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Calling the operator defined in Kq. (6) r(0), we can
also introduce the time-dependent operator

r(t)=e'~o'r(0)e ~et (g)
= t+r(0).

The relations given in Kqs. (7) and (8) above are the
quantum mechanical analogs of the classical Kqs. (1)
and (2).

The application to the calculation of time delays is
made by considering the matrix element

(%.(t),r (0)e.(t)), (9)

where the state vector 0', (t) is the scattered wave packet,
evaluated for times after the scattering process has been
completed. The time dependence of this state vector is
then given by the free-particle Hamiltonian alone:
4, (t) =e '~o%', (0); here, the last factor represents the
scattered-state vector extrapolated back to zero time.

In the following, both the incident and scattered wave
packets are assumed to be normalized to unity. Since
the scattered state is connected with the initial state

vector P, (0) by the S matrix, (9) can be evaluated as
below:

(@.(0), e' o'r(0)e ' '%'.(0))
= (O.(0),{t+r(0))%.(0))

= t+ g.(0),s-,(0)sy. (o)). (1o)

If the 5 matrix has the form 8= e"'t'~&, in an energy
representation the time delay operator becomes equiva-
lent to energy differentiation, and we find, as a Gnal

result
as(z)

(4', (t),r(0)%,(t))=t—2 +($,(0),r(0)tt, (0)). (11)
az

In this form the interpretation of the energy derivative
of the phase shift as the time delay induced by the scat-
tering process is apparent.

I am indebted to Professor Massey of University
College, London, for his generous hospitality extended
over part of the period during which these ideas were
clarified.
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In order to study the problems of gauge invariance, Lorentz covariance, and the operator properties of
the "Schwinger terms" in the current commutators, spin--', quantum electrodynamics is written as the limit
of a nonlocal theory. The conditions on such a theory are discussed and the nonlocal equations in the case
of an external vector potential derived. The gauge-invariant, Lorentz-covariant limit of these equations is
then discussed, and it is found that (in the case of spin $) the "Schwinger terms" are purely c-number. The
quantized vector potential is considered by means of a Feynman path integral and its gauge structure
determined. It is found that an automatically gauge-covariant theory results and that the c-number char-
acter of the Schwinger terms apparently persists.

I. INTRODUCTION
' 'N quantum electrodynamics, if the canonical com-
& - mutation relations of its constituent fermion 6elds
are used to calculate the commutator Lj'(r), j"(r') j,
it vanishes identically. This is in direct contradiction to
the general theorem'

(0~ t j'(r), js(r')j j 0)= —iV"ii(r—r')e,

where c is non-negative and vanishes only if the vacuum
is an eigenstate of the current jt". Hence, its vanishing
implies that the current is a constant c-number current
and that the electromagnetic 6eld is free. Schwinger, in
the same paper, ' gave a partial solution to the problem

*Supported in part by the U. S. Atomic Energy Commission
under RL0-13888.' J. Schwiuger, Phys. Rev. Letters 3, 296 (1959).

by pointing out that the current should be delned as a
limit of separated points. This, then, would not yield
a gauge-invariant current unless there were some
explicit dependence on the vector potential to cancel the
gauge transformations of the charged fields. The
relation of the additional dependence to Lorentz
covariance and current conservation has also been
discussed by Johnson' and by Brown. '

This device, while resolving the paradox of the
commutation relations, raises the question of the proper
equations of motion for the Gelds. In general one would
expect both the current definition and the 6eld equations
for the charged, fields to be changed. Also, the Lorentz

' K. Johnson, Nucl. Phys. 25, 431 (1961);L. S. Brown, Phys.
Rev. (to be published). The relation between explicit Geld depend-
ence and current commutators is also discussed in J. Schwinger,
ibid. 130, 406 (1963);and by D. Boulware and S.Deser, ibid. this
issue, 151, 1278 (1966).
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invariance of the theory is no longer manifest, since a
particular frame must be chosen in which to de6ne the
canonical commutation relations and to specify the
altered current. It is not obvious that the limits taken
in dHkrent frames yield the same expressions.

In Sec. II, we rederive the noncommutation relation
in a way which does not depend on Lorentz covariance
beyond, the structure of Maxwell's equations. An
extended discussion of possible nonlocal Hamiltonians is
given in Sec. III. Heuristic arguments are given which
determine the Hamiltonian uniquely and the con-
sistency of the resultant currents with the requirements
discussed in Sec. II is verified. The resultant [F'~j g
commutator is an operator in the nonrelativistic case,
but the operator terms are found to disappear in the
relativistic limit. The relativistic limit can not be
treated by simply looking at the fields and the held
equations; hence, we look at propagator equations in
Sec. IV. Also, to allow analytic considerations, we look
6rst at the case of a c-number external vector potential.
The equations for the propagators are derived, and a
gauge-invariant propagator defined. These may, of
course, be solved perturbatively and. such a solution
leads to the explicit dependence found in Sec. III. The
result is not Lorentz covariant and there does not seem
to be any way to de6ne the limit of the solution so that
it is Lorentz covariant. On the other hand, it is easy to
dedne a Lorentz covariant limit of the gauge-invariant
propagator equation. We de6ne this as the solution to
the Lorentz covariant theory. The current definition is
then taken as the usual definition except that it is
calculated in terms of the gauge-invariant propagator
instead of the standard propagator. The nonlocal theory
gives the current in terms of the gauge-invariant
propagator but there are additional terms which do not
behave properly in the local (relativistic) limit.

