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Calling the operator defined in Eq. (6) 7(0), we can
also introduce the time-dependent operator

7(8) = eiHotr (0)g—Hot

=¢+7(0).

The relations given in Egs. (7) and (8) above are the
quantum mechanical analogs of the classical Egs. (1)
and (2).

The application to the calculation of time delays is
made by considering the matrix element

(\I/a(l),'r (O)‘I,a (t)) ) (9)

where the state vector ¥, () is the scaitered wave packet,
evaluated for times after the scattering process has been
completed. The time dependence of this state vector is
then given by the free-particle Hamiltonian alone:
W, () =¢"#Hot¥,(0) ; here, the last factor represents the
scattered-state vector extrapolated back to zero time.
In the following, both the incident and scattered wave
packets are assumed to be normalized to unity. Since
the scattered state is connected with the initial state

®)
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vector ¢4(0) by the S matrix, (9) can be evaluated as
below :

(24(0),¢Hotr (0)e~iHoM 4 (0))
= (‘I’G(O)’{t+7(0)}\1’a(o))
=1+ ($4(0),57'7(0)S$.(0)). (10)

If the S matrix has the form S=¢?¥, in an energy
representation the time delay operator becomes equiva-
lent to energy differentiation, and we find, as a final

result
3 (E)
(o (9),7(0)Ta (1)) =1t— 2_<_9E—+ (#.(0),7(0)$a(0)) . (11)

In this form the interpretation of the energy derivative
of the phase shift as the time delay induced by the scat-
tering process is apparent.

I am indebted to Professor Massey of University
College, London, for his generous hospitality extended
over part of the period during which these ideas were
clarified.
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In order to study the problems of gauge invariance, Lorentz covariance, and the operator properties of
the “Schwinger terms’ in the current commutators, spin-} quantum electrodynamics is written as the limit
of a nonlocal theory. The conditions on such a theory are discussed and the nonlocal equations in the case
of an external vector potential derived. The gauge-invariant, Lorentz-covariant limit of these equations is
then discussed, and it is found that (in the case of spin %) the “Schwinger terms” are purely ¢-number. The
quantized vector potential is considered by means of a Feynman path integral and its gauge structure
determined. It is found that an automatically gauge-covariant theory results and that the c-number char-

acter of the Schwinger terms apparently persists.

I. INTRODUCTION

N quantum electrodynamics, if the canonical com-
mutation relations of its constituent fermion fields
are used to calculate the commutator [ {°(r), 7%(r')],
it vanishes identically. This is in direct contradiction to
the general theorem!

O|L4'(x), #(x)]|0)=—iV*s(x—1')c,

where ¢ is non-negative and vanishes only if the vacuum
is an eigenstate of the current j*. Hence, its vanishing
implies that the current is a constant c-number current
and that the electromagnetic field is free. Schwinger, in
the same paper,! gave a partial solution to the problem

* Supported in part by the U. S. Atomic Energy Commission
under RLO-1388B.
17, Schwinger, Phys. Rev. Letters 3, 296 (1959).

by pointing out that the current should be defined as a
limit of separated points. This, then, would not yield
a gauge-invariant current unless there were some
explicit dependence on the vector potential to cancel the
gauge transformations of the charged fields. The
relation of the additional dependence to Lorentz
covariance and current conservation has also been
discussed by Johnson? and by Brown.?

This device, while resolving the paradox of the
commutation relations, raises the question of the proper
equations of motion for the fields. In general one would
expect both the current definition and the field equations
for the charged fields to be changed. Also, the Lorentz

2 K. Johnson, Nucl. Phys. 25, 431 (1961); L. S. Brown, Phys.
Rev. (to be published). The relation between explicit field depend-
ence and current commutators is also discussed in J. Schwinger,

ibid. 130, 406 (1963); and by D. Boulware and S. Deser, ¢bid. this
issue, 151, 1278 (1966).
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invariance of the theory is no longer manifest, since a
particular frame must be chosen in which to define the
canonical commutation relations and to specify the
altered current. It is not obvious that the limits taken
in different frames yield the same expressions.

In Sec. II, we rederive the noncommutation relation
in a way which does not depend on Lorentz covariance
beyond the structure of Maxwell’s equations. An
extended discussion of possible nonlocal Hamiltonians is
given in Sec. III. Heuristic arguments are given which
determine the Hamiltonian uniquely and the con-
sistency of the resultant currents with the requirements
discussed in Sec. II is verified. The resultant [F%, ]
commutator is an operator in the nonrelativistic case,
but the operator terms are found to disappear in the
relativistic limit. The relativistic limit can not be
treated by simply looking at the fields and the field
equations; hence, we look at propagator equations in
Sec. IV. Also, to allow analytic considerations, we look
first at the case of a c-number external vector potential.
The equations for the propagators are derived, and a
gauge-invariant propagator defined. These may, of
course, be solved perturbatively and such a solution
leads to the explicit dependence found in Sec. III. The
result is not Lorentz covariant and there does not seem
to be any way to define the limit of the solution so that
it is Lorentz covariant. On the other hand, it is easy to
define a Lorentz covariant limit of the gauge-invariant
propagator equation. We define this as the solution to
the Lorentz covariant theory. The current definition is
then taken as the usual definition except that it is
calculated in terms of the gauge-invariant propagator
instead of the standard propagator. The nonlocal theory
gives the current in terms of the gauge-invariant
propagator but there are additional terms which do not
behave properly in the local (relativistic) limit.

The solutions to the gauge-dependent and gauge-
independent propagators are exhibited as a Fredholm
solution. Then, given the propagators, the field depend-
ence of the currents is calculated and it is found that
there is only the dependence directly required by the
Lehmann forms and that there is no operator depend-
ence involved for this model.

The last section is devoted to the quantized vector
potential and some indication of the results are given.

