 ()

Accordingly we discuss a system with effective Hamil-
tonian
H=P+47rwK ,

where w is an arbitrary parameter, and examine the
dependence of the vacuum transformation function
{0,.]0_)7 upon the external charge distribution. It is
supposed that the system is initially in the vacuum
state |0_), and that an arbitrarily prescribed charge
distribution is established adiabatically by suitable
separation of initially compensating charge distribu-
tions. After a time sufficient to register the static
properties of this system has elapsed, the charge distri-
bution is adiabatically recombined, thereby regaining
the vacuum state (0.|. Alternatively, we can con-
centrate upon a macroscopic but finite region of space,
and move charges into and then out of this region,
always sufficiently slowly that the quasi-static character
of the situation is maintained.

The quantum action principle describes the depend-
ence of the transformation function upon the external
charge distributions, contained in the effective Hamil-
tonian, by

55(04 | 0)7 = — (0 | / da%,H|0.)
or

87 In(0,| 0y =—i / A5 ,H)

where
(GH) = (04|32 10_)7 /(04 0)7.

The explicit form is

'iaJ ln<0+l O...)J
- [ (%) (@) [ (@)D (') ()-+77) ()

+8 *J0 (%) D(x—a) ((*7)+*7°) (')

870 (@)an(x—a") - (5 (#)— (i (%)) an(x—2/)

X8 *J0 (') +wd ] ()8 (" — %) ((*)+*T°) (+')
Fo(7)+7°) (£)3(x'—a")8 *J°(+') ],
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where the current operators are identified as

i) =eRe/e)W(x+3e)y e (v—3e)

z+}e
X exp[ie / dx;-A (xl)] ,
z—3e

*j(2) =g Be/e)x (v+3e)y eX(v—3¢)

z+je
X exp|:ig f dx;-B (xl)]
z—3e

and the e limiting process is understood. In writing this,
we have introduced a simplification concerning the line
integral of a,(x—x"), which is permissible only if x—x’
and the singularity line never coincide in direction. The
two points x and %’ refer, in application, to the neighbor-
hoods of two distinct charge distributions which are
widely separated. Accordingly, we have only to ensure
that n is not parallel to the line connecting the two
charges.

To reduce the length of this transformation function
formula, we define a modified quantity

0110/ =107 expl [@anrase—s
X JO) -+ ) D (=) ()
FwJ0(x)6 (20— a") *J°(x')]

which obeys a similar variational equation, from which
all terms that refer only to the external charges are
removed. Then, in order to make explicit that {(j#(x))’
and (*j#(x))’ are currents induced by the presence of
the external charges, we apply a second variation:

38, In{0y [ [0-)7
- / () (@) 8T (@)D (a— Yo ()

+8 *J°(2) D (w—)6(* 5 (2))+8J° (%) aa (w— ') - 5(*j ("))
—5( (x))- an(x—2')8 *J°(')
FwdJ ()8 (a"—a*)5(* 1 (+))

Fwd(7° ()8 (£°—2%)5 *J°(2) 1.

We shall assume that the induced charges and currents
are linear functionals of the external charge distribu-
tions, supposing that the dominance of this part can be
realized by suitable restrictions on the charges.

The action principle supplies time-ordered operator
expressions for these induced quantities. Thus

70 @) =8[{04 | 7°(%)]0-)7/{04]0-)"],
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which will differ from 6[In{0,|0_)"] only by the inser-
tion of the operator j°(x) in the appropriate time
position,*

(P =— f (@) @) () P )s)
XD(x'—=")oT0(x"").

The linear approximation is introduced by using
vacuum expectation values for time-ordered products.
An inessential simplification permitted by our model is
the neglect of electric and magnetic charge correlations.
We have omitted the term containing ((7°(%)j(x’))+)
since it implies the combination V-a,, which vanishes.
Also omitted is the w-proportional contribution since the
three-dimensional volume integral of {(j°(x)7°(x’)).) is
zero. An analogous statement is

8¢* 70 () =— / (@") ()i (* 70 () *7°())+)
XD —a")s*J0(x).

In extending this treatment to induced currents, we
must take into account that the current operators are
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explicit functions of the external charges. The effect of
this is to supplement the time-ordered products by
terms designed to maintain the current conservation
conditions. Since these structures are known from the
work of the previous section, we shall exhibit only the
time-ordered products but understand the complete
combinations. Then

()= / (82) (@ VG5 aala =26 * T (")
and
857 == [ @) @ o1 =)

XU () *i (@))+).

