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rapidly than A\(0,d) with the decreasing thickness. For
their tin films Douglass and Blumberg find that for
their 4330-A- and 573-A-thick films the value of
N0,d) is 645 A and 1150 A, respectively. This is in
agreement with our estimates in Table I.

SUMMARY AND CONCLUSIONS

In the vicinity of the transition temperature 0 T,
—T<0.3°K, the critical fields of In films ranging in
thickness from 585 to 3540 A, are found to vary as
(T',—T)' in agreement with the predictions of Ginz-
burg and Landau, of Bardeen, and of Rickayzen; the
observed and predicted critical field magnitudes are in
reasonable agreement, considering the experimental
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uncertainties. At lower temperatures, our data are in
good agreement with Rickayzen’s model; the tempera-
ture dependence predicted by Maki is not borne out by
our experiments.

We have also found evidence for the increase in the
penetration depth with decreasing film thickness, as
the results in Table I show.
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Vortices in an Imperfect Bose Gas. IV. Translational Velocity*
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The translational velocity of a vortex with circulation //m in an imperfect Bose gas is calculated by con-
sidering the time dependence of the condensate wave function corresponding to a given initial configuration
of vortices. Each vortex in a system of rectilinear vortices is shown to move with the local fluid velocity at
its core; a vortex ring of radius R is shown to move with velocity (/4rmR) In (8R/a), whereais a length the

order of the core size. Both results agree with the predictions of classical hydrodynamics.

I. INTRODUCTION

ECENT studies of . superfluid vortices in liquid
He II and in type-II superconductors have led to
renewed interest in the nineteenth century problem of
the motion of classical vortices in an incompressible in-
viscid fluid. A rigorous derivation based on the non-
linear equations of classical hydrodynamics shows that
a region of concentrated vorticity, such as a vortex
core, moves with the local fluid velocity at that point.!
The dynamical behavior of a system of classical
vortices may therefore be calculated if the velocity field
is known at each point of the fluid. In the special case
of rectilinear vortices, the self-induced velocity of each
vortex vanishes by symmetry, and the motion arises
solely from the velocity field of the other vortices in the
system.2 For more general configurations, such as a
vortex ring in unbounded fluid,? the self-induced motion
may be the dominant effect.
The corresponding dynamics of quantum vortices has
not yet been developed. Nevertheless, it has been

* Supported in part by the U. S. Air Force through Air Force
Office of Scientific Research Contract No. AF 49(639)-1389.

1 A. Sommerfeld, Mechanics of Deformable Bodies (Academic
Press Inc., New York, 1950), p. 132.

2 Reference 1, pp. 154-155.

3 Reference 1, pp. 165-167.

generally assumed that the translational velocities are
just the classical values.™7 In support of this view, it
has been shown*® for certain configurations that the
classical translational velocity is equal to group ve-
locity v, computed from the energy E and momentum
P according to the usual prescription v,=0E/dP. The
quantities E and P are either taken from classical hydro-
dynamics? or calculated from simple quantum models,
such as an imperfect Bose gas.”~7 Although this identi-
fication of the translational velocity with the group ve-
locity is plausible, it remains an indirect approach and
seems incapable of treating the motion of individual
vortices in a large group. For this reason, we have de-
veloped a dynamical theory of the motion of vortices in
an imperfect Bose gas, which provides a simple model
of liquid He II. The calculated translational velocity
agrees almost exactly with the prediction of classical
hydrodynamics: a rectilinear vortex moves with the
velocity of the fluid at its core, and a vortex ring of
radius R in unbounded fluid moves perpendicular to its
plane with a velocity u= (k/4wmR) In(8R/a), where o
is a cutoff approximately equal to the radius of the
vortex core.
4 G. W. Rayfield and F. Reif, Phys. Rev. 136, A1194 (1964).
8 A. L. Fetter, Phys. Rev. 138, A429 (1965).

6 K. Huang and A. C. Olinto, Phys. Rev. 139, A1441 (1965).
7D. Amit and E. P. Gross, Phys. Rev. 145, 130 (1966).
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Section II contains a derivation of the translational
velocity of a single rectilinear vortex in a uniform
stream, which is the simplest case of a moving vortex.
As examples of more complicated configurations, the
translational velocity is calculated for a system of recti-
linear vortices (Sec. IIT) and for a vortex ring of radius

R (Sec. IV).