II. COMMUTATION RELATIONS

The simplest calculation of the commutator of dif-
ferent components of a vector follows directly from the
Lehmann-Killén® spectral form. In the case of a
Lorentz covariant theory,

Mﬂ@ﬁ@ﬂ®=/cmm®&%wwwq
0

—5100(5)0#0"} A (&' —a, 5), (1)

3 H. Lehmann, Nuovo Cimento 11, 342 (1954); G. Killén,
Helv. Phys. Acta 23, 201 (1950).
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where A® is the positive frequency function of mass
/s, and p; and po are each positive definite, arising from
spin-1 and spin-0 states, respectively. Current conserva-
tion implies po=0.

Then all vacuum expectation values of equal-time
commutators vanish except

O (x), 7*(x')]10)
—— / ds s Lp1(s)Foo(s) 0% (r—1), (2)

which can only vanish if py=0=p,. Then j* must
vanish.*

In what follows, we will be concerned with non-
Lorentz-invariant theories. Thus, we give a proof which
only depends on rotational invariance and the fact
that j# is the source of the electromagnetic field. We
start from a radiation-gauge formulation of quantum
electrodynamics. Then®

(0] 4(&)4°(x') | 0)
[d/m””w” (k)
¢ (2m)® kzpo “

0] 4} () A ()| 0)

2 el E—wt®)
= f do / a3k ———— (@' "— ke E)pi(kw), (3)
0 (27l' )3

where g¢=x*—2'%, We have assumed only positive
energies for the intermediate states, and we have po
and p; greater than or equal to zero as before. No A°4!
term occurs because V- A=0.

Now, we use Maxwell’s equations; F»=9¢4*—d"4*
on both fields and 9,F**= j* on the second field. Then

0P 7)o
o gilk-t—ot?)
=—i| dw|d%% kloo(k,w) , 4
if o[ e,
O1F()7()|0)

d3k ez(k E—mEo)
=-i/¢w/ pim(k), (4)
where

o (kyw) = (@' — k" /) (o' — K*)pr (k)

+ (k%™ /k?)po (k) ,
(0] Fim(x) j°(2") | 0)=0, (4¢)
etk E—wt?)
(0| Fim(x), j7(«’)|0)= f dw/d p———— RE
X (ktomn—km3in)py (kw).  (4d)

4 P. Federbush and K. Johnson, Phys. Rev. 120, 1926 (1960).
5 We1 use a space-like metric throughout, (—1,1,1,1) and
h=c=1.
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Then, the vacuum expectation values of the equal-
time commutators all vanish except

(O[[F™(r), jm(x')]]0)

eik-E 00
=—2 f &k / do wpm(kw). (5)
0 (271')3 0

The commutator is a nonvanishing, positive-definite
function of r—r’ unless both py and (w?—k?)p;, are zero.

The first (oo=0) implies that 4°=0, or j°=0. Its
contribution to the commutator is longitudinal; hence
it derives directly from the [ #°, 5] commutator. In the
relativistic case, this term comes from the definition
of the current as the limit of a nonlocal function and is
independent of the dependence on Ay The second
condition [ (w?—%2)p1=0] is related to the explicit
dependence of j! on the transverse part of 4; Gauge
invariance can be maintained by defining 5! as a function
of the (¢c-number) longitudinal part of 4. But then the
transverse part of Eq. (5) would vanish and we would
have to have p; « §(w?*—k?) or the electromagnetic field
would be free. Proceeding one step further,

ez’k-ekl

OILR(), )] 0)=—i / & / dos wpn(),

(2m)?

is the rotationally invariant result. Although it need not
have the locality of the Lorentz covariant result it is
still definitely nonzero for any interacting system.

At this point, we must construct a theory which
contains explicit dependence on A4. It is very dangerous
to do this in an ad hoc manner since one risks losing
consistency between the various equations of motion.
Rather than attempt to guess the right structure for
j*, we will guess a Hamiltonian and commutation
relations, then derive the currents.

III. THE NONLOCAL HAMILTONIAN

The primary requirement of any electrodynamic
Hamiltonian is that it yield Maxwell’s equations and, in
the local limit, become Lorentz invariant. The relativ-
istic Hamiltonian, in radiation gauge, may be written®

H= /dT[%F‘OkFOk+%FlekZ

8 (e Grmnemal]}
where (6)

FRl=gk4l—9'4% and 0,F%= =2%eyqy.

The current is then j*=Zegakqy. It is now necessary
to modify H so that the coefficient of Aj is itself
¢ We use Hermitian fields y and an antisymmetric charge matrix
g= (? _6) The Dirac algebra must be written in a Majorana

representation, a#=a#T, 87 = —g.
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dependent on 4 ; then the current will have the requisite
commutation relations. Following Schwinger, we intro-
duce nonlocality and additional 4 dependence into the
coefficient of A*. Rather than use a given separation,
we will use a weight function and average over different
separations. The crucial point is that p(r,r) is finite.
Then we replace seyafqy by

[ dr'p (5, V1L (1), abge(e ()],

where ¢ depends on 4 at least in such a way as to insure
gauge invariance. Then, we add A4* to find

/ drdr’ A (x)p(1,0):[¥ (%), gare(w, 2 W () Jurmare

as the interaction term in the Hamiltonian. Under
gauge transformations this term transforms like

/ deT'P(r,r')(azJ\(x))ZDP(x), e(a,0 )obqh (&) Javmsro.