The solutions to the gauge-dependent and gauge-
independent propagators are exhibited as a Fredholm
solution. Then, given the propagators, the 6eld depend-
ence of the currents is calculated and it is found that
there is only the dependence directly required by the
Lehmann forms and that there is no operator depend-
ence involved for this model.

The last section is devoted to the quantized vector
potential and some indication of the results are given.

II. COMMUTATION RELATIONS

The simplest calculation of the commutator of dif-
ferent components of a vector follows directly from the
Lehmann-Kallen' spectral form. In the case of a
Lorentz covariant theory,

(0)j (x)j"(x')j0)= ds{p (s)tg" s'8 8"j—

—s 'po(s)8&B")6'+&(x'—x', s), (1)
'H. Lehmann, Nuovo Cimento 11, 342 (1954); G. Kallen,

Helv. Phys. Acta 23, 201 (1950).

which can only vanish if py:—0:—po. Then j& must
vanish. '

In what follows, we will be concerned with non-

Lorentz-invariant theories. Thus, we give a proof which

only depends on rotational invariance and the fact
that j& is the source of the electromagnetic field. We
start from a radiation-gauge formulation of quantum
electrodynamics. Then'

(Oi do(x)Ao(x')
t 0)

00 i (]K,~ro)0) 1
dG) d k — —pp(kp&),

(2x)' k'

(OiA'(x)A (x') io)
00 ~i(k $-eP)

da& d'k (&'"—k'k "/k') pi(k, ~), (3)
0 (2m)'

where p=x" x'I'. We h—ave assumed only positive
energies for the intermediate states, and we have po

and p~ greater than or equal to zero as before. No A'A'
term occurs because V A=O.

Now, we use Maxwell's equations; FI'"=BI'A"—8"2&

on both fields and B„FI'"=jI' on the second field. Then

(O~~o~(x) jo(x') [0)
00 ~i(k $-00)0)

i d(o —d'k k'pp(k, ~),
0 (2x)'

(4a)

where

de gi(lt ~(ufo)

~pl (Q ~) (4b)
(2n.)'

p'"(k a) = (0'"—k'k "/k') (oP—k') p (k ca)

+ (k'k "/k') po(k (o)

(0~P'-(x) jo(x') ~0)=0, (4c)

~i(k ~cog)

(0~ EE™(x),j"(x') (0)= t da& —d''k

0 (2s)'

X (k'h""—k"8™)p&(k a&) (4d)
' P. Federbush and K. Johnson, Phys. Rev. 120, 1926 (1960).
'We use a space-like metric throughout, (—1, 1, 1, 1) and

h=c=1.

where 6(+) is the positive frequency function of mass

gs, and p~ and po are each positive definite, arising from
spin-1 and spin-0 states, respectively. Current conserva-
tion implies p0=0.

Then all vacuum expectation values of equal-time
commutators vanish except

(OILj'(r), j'(r')

halo&

i ds—s-'Pp~(s)+p, (s)ja S(r—r'), (2)
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Then, the vacuum expectation values of the equal-
time commutators all vanish except

(0IP"(r), j"(r')3 Io&

= —2z d'k d0) 0) '"(t 0)) (5)
0 (2z).)' 0

The commutator is a nonvanishing, positive-definite
function of r—r' unless both p0 and (0)'—k') pi, are zero.

The first (p0 ——0) implies that A'=0, or j'=0. Its
contribution to the commutator is longitudinal; hence
it derives directly from the Lj0, j'$ commutator. In the
relativistic case, this term comes from the definition
of the current as the limit of a nonlocal function and is
independent of the dependence on AI, . The second
condition

I
(c0'—k')pi ——0] is related to the explicit

dependence of j' on the transverse part of A&. Gauge
invariance can be maintained by defining j' as a function
of the (c-number) longitudinal part of Ak. But then the
transverse part of Kq. (5) would vanish and we would
have to have pi ~ 8(0)'—k') or the electromagnetic field
would be free. Proceeding one step further,

~sk goal

(0ILj'(r), j'(r')]I0)= —z d'k d p, (k, ),
(2~)' 0

is the rotationally invariant result. Although it need not
have the locality of the Lorentz covariant result it is
still definitely nonzero for any interacting system.

At this point, we must construct a theory which
contains explicit dependence on A. It is very dangerous
to do this in an ad hoc manner since one risks losing
consistency between the various equations of motion.
Rather than attempt to guess the right structure for
j&, we will guess a Hamiltonian and commutation
relations, then derive the currents.