II. SINGLE VORTEX IN A UNIFORM STREAM

The condensate of an imperfect Bose gas may be de-
scribed by a one-particle wave function ¢ that obeys a
nonlinear field equation®1

thdy/dt=— 2m) 2V —uwh+Voly¥|%, (1)

where the short-range repulsive interparticle potential
v(r—1’) has been approximated by a delta-function
interaction

(x—1)=Vd(r—r), (Vo>0). )

Here 4 is the chemical potential and m is the atomic
mass. The velocity of the fluid may be calculated from
the condensate wave function

v= C2mi |y | WP VY— (V]

= (/m)vs, ©
where .S is the phase of the wave function
¥(1,0)=[n(r,1) ' exp[iS (r,0) ]. ©)

In cylindrical coordinates, Eq. (1) has a time-independ-
ent solution of the form

Yo(r,t)=noef(r), (5)

where 70 is a constant. Equation (5) represents a vortex
with quantized circulation %/m situated at the origin.
A detailed calculation based on Egs. (1) and (5) shows
that the radial function has the following limiting
behavior®?:

f@) =r/a, (r<a) ©)
fO~1=5(a/r?, (7>a)

where a[ =#%(2mnoV)~1?] is the deBroglie wavelength.
The radius of the core is approximately equal to q,
while the asymptotic form of f(») determines the
chemical potential: p=#0V, The flow pattern asso-
ciated with ¥, is

vo(¥)= (B/mr)b. (7N

This velocity field is just that of a classical vortex, and
the stream lines are concentric circles. Since Eq. (5)
satisfies Eq. (1) for all time, a single rectilinear vortex
remains stationary at the origin, which agrees with the
classical result.

8 E. P. Gross, Nuovo Cimento 20, 454 (1961).

9L. P. Pitaevskii, Zh. Eksperim. i Teor. Fiz. 40, 646 (1961)
[English transl.: Soviet Phys.—JETP 13, 451 (1961)7.

0P, C. Hohenberg and P. C. Martin, Ann. Phys. (N. Y.) 34,
291 (1965).
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Suppose, however, that we are given the following
initial wave function at ¢=0:

Yu(r,0)=exp(iu-1m/7)o(r). ®)

It is easy to see from Eq. (3) that the initial velocity
pattern v(r) is that of a single vortex in a uniform
stream of velocity u,

v(r)=u+vo(r). ©

The subsequent motion of the system may be calcu-
lated from the time-dependent wave function y.(r,f)
corresponding to the initial conditions Eq. (8). Since
the self-consistent field equation (1) is of first order in
the time derivative, the initial rate of change of ¥ is
obtained by direct substitution of Eq. (8) into Eq. (1),

hYu(1,8) /08| tmo=—[ (1 2m) VP41 Ju(r,0)
+Vo|Yu(r,0) |"¥u(r,0)
=1mu,(r,0)—exp (tu-rm/ %)
Xiha- Vo (I') .

The second form of Eq. (10) has been simplified by
noting that ¥o(r) is a time-independent solution of
Eq. (1). Thus ¢, changes in two distinct ways: The first
and second terms on the right side of Eq. (10) represent,
respectively, a change of phase of the wave function
and a uniform translation of the vortex with velocity
u. The phase change is associated with the energy of
streaming motion of the fluid at infinity. It can be veri-
fied by direct substitution that the general time-depend-
ent solution is

(10)

Yu(r,t)=exp(—Limu?t/ %) exp(du-rm/h)Yo(r—ut), (11)

which is equivalent to Eq. (10) in the limit of small time.
Equation (11) represents a rigid translation of the vortex
with velocity u, which is just the velocity of the uniform
stream at the vortex core. Hence the translational
velocity of the vortex is equal to the fluid velocity at the
position of the vortex.

It may be objected that this simple example merely
proves the Galilean invariance of the theory, because
Eq. (8) is equivalent to a transformation to moving
coordinates. In the following sections, however, the
same method is applied to more complicated vortex
configurations, in which the fluid is stationary at in-
finity. The relative separation of the vortices changes
with time in the general case, so that no single coordi-
nate transformation can bring all the vortices simul-
taneously to rest.