Thus, the derivative term must also have the points
separated so that the terms can cancel. At this point,
there is no argument that the mass term must also
have the points separated, but we will separate them for
the uniformity and in order to simplify the equations.
We leave the structure of the electromagnetic field
equations unchanged. The Hamiltonian then becomes

H=/dr{%F""(x)F"k(x)+%F’”(x)sz(x)}

+f drdr'pu,r'){i[xb(x), ()

X(a-GV’—qu(x’))+mﬂ)¢(x')l._zm}- %)

The commutation relations and the functions p and e
must still be specified. The only gauge which admits a
canonical formalism with positive-definite inner pro-
ducts is the radiation or Coulomb gauge. Thus, we
take radiation gauge and we require the field equation

80A% (x) = FOT () =i A*(x), H]=F%(x)+0*4%(x). (8)
This implies the canonical commutator
[E%(r), AH(x') ]=i[s" (r—1) "

=i[6“(r— r')— VAV

m] ©

for equal times. In order to maintain the gauge struc-
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ture, we must have

oo (%)= (=) ¥ (v), H]=ieqAo(x)¥ (x)

-+ gauge-covariant terms.

But, with the aid of the constraint 9,F%= j° we then
have, from the FO*F% term,

[¥(x), j°(r')]=eqd(r)s(r—1'), (10)

and, since 7° is to be the generator of the gauge trans-
formation on the charged fields, we require

[]‘O,Akj=0= [jO;FM]:O: [jo,e]'

Further arguments by analogy with the Lorentz
invariant theory can no longer be used, so to simplify
p as much as possible, we assume

(), ¥(x)}=8(r—r). (11)

7° may now be formally defined as 3e¥gy and there can
be no additional dependence on A* or F% if ;0 is to
simply generate the gauge transformation on the
charged fields. There remain the terms p and e. In
order to maintain a canonical formalism, the Hamil-
tonian can only refer to operators at a given time. This
has already been included in writing p as a function
of r and r. We now impose translational and rota-
tional invariance separately on ¢ and p. Thus p(r,r’)
=p(|r—r’|), and we further impose JS'd3tp(£)=1 as
the normalization condition. There will be further
conditions later to maintain the positive-definite
structure of the Hamiltonian.

We must now discuss the function e(x,x"). Schwinger
wrote

e(x,2)= eXP<ieq / ) dy,A "(y)> ’

x’

which, under the gauge transformation 4#— A#4-9*\
goes to e(x,x")expie[ A (x) — A («’)], assuring gauge invar-

ar’
Ao(x)=/m] (r',a"),

o () = —i[F*¥(x), H ]
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iance. The integral is, however, path-dependent. In
order to include the path dependence explicitly and the
possibility of other forms, we will use

e(x')= eXP<ieq / dy f"(y,x,x’)Au(y)) )

where f must have the property 9,f*(y,x,a")=8(y—x')
—58(y—=x). The further requirement of a canonical
theory implies

frlyaa) =80 —a)fe(y,r,y) for a'=a".

Then, f* must vanish to exclude time derivatives of a
delta function. To see this, we observe that if, for
=2 fO5£0 then terms of the form d¢4* must
appear and we would have, dependence on F%, upsetting

the equations
Fw=9r4"—9"4*.

The longitudinal part of f for «°=4" is then com-
pletely determined. We could assume that the trans-
verse part vanishes. Then, in the radiation gauge, we
would have e(x,2")=1 and ¢ would act to remove any
¢-number gauge transformation from the radiation
gauge. Our commutation relations have restricted the
gauge freedom to ¢-number gauge transformations in
any case. This choice is not sufficient, however, since it
does not yield the dependence on A* necessary for
[F, jm] to have a nonvanishing transverse part. Thus,
f must have a transverse part yielding nontrivial
dependence on A In Appendix A, we show that the
only form consistent with Lorentz and translational
invariance is

P = (=) / D2 —\ (=)

The equations of motion are (8) and

(12)

ot (5) 1o / &t o(®) {wx), o, 5Bt (— )]

—1i / da’ fr(x, '+ ¢, x’)[¢(x’+g), ge(®'+¢, x’)(a« (-l;v'—qu(x’)>+m/3>¢(x’)}} , (13)

1
aniﬁ (@)=—[,H]

7

~beatAe), v}~ [ 6000 etz =L (fv—qu@— E)>+MB:|~//(x— 9

i

+%(a- (iV—qu(x))-{-mﬁ)e(x, x— £)¢(x—£)} . (14

]
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The current is then

J@)=%e[¥(x), g ()],

@)=t / Bep 0 [Mx), o, 5 ke (v—8)]
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—i ] 0 1G5 -+, V0, 0o+, (e Gv'— qu(x'>)+me)¢<x'>]] ;1)

it is manifestly gauge invariant and is conserved as it must be, since it is defined as 9,F#*= j*. The commutator

[FO(x),5™(x")] is now, trivially,
[FoK(x), j(r) ]

= —%62/d3£ PO, v, Y = H[Y (), ame(®’, &' — O (' — ) T+ (¥, x, r— O[¥ (), ale(x, x— Y (x— )]

- - 1
—i / @ fr, 2 E 1) (Y, Y E 1) (), e(d -, x”)[a'(—,V"—qu(x”))+Mﬁ:‘¢(x”)} , (16)
(2

where we have freely used f*(y,»,2")=— f*(y,%',x).

Itis now straightforward to calculate the dependence
of j* on A for a c-number vector potential, where the
singular terms all result from the vacuum expectation
value of the current. The explicit dependence is cal-
culated in Appendix B and is given by Egs. (B4).

The next problem is to find the solutions to these
equations with a ¢ number 4, then to take the limit as
p— 8(r—1r’). The limit is not well defined, as is discussed
in the next section, and there does not seem to be any
way to define it except by requiring that the resultant
theory be Lorentz-covariant. The problem of a quan-
tized A presents all the difficulties of a relativistic
quantum field theory as well, so we will first treat the
external 4 problem.

