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We calculate the proton energy spectrum at various angles for the process n+d —+ n+n+p at 14.4-MeV
incident-neutron laboratory energy, using our exact three-body theory with separable, S-wave, spin-
dependent, two-body forces. The major features of the experimental data are reproduced, but not the
precise magnitudes. The integral equations we solve are quite singular and we find it necessary to deform
the integration path. This involves the careful treatment of some branch points. Our results are not good
enough to resolve the problem of the neutron-neutron scattering length, but by comparing Watson theory
with our exact calculations we show that Watson theory is inadequate in this problem.

I. Dt'TRODUCTION

E have calculated the cross section for the reac-
tion e+d —+ n+e+p at 14.4 MeV using our

exact three-body formalism with separable, S-wave,
spin-dependent, nucleon-nucleon forces. ' In such a
formalism one sacri6ces sophistication in the two-body
force for careful treatment of three-body eGects. As we
shouM expect from our calculations of elastic neutron-
deuteron scattering' this approach gives the major fea-
tures of the breakup process, although agreement with
experiment is not as good as in the elastic-scattering
case.

In addition to its general interest as a three-body
problem, the breakup reaction is interesting as a source
of information on the neutron-neutron scattering length,
the sects of which show up clearly as a strong final-
state enhancement in this reaction. Attempts to use a
form of Watson theory' to extract a scattering length
from the data have yielded —21+2 F' and —23.6 i 6+'0
F4 which is consistent with a neutron-proton singlet
scattering length of —23.78 F.' Similar analysis of the
data from the theoretically much cleaner reaction
n. +d —+ y+2n gives —16.4~1.3 F.' A microscopic
theory of charge independence gives about —17 F for
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the neutron-neutron scattering length and excludes
values near —24 F.~ Our theory, although giving the
qualitative features of the deuteron breakup data, is
not good enough to fit it in detail and choose between
the scattering lengths. However, analyzing our exact
theoretical results by Watson theory shows that Watson
theory would lead one astray in precisely the direction
of too large a scattering length.

In Sec. II we outline the theory of the reaction in our
formalism. In particular we express the breakup amph-
tude in terms of the elastic scattering amplitudes oB
the energy shell, which are in principle a by-product of
our previous elastic scattering calculation. In fact, singu-
larities in the kernel of the integral equation prove most
troublesome in this case and we are forced to deform
integration contours to avoid them. In Sec. III we dis-
cuss the analysis necessary for doing this for OG-energy-
shell amplitudes. The results are presented in Sec. IV
and in Sec. V the problem of the neutron-neutron scat-
tering length and of Watson theory is discussed. Some
conclusions are presented in Sec. VI.

D. THEORY

In our theory of the three-nucleon system, the force
between nucleons is taken to arise from a sum of separ-
able interactions. Such a simplified interaction reduces
the coordinate complexities of the three-body problem
to manageable proportions. It is convenient to repre-
sent each correlated or interacting pair by a "particle. "
In this theory the breakup amplitude is given in terms
of the off-the-energy-shell amplitude for e+d —+X
+ (correlated pair). These amplitudes are the solutions
of the set of coupled linear integral equations we have
previously discussed. ' To obtain the breakup from these,
one allows the correlated pair to propagate and then
disassociate. This ls done by appending R propRgatol'
and vertex to the OB-energy-shell amplitudes, as indi-

7 Cf. L. Heller, P. Signell, and N. R. Yoder, Phys. Rev. Letters
13, 577 (1964).
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the interaction, the Born terms are given by

(&,al &(~)
I
&',f )=v.v bl:((k+&')'+P")

y((k'yak)'+p. s)(E-ks —k's —(k+k')s) j-r. (2)

y, is the coupling constant for the nucleons to the cor-
related pair a. The propagators are'

I's(E,Ps) = — (o+ e)
(2s-)'

(b)

P")'(+2 ')'( -2 ')- (3)

d '0

("+P ')'(--2 ')-

X
Fro. t. (a) Schematic representation of a term in the breakup (rb'+

amplitude. The large circle is the (ofF-energy-shell) amplitude for
neutron plus deuteron goes to nucleon plus correlated pair. The
cross-hatched line is the full propagator for this pair, and the small
circle the vertex for its disassociation into two nucleons. (b)
Schematic representation of the integral equation for the off- - (2s')
energy-shell amplitude and for the full propagator. The inter-
mediate correlated pairs in the integral equation are to be summed o =E ,p'. ——
over.