III. SYSTEM OF RECTILINEAR VORTICES

A problem of interest in connection with rotating
He II is a system of rectilinear vortices parallel to the
2 axis, situated at the points {r;}={7;0;} in the x-y
plane. Each vortex is assumed to be singly quantized,
so that the circulation will be taken as 4=4/m; the free-
dom of sign allows us to treat a vortex pair as well as
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. £ Fic. 1. Geometry
- of a rectilinear vor-
¢ tex situated at r;.
() gl

}
6

an array of identical vortices. It is convenient to intro-
duce the following abbreviation (Fig. 1):

(12)

where ¢; has components (p;,¢;). An approximate
initial wave function for this system is a product of the
wave functions given in Eq. (5), one for each of the
separate vortices,

¥ (1,0)=nd""[];g;,

0;=I—1;,

(13)
where

gi=exp(iS;) f(o;), (14)
and the product is over all the vortices. The phase of
Eq. (14) is given by S;= == ¢;, the sign being that of the
circulation about the jth vortex. The validity of Eq. (13)
has been considered previously,® where it is shown that
the corrections are small if the distance between each
vortex is large compared to the core size a.

The initial rate of change of the system may be found
by substituting Eq. (13) into the right side of Eq. (1).
A straightforward calculation shows that
ihdy (1,t)/9t| =0

=no®([Lig) {(u[Zx 1= fiH)+ AT fi?) — 1]

— (h2/2m) Zkl’ (v Ingx- v lngl)} , (15)
where the primed sum is over % and / separately, omit-
ting the terms k=/. Consider the behavior of the dif-
ferent terms on the right side of Eq. (15). In the vicinity

of a given vortex j=1 (say), the square bracket may be
expanded as

s A= )+ ATe D) — 1]
=5 (12/2m) i’ (orp) ™ (p>a)
~ (12/2m) 3% (rue) 2, (0rka) (16)

where 7;;=|r;—1;| and the prime on the single sum
means: omit the term k= 1. The second term of Eq. (15)
is given approximately as
(hz/Zm) Zkll (V lngk -V h’lgz)
=iV Ing1- {34 [(#/m)V Sk 1=rs
+ (/m)0(a*/rv¥) 1}
+@/2m) 3 X 0(1/ruru).

k(=) 1G41)

an
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Inspection of the various terms shows that the dominant
contribution to the initial rate of change of the wave
function arises from the first term of Eq. (17); the cor-
rections are small since the vortex cores are well
separated.

It is now possible to prove that the time-dependent
wave function corresponding to Eq. (15) may be
written as

Y(1,t) =nd [ ;g (t—1,—uyt). (18)

This solution represents a system of moving vortices,
where u; is the velocity of the jth vortex. The time
derivative of Eq. (18) yields

1hdy (1,8) /0t | smo=1mo2 (I 1;85)
X Zk i) lng(r— I— ukt)/ at | t=0
= —’ihﬂol/2(ngj) >rupV Ings. 19

In the vicinity of the first vortex, the dominant term of
Eq. (19) is

—ihne*(J1;g;)ws- V Ingy, (20)

and comparison with the first term of Eq. (17) gives the
translational velocity of the first vortex:

u1=Zk’ (h/m)VSk[ r=ry. (21)

Since (/m)VSk| =, is the fluid velocity at r; due to
the kth vortex at ry, Eq. (21) reproduces the classical
result that the translational velocity of a given recti-
linear vortex is equal to the total fluid velocity at its
core arising from all the other vortices in this system.

The fluid velocity due to a system of rectilinear
vortices vanishes at large distances like 7. Hence there
is no kinetic energy associated with motion of the fluid
at infinity, and the time-dependent phase factor that
appears in Eq. (11) is absent in Eq. (18). This equation
also provides an alternative derivation of the transla-
tional velocity u; of the ith vortex. If lny(r,) is ex-
panded in a Taylor series about the point r; to leading
order in (a/7;), the resulting expression takes precisely
the form of Eq. (11) with u; given by Eq. (21).