IV. GREEN’S FUNCTIONS WITH
AN EXTERNAL 4

In this section, we define a gauge-invariant Green’s
function and discuss the p(£) — §(£) limit of the equa-
tion. The resultant Green’s function produces a
conserved current which contains all the requisite 4
dependence for a consistent theory. Our gauge-invariant
Green’s function is not equivalent to that of Mandel-
stam’ in which a path-dependent gauge was chosen.
The gauge factor, which is explicitly written and in
general contains nontrivial dependence on F®, is, in
fact, the WKB approximation to the Green’s function.
We define the gauge-dependent Green’s function

«0] T ()¢ (+)) [ 0)4

G(x'; 4)B= (17)
(0]0)*
The gauge-independent function is defined by
Gl ; F)=e(x' x)G(x,x'; A). (18)

7S. Mandelstam, Ann. Phys. 19, 1 (1962).

Since e(x,2’) is an explicitly known function, we can
solve directly for G instead of G.® First, however, the
field equation for ¢, Egs. (14), must be rewritten as an
equation for G:

70(%30—69140(90))0(90,90'; A>+§ f 85 p(8)
X{[Y'Gv—eql\(x)>+m:]e(x, 2= E)e(z, 1—5)

X[Y‘ (iv—qu(x—i))+m:”G(x—§, a'; 4)

1

=§(x—«'). (19)

In the zero-field limit, the Fourier-transform equation
is, for A =0,

(vVpot+5(p) (- p+m) ]G, (p) =1, (20)

where

0<s @)= [ m©, s0=1, 520.

Then

Go(p)= p(p) (m—2-p)—"po

wl— Poﬁ

H

Yopot-5(p) (v p+m)

where w(p)=p5(p)(p*+m?)'”2 is the modified energy of
an electron with momentum p. The configuration-space

8L. S. Brown and T. W. B. Kibble, Phys. Rev. 133, A705
(1964), used a similar technique in solving the problem of an
electron in a plane wave. There the exponential factor comes out
of the solution in a completely natural way. Their second Appendix
is particularly close to the approach adopted in the present paper.
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function is then

oo = / e

/ W[m‘*‘ﬁwwzwrﬂe(sﬂ)]

Xexp{i[p' E—o(p)| &1} '
(2m)?

(21)

The modified propagator is the same as the usual
Lorentz-invariant propagator except in its time depend-
ence. For £=0,

1
G50 =SF(£0)= (m-*r-;V)AF(E,0)+%iv°e(£°)5(E) .

The equation for G,(x,2"; 4) can then be rewritten
as an integral equation

G,(x,0'; 4)

=G (x—a)+ / dy G (x—y) {eqv"Ao(y)Gp (9,25 4)

+ / d3£p(£)[[6qv- (AG—)+3F(y, y—5)]
Xe(y: y—f)— (e(y7 3"‘5)— 1)

X(YéV%—mﬂG(y—E, x';A>} , (22)
where

1
Pr(s, == [ D662,
0
The equation for @ is, using Eqs. (18) and (19),

1 _
vo(fao—eqa.)(x,x'))ap(x, o P+ / Bt o(®)
1
1
Xexp[ieqF (x, x— £, x’)][v- <—,v —eqa(x—£, %)
1

_%qm, — s))+m](7p(x—- & o, )=8(—7), (23)

where .
ak(x,a’) = / N (x— ), Fre(o + A (a—2')),
and ’
1 A
F(x, x— &, x’)=/ d)\/ do(x—2'),.8,
v XFw (@' +N(x—a")—0cf);
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or, rewriting Eq. (23) as an integral equation:
Gy (x5 F)
=G+ [ DG ebanls 5,085 )

+ / % p(E)[expEieti 3 y—§ )]

eqy-(a(y—¢& o' )+3F(y, y—§))
— (exp[+1ieqF (v, y—& &) ]—1)

X(T-%v+m>:|f¥p(y,—£, ' F)} e

Equations (22) and (24) can be solved perturbatively,
yielding the nonlocal theories. The gauge-invariant
propagator can then be used to calculate the current
(j%)4, using Eq. (15). The result is, naturally, not
covariant; furthermore, the limit is not well defined.
The resultant integrals contain factors of the form
p(§)(H)™ and there does not seem to be a generally
consistent way to define such products in the limit
p— 8(£) so that the limit is Lorentz covariant.

Any arbitrary order of G exists and is Lorentz covar-
iant as p(£) — 8(f), for x=x', assuming that 4 is
sufficiently regular. However, when the currents {j*)
are calculated, and the result expressed in terms of a
momentum space integral, integrals of derivatives of
p(k) appear. These may then be integrated by parts so
that the derivative appears on the other terms in the
integrand ; for example,

d
/ Ph—p(R)km=
ok

If the limit 5— 1 is taken as it stands the result is
zero, and integrating by parts yields a divergent result.
If the integrals are evaluated with all derivatives off the
p’s, then (4#) is not covariant. No general procedure was
found which gave a covariant result. This should be
expected, since the explicit dependence linear in 4 is
given in Appendix B. Covariance only allows terms
without derivatives.

Thus, we will take the limit of Eq. (24) to define the
Lorentz covariant theory. The equation is already
gauge invariant; we will define the Lorentz covariant
limit by

(s F)=G(—/)+eq / dy GO(—3)

Xytay, (y’xl)é(y,x’; F) ’ (25)

and G(x,x’'; 4) is still given by Eq. (18). The solution
to Eq. (25) defines the Lorentz covariant, gauge-
invariant propagators. We can now take as an ansatz

(*(x)y4="}ie trgy*G(x,x; F), (26)
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which is the naive limit of Egs. (15). In fact, the
resulting expression yields a Lorentz covariant, gauge-
invariant, conserved current, so that all our criteria are
satisfied.