+ Exs, ~b dP
(2s)s b

x(k, I&(&) Ip, f)& (EP')(p, dff(L') lk'd).

The momentum labels the nucleon momentum; b and
g stand for d or q, and E is the total energy. 5 is the
total spin and may be ~ or ~. Since we always start with

e+d, the total isotopic spin is ~. The X's are spin factors;
Xs/2, dd= 1 and X3/2, dt's'b XS/2, @d X8/2$@ 0 j Xl/2, dd

= X~/2 ~~
———,'

XI/2 dp= Xg2, pd= —~. They have been de-

rived previously. ' Using a Hulthen form 1/(ks+P') for

/ QOO

I xo. 2. Sum of
graphs contributing
to the breakup. Inter-
mediate correlated
pairs are to be
summed ovcI'.

' R. D. Amado, Phys. Rev. 141, 902 (1966).

cated in Fig. 1. This must be done in all possible ways,
with due attention to spin and antisymmetry. That the
term shown in Fig. 1 is indeed all there is in this theory,
and that in particular there are no new equations to
solve, may be seen by making a graphical expansion
of the breakup process as we have in Fig. 2. Alterna-
tively, we can derive this result starting with a Hamil-
tonian along lines very similar to those we used for the
triton wave function. s

For the three-nucleon system we take two separable
5-wave interactions, one in the spin-zero, isospin-one
state, which we call q, and one in the spin-one, iso-
spin-zero state, which we call d. The equations for
rb+d ~ n+d and rb+d —+ rb+ y in the center-of-mass
system are then (5=2m=1)

(k,cl4(Z) I
k', d) =xs,.s(k,cia(@lk', d)

~ is the deuteron binding energy. The relation between
the parameters P and p and the low-energy nucleon-
nucleon singlet scattering data is

P,= (3/2..)L1+(1—1«,/9a, ) Irj

gas= 16rrpb'a, /(a, pe 2) . —

We take a singlet scattering length of u, =—23.78 F and
an effective range of r, = 2.67 F.' In the triplet channel
we fit to a deuteron binding energy of —2.226 MgT and
a scattering length of @~=5.411 F according to

=2(P.+ .)'/I:v P.( +2P.)j,
vv= 32«sPs(as+Ps)',

%e can now express the breakup amplitude in terms
of the solution of (1).Let us label the final momenta of
the three nucleons kr, ks, ks subject to kr+ks+ks ——0
and the Anal spans and lsosplQs 5$yPsp5$31 zy'L2$3. Then
the amplitude in the total spin 5 (ms=-,') channel cor-
responding to the term in which 1 and 2 emerge from
the correlated pair b can be written

(k„k„k,; re„rrb„ms, i„i„is
I
iV sb(Z) I

k', d),
=asb(1,2;3)(S, ,'ISbrrbb, m-s)(Sbrrbbl ,'r'ibm ,)-

X(s—s I
2'br»sis)(2'brbl sir, sir) (6)

where (JN I jar, jsrrb, ) is the usual Clebsch-Gordan co
e%cient, Sq and Ty are the spin and isospin of b, and
mg, and rg are its spin and isospin projections. We use
an isospin convention in which the neutron has third
component —-'„so the total isospin is -,'and the third
component —