III. THE NONLOCAL HAMILTONIAN

The primary requirement of any electrodynamic
Hamiltonian is that it yield Maxwell's equations and, in
the local hmit, become Lorentz invariant. The relativ-
istic Hamiltonian, in radiation gauge, may be written

kPOkPO +&Fklp

( )'1
+—f, I

n
I
-v —eqA I+mp ip

) kz i

dependent on A; then the current will have the requisite
commutation relations. Following Schwinger, we intro-
duce nonlocality and additional A dependence into the
coefBcient of A~. Rather than use a given separation,
we will use a weight function and average over dMerent
separations. The crucial point is that p(r, r) is finite.
Then we replace ', ega-kqf by

d '
p(r, r')-' eLP(r), kqe(r, r')y(r')],

where e depends on A at least in such a way as to insure

gauge invariance. Then, we add A~ to find

drdz'Ak(X)p(r, r')-', Q (X), qnke(X, X')P(X')j,o, o

as the interaction term in the Hamiltonian. Under

gauge transformations this term transforms like

e
dzdz-'p(r, r')(Bkh(x)) —g (x), e(x,x')nkyP(x') j o, o.

Thus, the derivative term must also have the points
separated so that the terms can cancel. At this point,
there is no argument that the mass term must also

have the points separated, but we wiO separate them for
the uniformity and in order to simplify the equations.
We leave the structure of the electromagnetic field

equations unchanged. The Hamiltonian then becomes

a= d.~
zz~ok(xy'k(x)+-'&" (x)&ki(x) )

+ dzdz'p(r, r') —P(x), e(x,x')

t1
X~ a

~

v' eqkX))+m)3)t(*-')—
+0 +a 0

The commutation relations and the functions p and e

must still be specjtGed. The only gauge which admits a
canonical formalism with positive-definite inner pro-
ducts is the radiation or Coulomb gauge. Thus, we

take radiation gauge and we require the Geld equation

where 6) O'Ak(x)=P"r(x)=iI Ak(x), IfJ=F' ( )+kx8 A'(kx). (8)

I'" '=&"A' O'Ak and Bkp k=—j =ze/qg

The current is then j"=—',epnkqf. It is now necessary
to modify H so that the coe%cient of A~ is itself

~ We use Hermitian fields p and an antisymmetric charge matrix
0 —i . The Dirac algebra must be written in a Majorana

representation, O,f'=0.~~, p~ = —p.

This implies the canonical commutator

LP k(r), A&(r'))=zL)kt(r —r')l

gkl (r r~) +klan) (9)
4z) Ir-r'I

for equal times. In order to maintain the gauge struc-
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ture, we must have

Bop(x) = (—i)CP(x), Hj= ieqAO(x)P(x)

+gauge-covariant terms.

But, with the aid of the constraint B+'"=j we then
have, from the F'~E'~ term,

Q (r), jo(r') j=eqf(r)8(r —r'),

and, since j' is to be the generator of the gauge tr
formation on the charged 6elds, we require

Cjo,A j=o=CjoP' )=0=Cjo,ej.
Further arguments by analogy with the Lorentz
invariant theory can no longer be used, so to simplify

p as much as possible, we assume

{P(r),y(r') }=B(r—r'). (11)

j' may now be formally defined as -,'egqg and there can
be no additional dependence on A~ or F'~ if j' is to
simply generate the gauge transformation on the
charged fields. There remain the terms p and e. In
order to maintain a canonical formalism, the Hamil-
tonian can only refer to operators at a given time. This
has already been included in writing p as a function
of r and r'. We now impose translational and rota-
tional invariance separately on e and p. Thus p(r, r')
=p(~r —r'~), and we further impose J'd')p($)=1 as
the normalization condition. There will be further
conditions later to maintain the positive-de6nite
structure of the Hamiltonian.

We must now discuss the function e(x,x'). Schwinger
wrote

iance. The integral is, however, path-dependent. In
order to include the path dependence explicitly and the

possibility of other forms, we will use

e(x,x')=exp ieq dy f"(y,x,*')A,(y) ~,

where f must have the property B„f&(y,x,x') =8(y—x')
—B (y—x), The further requirement of a canonical

theory implies

f&(y, x,x ) =$(yo—x')f&(y, r, r') for x'=x'

Then, fo must vanish to exclude time derivatives of a

delta function. To see this, we observe that if, for
x'=x'0, f &0 then terms of the form BOA" must

appear and we would have, dependence on F'~, upsetting

the equations

The longitudinal part of f for x =x' is then com-

pletely determined. %e could assume that the trans-

verse part vanishes. Then, in the radiation gauge, we

would have e(x,x') =1 and e would act to remove any
c-number gauge transformation from the radiation

gauge. Our commutation relations have restricted the

gauge freedom to c-number gauge transformations in

any case. This choice is not suKcient, however, since it
does not yield the dependence on A~ necessary for
CI'0',j ~j to have a nonvanishing transverse part. Thus,

f must have a transverse part yielding nontrivial

dependence on A~. In Appendix A, we show that the

only form consistent with Lorentz and translational

invariance Is

f~(y, x,x') = (x—x')& dXB(y—x'—X(x—x')) .

