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Photon Counting Statistics of Gaussian Light*
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It is well known that the photocount distribution associated with the photoelectric detection of fluctuating
light beams carries information about the probability density of the light intensity. In this paper, we
present an exact solution to a problem of particular interest which arises in connection with the photoelectric
detection of narrow-band Gaussian (thermal or pseudothermal) light, namely, the problem of determining
the photocount distribution when the counting-time interval is not necessarily short compared to the co-
herence time of the light. The method developed in this paper is applied to the case where the spectral
pro6le of the light is Lorentzian; it leads to an exact expression for the photocount generating function and
it provides simple recurrence relations for the photocount distribution and for its factorial moments.

'HE determination of statistical properties of
fluctuating light beams from photoelectric meas-

urements has recently become the subject of extensive
investigations. ' ' In this paper we present an exact
solution to a problem of particular interest, which
arises in connection with the detection of narrow-band.
Gaussian (thermal) light, namely, the problem of de-
termining the photocount distribution when the count-
ing-time interval T is not necessarily short compared
with the coherence time v, of the light. The method de-
veloped in the present paper is applied to the particu-
larly important case where the spectrum of the light is
I.orentzian.

Attempts to solve this problem have in the past led
either to approximate expressions for the photocount
distribution, ' ' or to general expressions for its cumu-
lants' and its factorial moments, ' which, for practical
cases, could be evaluated only after lengthy algebraic
calculations. Our present analysis provides the exact
expression for the generating function G (s) of the photo-
count distribution p(rt), defined as"

G()= Z p( )(~—)"
n=o

and establishes simple recurrence relations for the p(n)
distribution and it factorial moments.
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It follows from the well-known expression ~

"(~)"
P(rt) = e ~P(E)dE-,

o e-'
(2)

relating the photocount distribution p(rt) to the proba-
bility distribution P(E) of the light intensity

j(t')dt',

(n being a measure of the photoefficiency of the detec-
tor), that the generating function G(s) is the Laplace
transform of P(E). By the use of the Karhunen-
Loeve expansion, "it can be shown that the generating
function corresponding to the photocount distribution,
associated with the detection of narrow-band Gaussian
light of arbitrary spectral prohle, is given by

T/2

—TI2
y(t, t') q e(t')dt',

gati ~&T/2(k=0, 1, 2, ). (4)

Under well-known conditions'e on the kernel y(t, t'), the
eigenfunctions rp&(t) form a complete orthonorms, l set
in the domain —T/2~& t&~T/2.

Consider next the particularly important case in
which the spectral profile of the narrow-band Gaussian
light is Lorentzian of linewidth I'. The corresponding
kernal is

q(t, t') =exp[—r[t—t'[ j.
~2 L. Mandel, Proc. Phys. Soc. (London) 72, 1037 (1958).'I See, for example, W. B.Davenport and W. L. Root, An Intro-

ductiort to the Theory of Rertdoot Siglets sttd Noise (McGraw-
Hill Book Company, Inc., New York, 1958), p. 96.
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G(s)=II &+
e~ (ta)

Here (n)=n(E) is the average number of photocounts
in the time interval T, and X~ are the eigenvalues of the
homogeneous Fredholm integral equation, whose kernel
is the normalized second-order autocorrelation function
y(t, t') of the complex field amplitude, i.e.,
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In this case, the solutions to this integral equation, well
known in the theory of random noise, "are

Ip4 = I I I I IIIII I I I IIIIII I I I IIIIII

N (7)

I I I I IIII| I I I III'-

Z, = (n)FT/LFsTs+X, '], (6)

IP3 =

Ip 2

N(6)

N (5)

where the X~ are the non-negative roots of either of the
equations

2X tanX= I'T,
2X cotX= —FT.

Pro. 1. Normal-
ized factorial mo-
ments versus nor-
nalized counting-
time interval.

N(k) IP =

Ip' =

N (3)

N(2)

Making use of Hadamard's factorization theorem, "it
readily follows, from Eqs. (3), (6), and (7), that the
generating function G(s) is

where

IP' I «iiiiil
IO IO IO

'

1T
10 IO

exp(FT)
G(s) =

t coshz+sinhs(FT/2s+s/2I'T)]

where z = L2FT(rl)s+ F'T']'I'
It is clear from the definition of the generating func-

tion that the probabilities p(k) and the factorial mo-
ments (e'sI) are readily expressed in terms of the kth
derivative of G(s) at s = 1 and s =0, respectively. "Upon
application of Leibniz differentia, tion rule to Eq. (8),
one obtains the following recurrence relations:

s—1

k'p(k)= Z (—I)"+~' lr~p(r)LDs-. (s)] =r (9)
r=O yj

s—1 (k
&

'"')= Z (—1)" 'I & '"'&LD
kr

' D. Slepian, Trans. IRK, Professional Group on Information
Theory PGIT-B, 82 (1954)."R. P. Boas, EnÃre Fnnctl'ons (Academic Press Inc. , New
York, 1954).

DI(s) =G(s)e r~f(N)FT/z]IPFTiI(z)
+z(1+1/2FT)iI, (z)+(zs/2FT)iI s(s)), (11)

i ~ being the modified spherical Bessel function" of the
first kind of order I, and s= L2FT(Is)s+FsT ]I~s.

It appears from Eqs. (9), (10), and (11) that, in
comparing experimental results with theory, it is con-
venient to make use of the factorial moments (Isl"I).
These moments, readily evaluated from Eqs. (10) and
(11), de6ne the photocount distribution P(rI) and are
equivalent to an explicit expression for p(n). Figure 1,
obtained from the present theory, shows the first few
normalized factorial moments E(k)= ((Isi"I)/(N)s) —1
as functions of the dimensionless parameter FT. The
method described in this paper may be readily applied
to narrow-band Gaussian light of arbitrary spectral
pro61e.
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