It is also covenient to define G/(x,2’; F,z) which obeys
1 ~
[7"(—_6“— eqa, (x,z))-l—m:lG (%2 ; F2)=08(x—2'). (27)
i

G(x,x'; F,2) is just the Green’s function for the vector
potential 4,(x)=a,(x,2). The condition on A that the
Green’s function G(x,x’; 4) exist is just sufficient to
insure that the Green’s function G(x,x';F,s) exists.
Then a modified Fredholm theory applies and, as is
shown in Appendix C,

G(x'; F,2)
— () + / K (1,93 F2)G(y—)
+ / dy{K*(x,y; F,3)
+[det”(1—K2(F,2)) N (x,y; F,2)}

X {G“ (y—a')+ / dy'K(y,y'; F,2)G° (y’—x’)} , (28)

dk
== [ o=

‘ i}
[ u2 \F2 ] 3pu3 \Fe3 akm akm akay,

where II#* and II##1#203 are the closed-loop contributions
calculated with G. The effect of the term linear in 4 is
to remove the photon mass term and to enforce current
conservation on the remainder. The resultant expression
vanishes as £— 0. The fourth-order loop is already
current conserving with the exception of a finite
constant times grigroms |- guueguinat gunsghirz This term
is removed and the remainder vanishes when any one
of the momenta vanishes.?

We can now calculate the explicit dependence of j*
on 4. The variation of {j#) with respect to 4 is given by

Ky
W—KT(] (®)57(«)))
67*(x) g Al 2v (A
+(r (x,)>"¢<]u(x)> G,
or
RN A
(; ) "y @)
Fi(HEAF DA (30)

9 R. Karplus and M. Neuman, Phys. Rev. 80, 380 (1950).
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where K (y,y"; F,2)=¢4G*(y—y')v*a.(y',2), and N’ and
det” are defined in Appendix C as the modified
numerator and denominator functions when trK3K?
<,

The results of Appendix C may be summarized as
follows:

(a) If G(x,%"; A) depends on A,(k)= S dx e*=4 ,(x)
through

b ,
57&6”” A,,(k)H"(k,x,x ) )

then G(x,2', F) depends on 4,(k) through

1

/dk *a' [y (k) kA(k)]a /dm(xk )
e[k, r\R)—Rudy — # %% ) .
(2m)* ok

vJ 0

(b) All closed-loop diagrams with more than 4
vertices are already current-conserving and their 4
dependence may be calculated using either G or G.
The closed loops with 2 or 4 vertices are not current
conserving when calculated using G; G must be used

and the corresponding dependence of (j#) on 4 is

, d v dkudkodls _
e*’“[II""(k)~5; / d)\H"’(Ak)k,:lAy(k)—— f ————¢itrthetka o — iR, ., (k1) ]
v J 0

(2m)12

1
/ AN1dNodNg TI##182088 (— N yfoy— Noka— Nk, Nik, Aok, Naks) ,  (29)
0

We have that, for 4=0,

6(]”(:’5»: _/ k etk (z—a’) (k%g“"-—k“k”)i
54,(x) (2m) 37

i ds 4amp21/2 2m?
ot ()
4m? S+ E2—1¢ s s

87k(
=TGP (’”))

Then, since the second term is local in time,

O]+ ) | 0)=— / ;ds[l‘%]m(”g?)

3r s

d3k etk (z—=z’)
X (S uv_a/.tav) —_—
’ (2)?

?

2
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where £°=[k?4-s]2, But then
0] T(j*(x) 5 (+')"| 0)

a dk °° ds
—_——— e@k (x—z’) (k2guv__ kukv)
3rJ (2m)* am? Sk —1ie
4m? 2m?
Xl:l-"—:‘ (H""“‘)"‘ (g#+60"3¢")
S N

a [ 4dm2y/2 2m?
X&(x—x’)—f ds{:l———:l (1+———~>,
37 J am? s s
and

dgm(x) \ 4 a [ A\ 12
Gy, [ o)
04, (x") 3 Jame s

2m?

X (H—"“‘)& (x—2'). (31)

N

This term corresponds to the first term of Eq. (B4).
There are no terms corresponding to the other two
terms. The fact that the derivative term vanishes is
immediately apparent from the form of Eq. (1), while
the vanishing of the 4™4, term requires a detailed
study of the difference between the time-ordered
product and the four-current propagator. Such an
analysis has been attempted and does not seem to
yield any terms. However, a completely rigorous
treatment was not possible because any contributions
would come from the situation where all four currents
are coincident. On the other hand, we would expect
that the dependence, if it were there, would be of the
form of Eq. (B4), since it provides just the subtraction
needed for current conservation. Then, if we consider
(85 (x)/847(x"))4 for constant A4, we should find
dependence. No such dependence is found; thus, any
(4)* dependence of j must contain derivatives, in
contradiction to Eq. (B4).

V. THE QUANTIZED ELECTROMAGNETIC FIELD

The remaining problem is to quantize the electro-
magnetic field. We have found a set of propagators of
the charged fields, for an arbitrary classical electro-
magnetic field which satisfy all Lorentz-covariance,
gauge-covariance and current-conservation properties.

The charged-particle propagators

G(wa'; A)=e(x,a")G (5,2 ; F)

S n, %13 )= 2 ()G

perm D)

= 3 (=)eiWIHI-WID]] @

perm
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are given by essentially the same expressions as in the
standard theory, except that gauge invariance is
assured. These can now be used to calculate the
quantum-theory propagator. Using a Feynman path
integral to define the theory, we find formally, in
Appendix D,

0| T (@ )y (w2) - - - (P (20”) - - P (1) [ O)

=e’iW[J]S(x1,- © %} xn’,. . .’xl’;J)

14
= = (M 6(mats- e,
1 6J

perm %

where ¢'"1J] is the generating functional for all the
photon-field propagators. _

A gauge-invariant function S which is analogous @ to
can also be defined.

e"W[J]S-(xl. ©Xn, xn/. . .xi’;J)

_ _ 15 oW
=em & (T 6(mals~ —+—),
perm 7 ’L 5.] 5]

where we have written G as a function of 4 rather than
F and the gauge dependence of S can then be shown
by expressing .S as a function of S

S (a5 )= ed WUIH @z =WINS (g o' 5 T4 f (x,4"))
Jr(wa)=eqfr(y,x,0").