which, under the gauge transformation A&~ A&+B&),

goes to e(x,x')expieCX(x) —X(x')j, assuring gauge invar- The equations of motion are (8) and

A'(x) = (12)

BOP'~(x) = iC&'(x—), Hj

—.Bo&(x)= —CA&3

d*'f'(x, x'+g, x') g (x'+t), qe(x'+(, x') e -v' —eqA(x') +mp f(x'), (1&)
z

1= 'eq(AO(x), tt'(x) }— d'k p(t) —'e(x, x—$) n —v —eqA(x —$) gamp lp(x —$)
z

1
+—n

~

-v —eqA(x) +mp e(x, x—g)P(x —
&) . (14)

2
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The current is then

j'(*)=l [lt (*),qlt (*)j,

j'(*)=! d'~p(~) [~(*), (*,*—
~) 'qO(*-~) j

—i dx'f'(x, x'+t, x') lt (x'+(), qe(x'+g x') ot V' —eqA—(x') I+m13 Itf (x'); (1S)
) )

it is manifestly gauge invariant and is conserved as it must be, since it is deGned as B,Ii&"=jl". The commutator
[F"(x),j (x')j is now, trivially,

P"(), '"( ')]

= —se' d'$ p($){f'(r, r'& r' —g)[lf (x'), n"e(x', x' $)tP(—x' $)j+—f~(r', r, r—$)[lf (x), n'e(x, x—g)lf (x—$)]

1
i d'r"—f'(r, r"+g, r")f"(r', r"+g, r") P(x"+g), e(x"+P, x") n —V"—eqA(x") +mP lP(x"), (16)

z

where we have freely used f&(y,x,x') = —f&(y,x',x).
It is now straightforward to calculate the dependence

of j~ on A for a c-number vector potential, where the
singular terms all result from the vacuum expectation
value of the current. The explicit dependence is cal-
culated in Appendix B and is given by Eqs. (B4).

The next problem is to Gnd the solutions to these
equations with a c number A, then to take the limit as
p ~ b(r —r ).The limit is not well defined, as is discussed
in the next section, and there does not seem to be any
way to deGne it except by requiring that the resultant
theory be Lorentz-covariant. The problem of a quan-
tized A presents all the difhculties of a relativistic
quantum Geld theory as well, so we will Grst treat the
external A problem.

Since e(x,x') is an exp1icitly known function, we can
solve directly for 6 instead of G.' First, however, the
field equation for f, Eqs. (14), must be rewritten as an
equation for 6:

1
8o eq-As—(x) IG(x,x'; A)+- d'$ p(()

z ) 2

1
&& y —p' —eqA(x) +m e(x, x—g)+e(x, x—g)

z

X ~ -v —.qA(*—g) I+m G(*—g, x';A)
)

=S(x—x'). (19)
IV. GREEN'8 FUNCTIONS WITH

AN EXTERNAL A In the zero-Geld limit, the Fourier-transform equation
is, for A =0,

In this section, we define a gauge-invariant Green's
function and discuss the p(g) ~ 5($) limit of the equa-
tion. The resultant Green's function produces a
conserved current which contains all the requisite A
dependence for a consistent theory. Our gauge-invariant
Green's function is not equivalent to that of Mandel-
stam' in which a path-dependent gauge was chosen.
The gauge factor, which is explicitly written and in
general contains nontrivial dependence on P&", is, in
fact, the WEB approximation to the Green's function.
We deGne the gauge-dependent Green's function

(0I ~e(*V( ')) I0)"
G (*,*';A)P=

{oIo)"

(»)[v'pe+ p(p) (Y' y+m) $G,'(p) = 1,
where

0& p(p) = d't e *fp(sg), P(0)-=1, 0:0.

Then
p(p)(m V p) V'ps— . —

G,'(p) =,
V'po+p(p)(V 11+ ) '—p"

(17) where to(p)=p(p)(ps+m')'" is the modified energy of
an electron with momentum y. The conGguration-space

The gauge-independent function is deGned by

G(x,x', F)=e(x',x)G(x,x'; A) .

' S. Mandelstam, Ann. Phys. 19, 1 (1962).