There are other contributions involving vacuum
expectation values of the product of charge density
and current operators, but again these will not appear
in the final result.

The integrated form of the modified transformation
function is

O[]0 =eXp{i / (dx) (d") [37° (@) Re (o) J° (') +5 *T0 (0) Ry (3,5") *J(2)F0J () Reg (%,5) *J°(2)] 1

where

Ro(x,a') = / (@) (da") D (w— 2" )i (&) (=)D ("' — ')

+ / (@) (@ )an (e—a")- 4 C“G") @) aala =),

Ru(s)= [ @ @)= WP 3 D)D)

and

+ / (@) (da"")an(x" —2) - (G ()i (&""))1) 2 (@' =),

Rey(x,2)= / (da"") (da”"") D (w— &) (F°(x"") 7°(&""))4 )0 (22" — &%)

+ [ @)@ WP P IDE ).

With its neglect of contributions that are quadraticin
the external current distributions, as distinguished from
the charge distributions, this result can claim physical
validity only in the limit of adiabatically slow motion
of the charges. The quasi-static situation is represented
by simplifications of the type

/ A2 Re(x,a' )T (X 2" )=2T°(x’,2°) / dx” Ro(x,%") .

When this procedure is applied to R, (x,x), keeping in

4To be accurate, it is j°—(/’ that appears here, but the
distinction disappears in the linear approximation.

mind the translational invariance of the various func-
tions, the immediate result is

fdx“’Re,, (x,2")=1—4,,

according to the relation established in the preceding
section. In the quasi-static limit, then,

f (@) (@) 0 () Rey (2 *7(e)

&~ (1—Ay) f (02) (@) ()6 (90— ) *1O(a) .
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The quasi-static condition also selects the three-
dimensional projections of #((j7)+) and «{(*5*5);), the
residues after integration over relative time coordinates.
We can then relate the vector and scalar structures, as
indicated by

(7 () 71(x)) 1) GraVP— 8:82) (1/— V2)i{ (5 () 7°(x")) )
or, in dyadic notation,
(G ()i ()= (% 7) - (V7 %) (1/— V)i (5° (@) 7°(x"))+) -

The vector operations can be transferred to the two
a, factors, which gives the scalar product of two V xa,
vectors. By inserting the relation

V xa,=—VD+h,

successively, we obtain the static equivalence

/ @)@ Yaule"—2) A G ")) aa(— )
- f (@) (@)D (= V(&) PG
XD(&"'—a")— / (@) (dx’"")ha (o' —x)

XL/ =V )4)] ha (@ =)

with an analogous result for magnetic currents. We have
seen that

(/= V() ("))
- [ (@)D — 2 (P (@) P &)

=/dmszAe(mz)A+(x”—x”', m2).

Only the time integral is of concern here. It is given
for each m by

/ dxAy (x,m2)=e—™x /47| x| .

Accordingly, this function is of short range, as specified
by the inverse of a mass that is characteristic of the
vacuum polarization process. We are interested in the
interaction of charges separated by much larger
distances. Since the two points '’ and &' in the
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product hy(x”"—x)-h,(x"’—x’) are practically identical
the product vanishes, unless the line connecting the
specified charges has practically the same direction as
the singularity line. It is just this possibility that has
has already been excluded.

As a consequence of these substitutions, it appears
that R, and R, are identical,

Ru(s!) =R, (5a") = / (@) f (@)

X D@2 MG @)W ))s)
P P NIIDE ).

Furthermore, we can exploit the short-range nature of
the function of x—«'’ that emerges from the »’” integra-
tion to replace "’ by x, in the function D(x"’—x’).
The result is simply

R.(xx")=R,(x,2")=2(1—A40)D(x—2")
and we recall that
R (2,0 )= (1— A)d (20— ")

The final form of the quasi-static transformation
function is now obvious:

{04]0_)"=zexp { —ido / (@) (@x')[3T°(x) D(x—x')

X I+ #1@)D—) *()
Fol°(x)5(x"— ") *J"(x’)]} .

The single time integral actually contained in the
exponential function identifies the lowest eigenvalue of
the Hamiltonian operator, P'+4rwK. The Coulomb
interaction energies and the additional angular momen-
tum of electric and magnetic charges are evident, with
the phenomenological measure of all charges exhibiting
the additional factor

C=A4g".

This derivation of the universal charge-renormaliza-
tion constant completes our discussion.®

5T should also emphasize the importance of the operational
definitions of charges that have been used. The expectation values
of total charge operators would be quite misleading as a guide to
renormalization.