The sign of the circulation has not been specified, so
that Eq. (21) may be applied to the motion of a vortex
pair separated by a distance 2d; the corresponding
translational velocity is #= (h/4wmd), which agrees
both with the classical expression® and with a previous
quantum mechanical calculation based on the group
velocity.® In principle, it should be possible to compute
the quantum mechanical corrections to Eq. (21), but
these are probably comparable with the errors intro-
duced by the use of the product wave functions

[Eq. (13)].
IV. VORTEX RING

The above method will now be applied to the motion
of a vortex ring of radius R. A more approximate treat-
ment is required than for rectilinear vortices, however,
because Eq. (1) has never been proved to have exact
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solutions representing a vortex ring. We shall make
some plausible assumptions concerning the initial wave
function

Yr(1,0)=n"fr(r) exp[iSk(r)],

and calculate the time development from Eq. (1). The
fluid velocity is related to the phase of the wave func-
tion, and it is a reasonable approximation to choose
Sz(r) to reproduce the classical velocity pattern vz(r)
of a vortex ring of radius R,

(h/m)VSr(r)=vg(r). (23)

The modulus function fz(r) in Eq. (22) will be taken as
the radial function for a single rectilinear vortex, apart
from small corrections due to the curvature of the
vortex axis.

The geometry of the system is illustrated in Fig. 2,
where the plane of the vortex ring is taken as the x-y
plane. Throughout this section, three dimensional
vectors will be resolved in cylindrical polar coordinates,
so that r has components (p,8,2). All quantities of physi-
cal interest are independent of the azimuthal angle 6,
because of the symmetry of the ring. The core of the
vortex ring lies on the circle (R,0,0), and the sense of
circulation is chosen so that the fluid at the center of the
ring flows in the positive z direction. The velocity
pattern of a classical vortex ring is most conveniently
described in terms of the stream function ¥ (p,2), from
which the fluid velocity is computed with the equations

ve(r)= P, (1) 420, (r), (24)
19¥ 2%

() =-—, 2(1)=——, (25)
p 02 p 9

where p and £ are unit vectors along the radial and axial
directions. A detailed calculation® shows that

¥ (p,5)=— (I/m) (ri+r)[K(§)—E(®],  (26)
where r; and r; are vectors in the plane of Fig. 2,
ri=r—Rp, r,=r+Rp, 27
and
E= (ra—r1) (ratr1) 72, (28)

K and E are the complete elliptic integrals.!®

The major difficulty in computing the translational
velocity lies in separating the contributions from the
nearby and distant portions of the ring. As an approxi-
mate method, we shall write

Yr(r,0)=n0"? exp(i1Sr+ip)e *fr(r)
=n¢"? exp(iSr+ip)gr(r),

11 This approach has been developed by Amit and Gross, Ref. 7,
in a calculation of the critical velocity associated with the creation
of a vortex ring in a channel.

2H. Lamb, Hydrodynamics (Dover Publications, Inc., New
York, 1945), 6th ed., p. 237.

18 See, for example, H. B. Dwight, Tables of Integrals and Other
Mathematical Data (The Macmillan Company, New York, 1957),
3rd ed., pp. 170-173.

(29)
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Fi1G. 2. Geometry of a vortex ring of radius R.

where ¢ is the angle between r; and 4. The function
gr(r) is essentially the wave function of a single recti-
linear vortex bent into a ring of radius R. With Eqs. (29)
and (1), the initial rate of change of the wave function
¥r may be calculated to be

ihoYr (1,8)/ 08| tmo=n0'"? exp (iSr+iep)
X{— (#*/2m)V*gr—ugr
+Vono|gr|*gr—1i(h2/m)v
X (Se+ @) Vgr—i(h?/2m)
X[VA(Sr+ @) Jgr+ (42/2m)
X |V (Se+e)|%r}. (30)

The function gz has not yet been specified completely,
and it will now be chosen to satisfy the equation*

— (W 2m)V?gr—pugr+Vono|gr|%gr=0.  (31)

This choice simplifies Eq. (30) considerably because the
first three terms on the right side vanish identically:

ihdYr(1,8)/0t| imo=no"? exp(iSr+ip)
X{—i(#/m)V (Sr+¢) Vgr
—i(#/2m)[V*(Sr+¢) Jgr
+ (#/2m) |V (Sr+¢) |%¢r} . (32)

As in Sec. III, the translational velocity of the ring
will be calculated from the behavior of Eq. (32) near
r=pR(r; small), so that terms which vanish as r;— 0
will henceforth be neglected. A straightforward but
tedious calculation based on Egs. (23)-(28) yields the
results