'L. S. Brown and T. W. B. Kibble, Phys. Rev. 133, A705
(1964), used a similar technique in solving the problem of an
electron in a plane wave. There the exponential factor comes out
of the solution in a completely natural way. Their second Appendix
is particularly close to the approach adopted in the present paper.
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is local in time,Then, since the second term is—'&j.(*))"(j"(*))",

u„(x')

» ( ) h&j (*))"

i)A„(x') bA. (x')
-~&T(j"(x)j"(x')))"

4»&'- '~' 2»&'&&

&oI j (*)j (*')Io)=—

+'&j ())"&)(*))". 3o

h s. Rev. 80, 380 (1950).d M. Neuman, Phys. Rev.9 R. Karplus an

d'Ik eik(x—a')

2k' (2s.) '
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wlmre Po= Llrm+sl'!' But then

~(ol r(j"(*)j"(*)-lo)

0. dk
eik(z-x'] ($2gyv Pygmy)

3n. (2x)4 4m~ s+k

are given by essentially the same expressions as in the
standard theory, except that gauge invariance is
assured. These can now be used to calculate the
quantum-theory propagator. Using a Feynman path
integral to deGne the theory, we find formally, in
Appendix D,

and

4m'- p 2m'~
X 1- —

~
1+ ~+(g"+~;~;)

s k s i

X~(x—*')— ds 1— 1+
3%' 4~~ S S

"«I2'Q(*)][(*) "&( -)&( -')" ][( ')"lo)

=e*~[~]S(xi, ,x„;x„', ,xi',J)
1 8= Q (—)QG x;,x,' ——e*'~[~],

perm i i $J

Sj~(x) a " 4m') ']'
=—(g""+5p"bp") d—s 1—

bA, (x') 3'll' 4~' S )
251 )

X 1 b~—x'. 31si
This term corresponds to the first term of Eq. (B4).

There are no terms corresponding to the other two
terms. The fact that the derivative term vanishes is
immediately apparent from the form of Eq. (1), while

the vanishing of the A A term requires a detailed
study of the diGerence between the time-ordered
product and the four-current propagator. Such an
analysis has been attempted and does not seem to
yield any terms. However, a completely rigorous
treatment was not possible because any contributions
would come from the situation where all four currents
are coincident. On the other hand, we would expect
that the dependence, if it were there, would be of the
form of Eq. (84), since it provides just the subtraction
needed for current conservation. Then, if we consider
((]jl'(x)/8A "(x'))" for constant A, we should 6nd
dependence. No such dependence is found; thus, any
(A)' dependence of j must contain derivatives, in
contradiction to Eq. (B4).

V. THE QUANTIZED ELECTROMAGNETIC FIELD

The remaining problem is to quantize the electro-
magnetic Geld. We have found a set of propagators of
the charged Gelds, for an arbitrary classical electro-
magnetic Geld which satisfy all Lorentz-covariance,
gauge-covariance and current-conservation properties.

The charged-particle propagators

G(x,x'; A) =e(x,x')G(x, x'; P)

where e'~~~~ is the generating functional for all the
photon-Geld propagators.

A gauge-invariant function S which is analogous 6 to
can also be defined.

e'~[s]8(xi x„,x„' x,';J)
18 BV

=e' '" E (—)IIG *',*'', ——+
perm i i $J $J

where we have written 6 as a function of A rather than
Ii and the gauge dependence of S can then be shown

by expressing S as a function of S
S(x,x', J)=e'(w[s+!'~ "]]-w[s]8(x,x'; J+f(x,x'))

f~(x,x') = eqf&(y,x,x')

The gauge dependence of the charged-field propaga-
tors is not at all simple in the Coulomb gauge. This may
be understood by considering the effect of the function
fl' which gives the classical current of a point particle
appearing at the point x' traveling in a straight line to
the point x and disappearing. The Coulomb-gauge
vector potential generated by this nonconserved current
produces a longitudinal electric Geld with which the
particle interacts as it propagates. The covariant vector
potential A&(x) =fdy'D(y y') f&(y', x,x'), —on the other
hand, gives no contribution to 6. In any Lorentz
gauge, the additional term in A coming from PB" terms
in the photon propagator does not contribute to F""or,
therefore, to 6.

In the case of the multiple-particle propagators, the
f's give a first approximation to scattering of the
particles. Each particle feels the electromagnetic Geld
of the straight line motion of the other charges and 6
responds to that Geld and the exponential terms give
the WK3 approximation to the motion. Then the
general propagator is

~wt Jj
S(x *„,*„' .x';J)= P(—gZG x,*,

perm i $J i $J

bW/J+ f] 1 8
( )e'(w[j+f]—w[J]ig G~ x. x!~

perm 5J i'
f~(y)=eg q;f~(x, x;,x )
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or

The current can also be calculated, in the absence of any charged particles:

15 j BV 18~
{0~j {x){0)r=-',tetrx tG(xx; ——e'xr»=e'xr»-', trtrx ttt~ xx; +-—~=e' t»-'tetrx 08{xx;jj,i' 4 bJ i')

QV
( asb&—»+8»8&) -=J,»(x)+-', ie try»qS(x, x; J),

kg(x)

where J, is a conserved current whose expression in
terms of J is gauge-dependent. "There is, of course, no
equation for the gauge part of 8W/8J.

The equations for Smay be developed in the standard
way and any calculational technique which is used in
quantum electrodynamics may be used here. The only
difference appears in the calculation of the various
photon propagators. There, we are directed to use 8
instead S.But, we can now invoke the algorithm which
we used in Sec. IV, and our results are: Do perturbation
theory in the usual way except when considering
closed-loop diagrams. In these, replace the usual
contributions by the current-conserving part given by
Eq. (C9).