The gauge dependence of the charged-field propaga-
tors is not at all simple in the Coulomb gauge. This may
be understood by considering the effect of the function
f* which gives the classical current of a point particle
appearing at the point &’ traveling in a straight line to
the point x and disappearing. The Coulomb-gauge
vector potential generated by this nonconserved current
produces a longitudinal electric field with which the
particle interacts as it propagates. The covariant vector
potential 4#(x)=/Sdy'D(y—9") f*(y',x,%"), on the other
hand, gives no contribution to G. In any Lorentz
gauge, the additional term in 4 coming from 9*9” terms
in the photon propagator does not contribute to F** or,
therefore, to G.

In the case of the multiple-particle propagators, the
f’s give a first approximation to scattering of the
particles. Each particle feels the electromagnetic field
of the straight line motion of the other charges and G
responds to that field and the exponential terms give
the WKB approximation to the motion. Then the
general propagator is

i o
WLI+f] 16
(xi)x’[l; ~—_+- _—) )
87 i8]

?

f” (y) =e ; qt'f”(xsx":xil) .
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The current can also be calculated, in the absence of any charged particles:

ow 16

_ 14 _ _
0] j#(x) | 0) =3ie tr'y"qG(x,x; - 5}) eV ll= W1y tr'y”qG(x,x; — —) =¢WU1de try#gS (x5 J) o

(2
or
oW
(— 8%5-+949)—
87

X

where J, is a conserved current whose expression in
terms of J is gauge-dependent.!® There is, of course, no
equation for the gauge part of 6W/5J.

The equations for S may be developed in the standard
way and any calculational technique which is used in
quantum electrodynamics may be used here. The only
difference appears in the calculation of the various
photon propagators. There, we are directed to use S
instead S. But, we can now invoke the algorithm which
we used in Sec. IV, and our results are: Do perturbation
theory in the usual way except when considering
closed-loop diagrams. In these, replace the usual
contributions by the current-conserving part given by
Eq. (C9).

Given (0| j#(x)|0)’, the [F%, ] and [7°4'] com-
mutators can, of course, be calculated. Definitive
results require a detailed analysis of the structure of
the various propagators analogous to, but more difficult
than, that required for the external vector potential.
Heuristic arguments however, lead to the same result
as in the ¢-number-A4 theory; the commutator is a ¢
number. Again the anticipated structure is of the form
A™A nA%; and if we assume a constant external 4 and
calculate 85%/64,, the imposition of the low-energy
theorem on the four-photon propagator assures its
vanishing.
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APPENDIX A
We have

uft(y,x,0") =8 (y—a")—d(y—x). (A1)

oJ idJ

) =J #(x)+Lie try*gS (x,x; J),

The Fourier transform of f is

g#(k}xix,)’:/dy e—ik(ﬂ’—z,)fﬂ(y’x’x,);

translational invariance requires that gr=g+(k, x—x'),
and, if the further requirement that g¢ be a vector
under Lorentz transformations is imposed,

gk, x—a')= (x—a")rg1+kigz, (A2)

where g; and g, are scalar functions of 2 and x—«’.
Eqg. (A1) then transforms into

thugh=1—e ") = if (v — ') g1+ kg
or
P |

gr(kE)=¢ + (Erk2— kv RE)p .

For £=0, we must have g°=0, or
#lomo=— B,

Such a term gives dependence on F#* and j*, so we reject
it, leaving
e—-ik(z—z/) —1
f"()’;x;x')z (x_x,)“f etk (y—2")

(2m)*

—ik(x—2x")
= (x—x’)"/l A\ d(y—a'—A(x—2')). (A3)

If we have (x—x')* time-like, then ef* is just the classical
current density of a point particle moving from x to «'
along the straight line with velocity

x—x'
[20—a|
P = et (@~ (y—x'— ()*—a")v),
F ) =evé(y—x'— (*—a")v).

)

(A4)

APPENDIX B

The space components of the current are given by Eq. (15). For small distances the asymptotic behavior of the

2 - &+ Léot+ e (&) ]

fermion propagator is

(B1)

SE)~—

w* [e— (8] —i*]

for £=0, since G,9(£,0)=S(§,0),
(), 0 (x) =

i trOa

2 [ete]’

‘&

f=r—1r

10 B, Zumino, J. Math. Phys. 1, 1 (1960) ; D. Boulware, 3bid. 3, 50 (1960).
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and

T )

then( j%(x)) has the explicit dependence

ie / @’ p(%) { ie / dy Az(y)[f 'O, % 2= XY (), Y (=) D+ f*(w, y+£ X[ (0+8), alg% (3)])

1e)8

@)
- / dydydy" A, () An(5) An(")

_z‘/dx'f"’(x, a'+& ) f'(y, ¥+ x’)<[¢(x'+5): qza.; V’xl/(x’):,>:|+

X [([xb @), ¢*Y(x— ) DS (y, %, a— O (Y, x, x— ) (", 2, = O +HY D), ¢’y (y—E Df*(x, 9, y— )
Xfm(yly ¥,y E)f”(y,lr Y, ¥y— £)—z/dx’f’“(x, x/+£7 x,)fl(y) x,+£, x’)f’"(}”; x’+$7 x/)
1
X6 ke w0, ey [ | @9

plus higher order terms. However, the A° term has a factor £/£— 0 as p(£) — 6(£); hence these are the only
nonvanishing terms in the local limit. Then, (0] 7*(x)|0) has the explicit dependence, for p — (%),