(h/m)V (Sr+ @)=~ (h/4xmR){[In(8R/r1)—1]
X (¢+8)+cosed), (33)
(h/m)V*(Sr+ ¢)~— (h/2rmR) (sing/r1), (34)

where @ is the unit vector in the plane of Fig. 2 along
the direction of increasing ¢. Thus the gradient of
(Se+¢) has only a weak logarithmic singularity as
11— 0; the dominant ()™ behavior associated with
the vortex has been absorbed into the function gg.
Neither Eq. (33) nor (34) approaches a definite limit

14 Equation (31) differs from that satisfied by Eq. (5) because
of an additional term in the Laplacian. This difference leads to a
correction of order (%/mR) in the translational velocity of the

vortex ring. Since our result gives only the dominant term of
order (2/mR) In(R/a), such an effect may be neglected.
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as r; — 0 because of the angular dependence. It is there-
fore natural to replace each quantity by a spatial
average over a small circle of radius a(=Ca), where C
is a constant of order unity. With the definition

(€)= (a2 f Pnfa),  (9)
ria
Egs. (33) and (34) become
(h/m)(V (Sr+¢))=2(h/4wmR) In(8R/a),  (36)
(h/m)(V*(Sr+¢))=0. 37

In the limit r; — 0, Eq. (32) then reduces to

hdYr(1,t)/0t| imo=n0o'? exp (1Sr+i¢)
X {—ih(h/4rmR) In(8R/a)}2-Vgr,
(38)
since the last term on the right side of Eq. (32) vanishes

at the vortex core. The corresponding time-dependent
solution is

d/}e (l',t) = no”2 exp[iSR (l‘)+i<p]g12 (l‘— ut) )

where

(39)

u=2(h/4rmR) In(8R/c) (40)

is the translational velocity of the vortex ring. Equa-
tion (40) reproduces the dominant logarithmic behavior
found in previous calculations of both the translational
velocity of a classical vortex ring and the group velocity
of a quantum-mechanical vortex ring.

V. DISCUSSION

This paper has demonstrated that it is possible to
compute the translational velocity of vortex systems in
an imperfect Bose gas from the dynamical field equation
satisfied by the condensate wave function ¢. Given a
particular initial wave function ¢(r,0) representing
some configuration of vortices, the dominant time de-
pendence of ¢(r,t) is that arising from the subsequent
motion of the vortices. The velocity of each vortex is
equal to that predicted by classical hydrodynamics. For
a system of rectilinear vortices, the theory assumes a
product wave function constructed from the quantum-
mechanical wave function of each separate vortex; this
is expected to be a good approximation as long as the
vortex cores are well separated. The application to a
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large vortex ring is somewhat less satisfactory since the
classical velocity field must be used in constructing the
initial wave function. The corresponding translational
velocity requires a cutoff, which is here chosen to be the
order of the deBroglie wavelength a. This unphysical
feature would be absent in a fully quantum-mechanical
treatment. Such a calculation is very difficult, however,
for it necessitates the integration of Eq. (1) subject to
the boundary condition that ¢z (r) « ei¢r; as r;— 0.

It is interesting to consider why the results of the
present quantum-mechanical calculation are so similar
to the classical predictions of the translational velocity
of vortex systems. Gross'® has shown how the theory of
an imperfect Bose gas may be written in a hydro-
dynamic form. It differs from classical hydrodynamics
only in the presence of an additional “quantum’ pres-
sure associated with rapid spatial variation of the con-
densate wave function y. If the quantum vortices are
well separated, then |¢| is constant on the surface of a
small cylinder (with a radius of several core radii)
surrounding each vortex. It follows that the quantum
pressure may be neglected in determining the motion
of the fluid contained in the cylinder, so that classical
hydrodynamics provides an adequate description of the
dynamics of widely separated vortices in an imperfect
Bose gas.

Similar questions arise in type-II superconductors,
where the motion of the quantized flux lines has been
studied intensively, both experimentally'® and theo-
retically.’” Unfortunately, a superconductor is an essen-
tially more complicated physical system than an im-
perfect Bose gas. In particular, there appears to be no
satisfactory time-dependent Ginzburg-Landau equation
describing the motion of the condensed superelectrons,
while Eq. (1) provides an exact description of the boson
condensate in the limit of vanishing interactions. Thus
there is no obvious extension of the present approach
to a calculation of the motion of quantized flux lines.
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