GiVen (0)j (X) j0)~, the tFss j'] and Ljs j'] COm-

mutators can, of course, be calculated. Definitive
results require a detailed analysis of the structure of
the various propagators analogous to, but more difFicult

than, that required for the external vector potential.
Heuristic arguments however, lead to the same result
as in the c-number —A theory; the commutator is a c
number. Again the anticipated structure is of the form
2 3 A"; and if we assume a constant external A and
calculate Bj"/82&, the imposition. of the low-energy
theorem on the four-photon propagator assures its
vanishing.
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APPENDIX A

The Fourier transform of f is

g»(k, x,x') = dy e-"{~"&f»(y, x,x');

translational invariance requires that g»=g»(k, x—x),
and, if the further requirement that gi' be a vector
under Lorentz transformations is imposed,

g»(k, x—x') = (x—x')»g&+k»g„(A2)
where g~ and g2 are scalar functions of k and x—x'.
Eq. (Al) then transforms into

ik„g»=1 e "{—*'&=ik(x x')gr+—ik'gs

~
—i7cg

g»(k, ()= f» + (Pks k»k$) p. —
—ik)

For b ——0, we must have go=0, or

g')r0 0
———kelt (,.

Such a term gives dependence on F~"and j~, so we reject
it, leaving

~
—ik(x—x')

~iVc (y-x')f»(y, x,x') = (x-x')»
(20r)4 —ik(x—x')

= (x—x')» d)t 8(y—x' —)t(x—x')). (A3)

If we have (x—x')" time-like, then ef» is just the classical
current density of a point particle moving from x to x'

along the straight line with velocity
1

=V)
x'—x"

We have

B„f»(y,x,x') =8(y—x') —5(y —x). (A1)

j'(y) =et(~ *")b(y x'—(y' *"—)v)—, —
j'(y) = eve(y —x'—(y' —x")v) . (A4)

APPENDIX 3
The space components of the current are given by Eq. (15).For small distances the asymptotic behavior of the

fermion propagator is

for /=0, since G, ($,0) =S($,0),
i trOa g

(8 (r), &(r')])=-
@IS 2 QeIx

'0 B.Zumino, J.Math. Phys. 1, 1 (1960);D. Boulware, ibid 3, 50 (1960). .
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1 — 1 tr0 4e'
P(r), Or —V'f(r') =———— 1—

~2 2 ~2 2 2 ~2

then( j"(x)& has the explicit dependence

(32)

d'tu(E) dy~ b) f'b, *,*—k)&L4(*), 'A(*—k)3&+f"(,y+&, y)&L&(y+t), 'Ab)j&

1 (ie)'
dS $)X )X y)X )g S )g'C'-V S

3t
dydy'dy"A

& (y)A „(y')A „(y")

X ([0 (*),O' 9(* 8)j&f'—(y, *,* k)f"—(y', *,* E)f"—(y" * —k)+3&L4(y), O' V(y —k)j&f'(*, y, y 5)—

Xf"(y', y, y—k)f"(y", y, y—k) —' dx'f'(x, x'+5, x')f'(y, x'+(, x')f"(v', x'+t, x')

Xf"(y", x'+$, x') f(x'+$), g4n -7'P(x'), (83)
Z

plus higher order terms. However, the 2' term has a factor P/P ~ 0 as p($) ~ 8($); hence these are the only
nonvanishing terms in the local limit. Then, (0~j (x)

~
0) has the explicit dependence, for p —+ 8((),

e2
3m'

p(()g2 462 )2 1 462
d8$ 1+ A'(x)+——3+ LV'A'(x)+2@V A(x) j+~2j2 )2+ g2 5 12 P+ g2

e42

5x'

u(()V 4"
d'g 3+ A'(x) A(*) A(x). (l34)

Q2 2
7f 2

We must consider the equation

APPENDIX C

in the two cases

and

where

q~ -a„-a„(x) +m G(x,x'; a)=S(x-x')

a,~(x) =A~(x),

a,~(x)=a~(xs)= XD(x—s)„F"~(s+X(x—s)),

F~"(x) = 8~A "(x) 8"A&(x)—

(C1)

(C2)

Both equations can be written in the form

where

G(x,x'; a) =G'(x —x')+ dy E(x,y; a)G(y, x'; a),

&b,y' a) =ecG'(y —y') v"a.(y') .

(C3)

In either case a modified Fredholm theory applies, since under a similarity transformation, trg2tg2( oo for any
A which has a finite space-time integral of the energy density. "Then, iterating once,

G(x,x'; a) =G'(x—x')+ (E'G') (x,x', a)+ (E'G) (x,x', a),
"See J. Schwinger, Phys. Rev. 93, 615 (1954); S. Weinberg, ~bid. 135, 3202 (1964).