~ of the three-body system. A is the am-

' In our previous work (Ref. 1), the wave-function renormaliza-
tion constant of the deuteron Z appeared in the propagator as
parameter. %e set it equal to zero here since it has little efFect
at these relatively high energies. It has been claimed by Phillips
LA. C. Phillips, Phys. Rev. M, 984 (1966)j that with Z&0, the
theory does not satisfy two- or three-particle unitarity. In our
opIQIon thIs claIm Is false.
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plitude without spin factors and is given by

As. ~(1,2;3)=&~/{P.(k:—ki)7+0~')
X& (E,k ') (k„& I

T (E) I
k', d) . (7)

A is symmetric in 1 and 2; the antisymmetry is pro-
vided by the Clebsch-Gordan coefficients. If we call (6)
Ms, y(12,3), tile eiltile pl'opel'ly antisymmetric aillpli-
tude ls

Ms, i,=Ms, i, (12,3)+Ms, i, (31,2)+Ms, i,(23,1) (8)

and. the cross section is proportional to
I
M I', where

IM I'= 31Mi/. I'+% IMI/2I'

IMal'= E Ms.MB,,/*,
c,b

final spina

assuming we do not wish to study final-state polariza-
tions. If we assume the proton is particle 3, we can do
all the spin sums, etc., by the standard methods of
Racah algebra. %e get for the quartet contribution

IMwml'=2 IAS/2 d(3, 1;2) I'+2
I AS/2, .(2,3' 1)I'

—Rel Aa/2, ~(3» ~ 2)Aw~, ~~(2p ~ 1)] (11)

and for the doublet

IMi/2I'= 3 I Ai/2. ~(1,2; 3) I'+4 I (Ai/i, .(3,1;2) I'

+k I
A i/. ,~(2,3; 1)I'+6

I (Ai/i, e(3,1;2) I'
+-',

I
A,/, (2,3; 1)I'+RePA„, ,(1,2;3)

XAi/2, g*(3,1;2)+-',Ai/m, p(1,2; 3)Ai/2, p*(2,3;1)
—Ai/2, @(12; 3)Ai/i, g*(3 1;2)—Ay/2, y(1 2; 3)
XAi/2, g(2,3; 1)+-',Ai/g, g(3,1;2)Ai/g, g (2,3; 1)
——',Aig, g(3,1;2)Ai/m, p*(2,3; 1)——,'Ai/g, @(3,1;2)

XAi/2, g (2,3' 1)—6Ai/2, y(3 1'2)
XA„,,,*(2,3; 1)j. {12)

If one wants only the proton spectrum at a fixed angle,
one must then integrate over the neutron momenta.
This considerably simplifies (11) and (12), using
A(1,2;3)=A(2, 1;3).

Thus far we have outlined the theory, assuming iso-
topic spin invariance. Since we wish to study the pos-
sibility that the singlet neutron-neutron scattering
length is about —17 F while the singlet neutron-proton
one is —23.78 F, we should calculate without isotopic
spin invariance. To do this would require a third cor-
related-pair interaction and would be quite complex.
%e have checked that changing the singlet scattering
length from —24 to —17 F for uQ singlet 5-wave pairs
(a considerable over-estimate) produces no signi6cant
eGect on the off-shell amp1itudes. On the other hand,
this change will have considerable eGect on the 6nal
propagator we append to the amplitudes, since it is
exactly this propagator which takes account of the 6nal
rescattering of the particles before they are detected.
It is, of course, just the sensitivity of this to the scatter-
ing length that makes the break-up reaction interesting

Fn, 3. Coordinate sys-
tem used in Kq. (14}.

to study. Therefore our procedure is to calculate the
o6-shell amplitudes with isospin invariance and a singlet
scattering length of —23.78 F and to use —23,78 F in
the final neutron-proton propagators as well, but in
those terms in which the final correlated pair is two
neutrons we take either —23.78 F or —17 F for the
scattering length used in (4) to determine the param-
eters for the propagator and vertex.

