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The operator that gives the time delay induced by a scattering process is exhibited explicitly.

yt(&) =&+yt(0) . (2)

One would expect that the first equation would have
as its quantum-mechanical analog the conventional
commutation relation that holds for conjugate varia-
bles, while the second equation, transcribed to quantum
mechanics, would relate one of the quantum-mechanical
operators to the time parameter. It is shown below that
these expectations can be realized.

~ Work supported by Advanced Research Projects Agency.' This appears to have erst been shown quantum-mechanically
by E. P. Wigner, Phys. Rev. 98, 145 (1955), although relation-
ships of this sort are well known in Alter theory, where the fre-
quency derivative of the phase characteristic gives the time re-
quired for a pulse of energy to pass through the 61ter )Radkatioo
Laboratory Series (McGraw-Hill Book Company, Inc. , ¹wYork,
1948), Vol. 8, p. 155).A similar relation describes the spatial dis-
placement of a wave packet upon reflection by a plane interface
whose reflection coeKcient is a function of the wave number
parallel to the interface, L. M. Brekhovskikh, 5"aws in Layered
Media (Academic Press Inc. , New York, 1960), p. 105.' See F. T. Smith, Phys. Rev. 118, 349 (1960), Eq. (45).
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' 'T is well known that the time delay induced by a
- ~ scattering process is given by the energy derivative
of the phase shift. ' Some time ago, ' we observed that
this theorem can be put in the "suggestive" form S 'vS,
where r is interpreted as an "operator, " equivalent, in
an energy representation, to differentiation with respect
to the energy. It is the purpose of this paper to make
this relationship precise by exhibiting the time-delay
operator explicitly.

That such an operator might exist is suggested by the
action and angle variables of classical theory. For, if the
action variable J1 is identified with the energy, the con-
jugate angle variable p& has the equation of motion

aa
1=

BJ1
which integrates to

r,= (&/p)(p r) (4)

These are analogous to the operators introduced by
Dirac' except that the roles of position and momentum
have been exchanged.

As in Ref. 3, we easily find that these operators
satisfy the commutation relation

and that the operator r„+i/p, which is Hermitian, is
canonically conjugate to p.

The time-delay operator r is defined by

m( s) r s m
r — r

2pl,
"

pj ~
'

p 2p

For the free particle Hamiltonian, Bp——p'/2m, we find

$~,8p]=i

Although r, as constructed in Eq. (4) above is for-
mally Hermitian, some care must be taken in developing
its properties, because of the fact that IIO has a spectrum
that is limited to positive values (0, po ). However, this
circumstance does not impair the interpretation, which
follows directly from Eq. P), of r as an energy deriva-
tive in a representation in which Hg is diagonal:
r ~ 'LB/t)E.

3 P. A. M. Dirac, The Principles of Quanum 3Eechanics (Oxford
University Press, New York, 1958), p. 152.

4For example, the operator ~ has no eigenfunctions; see
W. Pauli, Handbuch der Physik (Springer-Verlag, Berlin, 1958),
VoL 5/1, p. 63.
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Ke first introduce the operator for the magnitude of
the particle momentum

p
—

(p 2+p 2+p 2)1/2

and the operator representing the projection of the
radial coordinate upon the momentum
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Calling the operator defined in Kq. (6) r(0), we can
also introduce the time-dependent operator

r(t)=e'~o'r(0)e ~et (g)
= t+r(0).

The relations given in Kqs. (7) and (8) above are the
quantum mechanical analogs of the classical Kqs. (1)
and (2).

The application to the calculation of time delays is
made by considering the matrix element

(%.(t),r (0)e.(t)), (9)

where the state vector 0', (t) is the scattered wave packet,
evaluated for times after the scattering process has been
completed. The time dependence of this state vector is
then given by the free-particle Hamiltonian alone:
4, (t) =e '~o%', (0); here, the last factor represents the
scattered-state vector extrapolated back to zero time.

In the following, both the incident and scattered wave
packets are assumed to be normalized to unity. Since
the scattered state is connected with the initial state

vector P, (0) by the S matrix, (9) can be evaluated as
below:

(@.(0), e' o'r(0)e ' '%'.(0))
= (O.(0),{t+r(0))%.(0))

= t+ g.(0),s-,(0)sy. (o)). (1o)

If the 5 matrix has the form 8= e"'t'~&, in an energy
representation the time delay operator becomes equiva-
lent to energy differentiation, and we find, as a Gnal

result
as(z)

(4', (t),r(0)%,(t))=t—2 +($,(0),r(0)tt, (0)). (11)
az

In this form the interpretation of the energy derivative
of the phase shift as the time delay induced by the scat-
tering process is apparent.

I am indebted to Professor Massey of University
College, London, for his generous hospitality extended
over part of the period during which these ideas were
clarified.
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In order to study the problems of gauge invariance, Lorentz covariance, and the operator properties of
the "Schwinger terms" in the current commutators, spin--', quantum electrodynamics is written as the limit
of a nonlocal theory. The conditions on such a theory are discussed and the nonlocal equations in the case
of an external vector potential derived. The gauge-invariant, Lorentz-covariant limit of these equations is
then discussed, and it is found that (in the case of spin $) the "Schwinger terms" are purely c-number. The
quantized vector potential is considered by means of a Feynman path integral and its gauge structure
determined. It is found that an automatically gauge-covariant theory results and that the c-number char-
acter of the Schwinger terms apparently persists.

I. INTRODUCTION
' 'N quantum electrodynamics, if the canonical com-
& - mutation relations of its constituent fermion 6elds
are used to calculate the commutator Lj'(r), j"(r') j,
it vanishes identically. This is in direct contradiction to
the general theorem'

(0~ t j'(r), js(r')j j 0)= —iV"ii(r—r')e,

where c is non-negative and vanishes only if the vacuum
is an eigenstate of the current jt". Hence, its vanishing
implies that the current is a constant c-number current
and that the electromagnetic 6eld is free. Schwinger, in
the same paper, ' gave a partial solution to the problem

*Supported in part by the U. S. Atomic Energy Commission
under RL0-13888.' J. Schwiuger, Phys. Rev. Letters 3, 296 (1959).

by pointing out that the current should be delned as a
limit of separated points. This, then, would not yield
a gauge-invariant current unless there were some
explicit dependence on the vector potential to cancel the
gauge transformations of the charged fields. The
relation of the additional dependence to Lorentz
covariance and current conservation has also been
discussed by Johnson' and by Brown. '

This device, while resolving the paradox of the
commutation relations, raises the question of the proper
equations of motion for the Gelds. In general one would
expect both the current definition and the 6eld equations
for the charged, fields to be changed. Also, the Lorentz

' K. Johnson, Nucl. Phys. 25, 431 (1961);L. S. Brown, Phys.
Rev. (to be published). The relation between explicit Geld depend-
ence and current commutators is also discussed in J. Schwinger,
ibid. 130, 406 (1963);and by D. Boulware and S.Deser, ibid. this
issue, 151, 1278 (1966).