(C4)
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funct
ed. Thus, it may be exp

~
—ys V"g g

"'" 'G'(ys. -x—y2.)y"'"q.' ' ' g&2„y2 ) fl'G (y2 —yz)y" gG (yg —ys 'y g ' ' '
gdye' ' 'dyggGpg(yt ' ' '&p2„y2m ~& 2o "' G 1 ys 'Y gtrE'"=e "

d 2y, 2 subdetermmantsane standard Fredholm determinanion det
omitt

Fox' Ej.q
dk

e""A (k)
(2s.)'

trg ~Re —2je2n (k, )~(P )-
(2 )4(2n—I) (2s)'

pmn-gGO(p2 &)+ C6)G'(p)vi"'G (p~)".v

Then, for K~,

p, =p—P k(.
k~1

e'"'+"'&-*'(y—s)"i(k,A „(k —k„A,(k))=
(2~)'

Idk e"( iF,„(k))—
(2s-)'

dg eA,k(y-s)

~ —i „,„„,„k2„))k s))(—sF„„,(kg))(exp(i, s
4(20—1)2%

dory - dh2„- pl 0 . . .plan. -lGO (pw o . . .y — & ~an (C7),b(Z ~,k;)~ G'(p)y"G'(p )" &-
(2'-)'

ears in both cases lstegral which pp

j
p;= p

—g X(k).
l=J

)u" . " —= ~(E k,) Z —." .(k~ . k~. —=S(g k, "'G'( )" v"'"-'G'(p2-i)v"'"—,«G (ph
(2s.)'

&2 has the propertywhich, for n&,

p;=p —P k„
/=1

2e

)gyi ~ yen (k &. . . =—0k;„,.S( P,
nce of the integrals.n and the convergence ot conservation an efrom curren c
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Now
1

;F„„(k)
(jjb. o

dg j~ (P.k)

a 1

=a„(k) d~ & f"—(7'k)+f"(
ak„dA,

18
defi�(yk)

= ~o(k)
v~k

" »„o
—a.(k)4

d7k.f"( k)

(C9)=~„(k) f"(k —
» dX k,f"(»)

en have, assuming
~

(0)l &-fI(kI) p we then

-iF,„(k)
gk, o

d„f.(7,k)=a„(k)f"(k)

(Clp)
'

2n —tl
Thus, fo«p2

(Cll)
ze

=(ply (*)Io =
; w„(g)

(C»)

ed, arts, bu"
independent of &

onconserve
~,2) both being»

d t g,,o since each term co
d d t"(1 Ez)=det '

de for tr&2' aThe salne arg
h correct contributio ~

+„Go)(g g') as weil .
~ t,on The num««or

(C9) stiiy defines the . te~s of th«orm . '
ce ot the denomin«o "

1 1 te 'o(g) and

Eq,

the auge invariance o
ositipn to cacua e 2

The numeratp
e based essentially o

be e ual. %'e are now p

Tl e preceding results
' t p the terms will npt q

ent yieM the current
not gauge invari»

~ o'
f the vacuum matrix e

function i o
'

that the variation P "(p I
0)A +le reqnir

1 S»(0!0)" "
t,~.~g(g, g; F,*); u„(g)

y calculateated all the

)Go( „g'),, . . .~"a,.(r.Go(g y,)y"'a211(3")(Z -G)(**'F'="
e of the formg the remaining ttrg2& terms in@le have alread

(C13)

or

(~ „Go) (g g, F,g) = e 2t

8
X——

8~1vl

(k )) . ~ (—zFvvv21& kn~%X ~i& —
Z vip, l

(2 )'"
o (C14)GO (p) ~V.I . ~ r G P vv

p g $2kt ~

g~l

the current are oof the formThen, the terms in

(22r)'"
—iF„,„,(k1)) ~ ~ (—iF„„„„k„)) ~e'Iz lvv'2' kz, z„k„)( 2 ~lkl 2711 22

' ' 'I vv
@Pl

—trIC "+'G', (C15)
2(zz+1) bA„(g)

n theare additional terms. n=3 r1 however, there area i
'C7). For zz= oraring the result with Eq. . = ra be seen by comparing e

III 112242 g I '2 9122 IIIv2

ase of m=3, these are
e g'"'g"'" g

III 11282+g 1III2g111/' 2+gPPvgII I

case 0 s=
~ h
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The k derivatives just remove them, justifying the simple dropping of the term. In the case m=1,

1 dp 1 1 Q
IP"(—k,k) =e'- try~ dX{—4gl'"LA' —(m'+X(1—X)k')ji (2s.)' m+y(p k—) m+yp 4n. 0

+conserved current terms)
where A.' represents the quadratic photon mass-divergence.

The insertion of this expression into Eq. (C9) yields

—
~ (gl'"k' —k&k")+conserved current terms.

3'
The photon-mass term has been eliminated, there is an additional 6nite charge renormalization, and the standard

vacuum polarization remains. It should be noted that the photon-mass term does not involve any A dependence of
j in the final analysis while the vacuum polarization does. Similarly, in the four-point function the cg terms do not
yield any A dependence of j.These results are in contrast with the nonrelativistic case where the elimination of
the terms implies A dependence.