. 2 ds} p(£)g2 {(1 ' 4¢? )A"( )+£2 1<3+ 4e? )EVzAk( Y 42VEV - A( )]}
—— 1 x)+—— X '
s Leterl\ pte 512\ gte ’

@2 r p(£)& de
+-5; d£[£2+62]2(3+—7-r—2->A (®)A(®)-A(x). (B4)

APPENDIX C
We must consider the equation
1
[7“(76;.— au(x)>+m:]G(x,x’; a)=8(x—a’) (c1)
1
in the two cases
ar*(x)=A4*(x), (C2)
and .
a*(x)=a*(x,3)= / N (x—2), FH(z4-\ (x—32)) ,
0
where

Frr(x)=0rA7(x)— 074" (x).

Both equations can be written in the form

G’ ; a)=G"(x—a")+ / dy K (x,y; 9)G(y,«'; a), (C3)

where
K(y,y'; @) =eqG"(y—y v au(y").

In either case a modified Fredholm theory applies, since under a similarity transformation, trK?'K2< o for any
A which has a finite space-time integral of the energy density.! Then, iterating once,

G(xx'; @) =G"(x—a")+ (KG") (w,2'; a)+ (K*G) (x,%'; @) , (co)
11 See J. Schwinger, Phys. Rev. 93, 615 (1954); S. Weinberg, 4bid. 135, B202 (1964).
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and we must consider

1
(’il"z}‘ ><x, ) =0(e—a)+K? (w1’ ; a)+[det” (1~ K@) V" (54’3 0) (Cs)
where

det” (1= K*(a)) = ¢ det (1~ K7)
and
6 det”(1—K2(a))

N (x5 a)=—
0K*(x x5 a)

The function det”(1—K?(a)) is the standard Fredholm determinant with all 1X1 and 2X2 subdeterminants
omitted. Thus, it may be expressed in terms of trK?* for n>2:

trK "= ¢ / @y @Yan@ys (¥1) 0 (P2) TG (V20— Y1) v*19G° (11— y2)71*q - - gv**" G (Vo1 Y2a)v*27q.

For Kl,
() / % o A, (k)
a = (Al
and ~ (2m)* “
. 2ie? dkl . 'dkgn 1 dp
n— L R — .o Y- 0 n— n
trKy=1te / (27r)4<2n—1>A" (k) A (ka3 (2 kz)i / (2m)* trG(p)1MG (p1) - - v**r G (pan—1)y*2», (C6)
j
=p—2 k.
=1

Then, for Ko,

1 dk dk 1
au(}’)=/ >\d>\/ e (= =2 (y—z)”i(kvAu(k)—kuAv(k))=/ e*:(—iF,, (k))—/ A\ €N w2)
0 (2m)* (2m)* ok, J o ’

and

v

dk2n

dky- ]
=i [ T enp i 2 R (i) (=i ()
(2m) ks ko,

: 1 [ dp
X / dAr Ao / ——8(2 NEIUG (PG (p1) - - -y 1G (pan—r)y*», (CT)
0 iJ (2m)*

J
=p— 2. Nki.
=

The integral which appears in both cases is

e2n dp
5(2 k.)Hm' . '#Zn(k - ‘n)E 5(2 ) Z —_—trG° u1(;0 p2n=1(70 »
’ k)= B R Z | T OB G )
J
=p— Z ki,
1=1
which, for #>2, has the property
2n
Rin( 2 BT 0n (- - - an) =0 (C8)
=1

from current conservation and the convergence of the integrals.
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Now

—iF (k)—a— iy f“()\/a)—[A (B S 4 (B i]
" ak/O LT e, T ok

v

/ 0 F#(\E)

v v 0

=4,(k) [ /o ldxl}%f“()\k)—i- fﬂ()Je)]—% /0 ldMey f”(Ak)}

m

=A“(k>{ fﬂ(k)—g% /0 ‘o kyf”(Ak)} . (c9)

If £, f*(k)=0, we then have, assuming | f#(0) | < o,

oF,, (R 8 1d>\ kR=A,(k k
—w()gfo POR=4, () (B).

v

Thus, for n>2
° ’ trK 2r= trK 2 (C10)

and det” (1—K2)=det” (1—K?), both being independent of z.

The same arguments cannot be made for trK,* and trK»* since each term contains nonconserved parts, but
Eq. (C9) still defines the correct contribution.

The numerator function contains terms of the form (K"G°) (x,x") as well.

The preceding results are based essentially on the gauge invariance of the denominator function. The numerator
function is not gauge invariant, so the terms will not be equal. We are now in a position to calculate j*(x) and
(0]0)4. We require that the variation of the vacuum matrix element yield the current

Ll 0>A= 0] j#(w)|0)4= <010>Ai—e try*qG(x,x; F) (Cc11)
o 1 04 ,4(%) 2
f & In{0| o>,1= E sepralms B )
i 0du(x) 2

We have already calculated all the trK2" terms in G, the remaining terms are of the form

(K3"G) (w,x' 5 Fyz) = enqn/dyl' @YaG(@— Y1)y a5, (y1) - - Y2 (V)G (Yu—2') (C13)

or

dky- - -dk
(K4 (1,3 F ) =g / T

Gy () (i (k)
d ad
Oky,  Oku,

1
/ dA1: - - ANGO(P)yHe - -y GO (py),  (C14)
0

i
pi=p— 2 Nk

=1
Then, the terms in the current are of the form
/dkr <dk, bin(— By (k) - - (— T () 9 /ld n
— — 2 kiz(—3F, V) (=il . (ka A1e s AN IT#e1 bin (— 7\k,>\k,"'>\,,kn
(2r)» “ N Sk Ok Jo (7 & Mok, Aoka)

i

8
——— trKHG0,  (C15)
2(n41) 64, (x)

as may be seen by comparing the result with Eq. (C7). For =3 or 1, however, there are additional terms. In the
case of n=23, these are of the form

c ( grLgats -+ gre gnu-'s._{_ gkt gmuz) .
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The % derivatives just remove them, justifying the simple dropping of the term. In the case n=1,