Combining Eqs. (C5), (C10), and (C15),

—fdet"(1—K&'(+,x))] '— trp"gX2"(x,y;&,x) G'(y —x)+ dy'K2(y, y';F, x)G'(y' x) dy—
2

e= —Ldet" (1—KP(A))$ '— dydy' try"qS&" (x,y; A)K&(y,y'; A)GO(y' —x)

or

ln det"(1—KP(A) j
4 u„(x)

(C16)

(0
~

0)"=—— ={in/det" (1—K'(A)))'~' —~ "trK4" ~s "trK"')
8A„(x) 2 8A„(x)

(C17)

where "trK'"" means to take the current conserving part and "trK"' is, of course, logarithmically divergent.

APPENDIX D

In the case of an external vector potential, we have been forced to give up a strict Hamiltonian formulation of
the theory, and thus lost even this heuristic formulation for the fully quantized theory. An alternative formulation
exists, however. In the usual theory, the knowledge of the fermion propagators for all possible external potentials
can, subject to serious existence and definition questions, be used as a formal basis for the fully interacting theory
by means of the Feynman path integrals. "This Appendix is essentially a sketch of such a definition, using our
gauge covariant and invariant propagators as a basis for the development. We have propagators in the presence
of an external vector potential

G(x,x'; A) = e (x,x')G(x,x', F) .

Then, the quantum propagators, in the presence of a source current for the electromagnetic field, are given by

(OIO)'S(x& x„,x„' x&', J)=
jdLA](0~0)" P (—)g G(x,,x,'; A)exp{ifdxPL'(x, A)+I„A (x)j)'

perm s =1

fdfA7(0~0)" exp{ifdxLL'(x, A)j)
The quantity (0~0)" does not exist as it stands, due to the logarithmic divergence in ((2"jj)).But counter terms

can be inserted in I-' to give a convergent integrand. We assume that further counter terms yield a convergent
(0~0)~, the generating functional for the photon propagators. This question goes beyond the scope of the present
work and involves the question of an existent theory, so we shall not pursue it further.

» A list of references may be found in I. M. Gel'fand and A. M. Yaglom, J. Math. Phys. 1, 48 (1960).
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A set of gauge invariant propagators can be defined
e

fdLA](0~0)" g (—)g G(x, ,x,'; Ii)expfifdx)L+JA]}
perm i =1

(0~0)~S(h," *„,*„'"*,'; J)=—
fdLA](0

~

0"exp(if dxL'(x, A)}
(D2)

The factors 6(;A)exp(i J'JA) or 6(;A)exp(i J'JA) occur in the expressions for S and S. Since these may
formally be rewritten as G(; (1/i)8/8J)exp(i J'JA), and G(; (1/i)8/8J)exp(i JJA'), Kqs. (D2) can be rewrit-
ten as functional derivative expressions of

fdLA](0~0)" expfifdxfI. '(xA)+J„A&(x)]}
~sS'f J)

fdLA](0~0)" exp(i fdk LP(xA)}
(D3)

which we assume exists and has the proper form. Then H/ can be written in the usual linked cluster expansion:

wLJ]=- dydy'J„(y)D&" (y—y') J„(y')+Q — dye dym„ckg ~ ckm„
2 --22n

&ALII J„(y;)D "(y,-k,)]T" "-(ki '2.), (D4)

with
a .2'»" .e.(k," k, )=0

and T is completely symmetric. The equation for 8W/8J is given in the text. D&r is the fully interacting propagator
and it may be taken to contain gauge parts which are not given by the path integral. These would be inserted by
a gauge transformation. "Then

e b8'
S(h ' ' 'h h ' ' 'xl, J)=e '~'" Z (—)II l Gh;, *,', —.—k'~'" = Z (—)H G *;,*,'; LJ]+-—,(Ds)

perm i=1 E i bJ perm & $J i $J
and

%e also have

where

bW 18
S(hi g„, x.' xi', J)= P (—)QG~ x;,x,';—+——

perm
'

5 8J i 8J

e ( 1 $ 1 6
S(xg x„x„' hg' J)= Q (—)g k"~& +~' ~~ "G~ x;,x,'; ——Wt J+f]+-—

perm i=1 i 8J i'
fp=g eqif&(y, x;,x,'),

(D6)

(DS)

which, in the single particle case, yields

S(x,x'; J)=k'~~t' ~~ ~~'nS(x, x', J f), jp=eq—jp(y, x,x'). (D9)

The exponential term is in general not well dined except in the limit as x~ x. All the gauge dependence,
however, does cancel, as it must by the derivation.

We have formally derived expressions for S, S and the various photon propagators. If these are expanded in e,
the usual perturbation series results, except that the closed-loop diagrams must be modified as before. Here,
however, because of the additional divergent integrals, all closed-loop diagrams with &4 photon external 1jngs
must be modi6ed.