1 dp 1 1 @
I (—h)=et- try dx — 4gw AT — (m2A(1—A)R2
XrLmravouUmrwang B A

--conserved current terms}
where A? represents the quadratic photon mass-divergence.
The insertion of this expression into Eq. (C9) yields

a
—3 (g#k?— k*k)+conserved current terms.
T

The photon-mass term has been eliminated, there is an additional finite charge renormalization, and the standard
vacuum polarization remains. It should be noted that the photon-mass term does not involve any 4 dependence of
7 in the final analysis while the vacuum polarlzatlon does. Similarly, in the four-point function the ¢g terms do not
yield any A dependence of j. These results are in contrast with the nonrelativistic case where the elimination of

the terms implies 4 dependence.
Combining Egs. (C5), (C10), and (C15),

~[det" 1~ KN T / tryaN e (1 F,x>[G°<y—x)+ / WYKoy F,x>G°<y'—x>]dy

e
~—[det" (1= KD / dydy tryrgN (93 AKs (v )5/~ )

1
=ZaA,,(x) In det”[1—K2(4)], (C16)
or
]
6A,.(x)< |0y4= “(7{1n[det (1—-K2(4))J'*—% “wK trK?”} (C17)

where “trK*>”’ means to take the current conserving part and “trK*” is, of course, logarithmically divergent.

APPENDIX D

In the case of an external vector potential, we have been forced to give up a strict Hamiltonian formulation of
the theory, and thus lost even this heuristic formulation for the fully quantized theory. An alternative formulation
exists, however. In the usual theory, the knowledge of the fermion propagators for all possible external potentials
can, subject to serious existence and definition questions, be used as a formal basis for the fully mteracnng theory
by means of the Feynman path integrals.!” This Appendix is essentially a sketch of such a definition, using our
gauge covariant and invariant propagators as a basis for the development. We have propagators in the presence
of an external vector potential

Glxx'; A)=e(x,)G (0" F).

Then, the quantum propagators, in the presence of a source current for the electromagnetic field, are given by

JdLAX0[0)* 2 (— )II G (o5 A)exp{ifdal L0 (x,A)+T A4 (x) ]}

J fooexy 3 )= o ‘ '
(0]0)7S (@1 + * %, "+ - 21’5 )= JA[AT0|0)4 exp{sfdax[L°(x,4) T} o

The quantity (0|0)4 does not exist as it stands, due to the logarithmic divergence in ((7'j7)). But counter terms
can be inserted in L° to give a convergent integrand. We assume that further counter terms yield a convergent
(0]0)7, the generating functional for the photon propagators. This question goes beyond the scope of the present
work and involves the question of an existent theory, so we shall not pursue it further.

12 A list of references may be found in I. M. Gel’fand and A. M. Yaglom, J. Math. Phys. 1, 48 (1960).
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A set of gauge invariant propagators can be defined

JaLAX0[04 X (— )II G(wi/; F)exp{ifda L'+TAT)

10y S - -aom a3 T) = JdLAT0]04 explifdal® (5,4)} ' ®2)

The factors G( ; A)exp(if'JA) or G( ; A)exp(if'JA) occur in the expressions for S and S. Since these may

formally be rewritten as G( ; (1/1)6/8])exp(1,/' JA), and G( ; (1/4)8/8])exp(./°JA), Eqs. (D2) can be rewrit-
ten as functional derivative expressions of

JdLA10]0)* exp{ifdalL°(x,A)+T, A4 (x)]}
(0[0)y"= : ="l (D3)
Jd[AK0|0)4 exp{ifdx L°(x,4)}

which we assume exists and has the proper form. Then W can be written in the usual linked cluster expansion:

1 o 1
wlJ ]=§ / aydy' Ju(y) D (y—y') 1, (¥ )+ 2 - dyy: -+ dyamdzy: + +dz2n

n=2 LN

X[ﬁ T (o) Drivi(y;—z;) JTw1 - bn(zye - - 29,) ,  (D4)

i=1
with
3“]‘4&1- . 'Zn(zl. . .z,m) =0’
and T is completely symmetric. The equation for 617 /8J is given in the text. D* is the fully interacting propagator

and it may be taken to contain gauge parts which are not given by the path integral. These would be inserted by
a gauge transformation.!? Then

n 16 14
S(x1e Xm0+ o213 T) =W 3 (=)]T (Gxi,x/, _._‘S_})eiW[J] 2 (= )H G(xl,x, s —[J ]+~ 5) , (Ds5)
i i

perm =1 perm
and
~ oW 146
Stare - '+ 3 )= 2 (65 —+-—). (D6)
perm 5 18]
We also have s
St 2t )= (T rionvindmnts= Sl (-2 (o)
perm 1=“1
where _ ,
=2 eqifr(yxini), (D8)

which, in the single particle case, yields
S(aa’s J) = VU= WUDS (0’ T~ f),  fr=eqf*(y,a’). (D9)

The exponential term is in general not well defined except in the limit as & — «’. All the gauge dependence,
however, does cancel, as it must by the derivation.

We have formally derlved expressions for S, § and the various photon propagators. If these are expanded in e,
the usual perturbation series results, except that the closed-loop diagrams must be modified as before. Here,
however, because of the additional divergent integrals, all closed-loop diagrams with <4 photon external lines
must be modified.