In terms of the amplitudes of {11)and (12) the total
cross section r is then

d (cos8) dijon Ii dt's i,

&{2~p+2~,px+2p E) I Ml 2—
p i

d(cos8)
(2m)' i/

dy IMI'. {14)
0 4mi'+2px

The subscript I- refers to laboratory quantities,

x= cosn cos8+sinu sin8 co&,

~i'= k(-px+9"x'+2(E-2p') J")
is real and non-negative. %e evaluate the above double
integral numerically on an IBM 7094, carefully treating
the limitations imposed by the energy b function.

The above method for evaluating the partial cross
section is the most straightforward, but not the most
eS.cient in terms of computer time. For example, the
term in the cross section involving

I Ai/m, q(1,2; 3)
I

2 can
be evaluated without integration by a proper choice of

0' ~ d'pd'mid'm28(ni+nm+y) 8(E ni2 e22 —p')— —
e(2ir)'

Xb IMi/~l '+3
I MS/ml '} (13)

where e is the relative velocity of the incident particles,
and where we now call the proton momentum y and
the 6nal neutron momenta n~, n2. Ke choose a coordi-
nate system in which the incident momentum no is in
the positive s direction and the final proton momentum
y is in the x-s plane. (See Fig. 3.) The partial cross sec-
tloll d 0/dQprdEyz is'
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coordinate system and the two-dimensional integral de-
fined above can be reduced to a one-dimensional inte-
gral. Then, however, the partial-wave decomposition
of the off-energy-shell amplitudes involve Y& 's with
sums over both l and m. In order to avoid this, and to
have a uniform scheme for all terms we have used Eq.
(14).

III. DEFORMATIOÃ OF CONTOURS

The coupled integral equations (1) are solved numeri-
cally by replacing the integrals by sums using Gaussian
quadratures and inverting the resulting matrix equa-
tions on a high-speed computer.

A major difhculty in doing this is the treatment of
the singularities of the kernel. These arise both from the
propagator and the Born term. The former are easily
dealt with since their position depends only on p, but
the location of the singularities of the Born term depend
on both p and k and are therefore not easily managed.
The effects of these singularities (after some averaging)
on straightforward numerical solutions of the equations
is particularly disturbing on the oB-energy-shell am-
plitudes. In calculating K-d and A.-d elastic scattering,
Hetherington and Schick" circumvented this problem
by deforming the integration path in (1) away from
the singularities. Since one is studying an integral equa-
tion, this necessarily means extending k as well as p
into the complex planes. Since for scattering, the kernel
is complex even for k and p real, their extension requires
no additional computer storage for the matrix represent-
ing the kernel. In fact, it leads to great saving of com-
puter space as one can choose the integration path as
far as possible from singularities and therefore the kernel
is very smooth and relatively few points are needed to
represent the integral. However, the resulting solutions
are for k complex and experimentally k is real. To fix
this, one takes Kq. (1) again, using the amplitude de-

fined on the deformed contour for (p,b]Ts(E)]k',d)
with p complex and one now does the integral with k

real. These contour deformations are justified as long
as no singularities are crossed. The location of the singu-

larities of the Born terms with one or both momenta
complex and of the propagators, is straightforward. The
problem of the location of the singularities of the scat-
tering amplitude is much more dificult, and remains,
so far as we know, unresolved. Hetherington and Schick
assumed that attention to the singularities of the Born
terms and of the propagators is sufhcient. This is cer-

tainly not true in general, but seems to have worked
in their case. We shall also make this assumption (for
lack of a better one) but will return to the problem at
the end of this section.

We begin by studying the singularities of the Born
terms. This is most easily done for S waves. The other
partial waves have singularities at the same places. The

"J.H. Hetherington and L. H. Scbick, Phys. Rev. 135, 8935
(1965).

S-wave projection of (2) is

(k,u] 8,(E) ] k', b)

1 - 1 )A+kk')
in]

2kk' (8—A) (C—A) EA —kk'&

1 )8+kk'q
+ ln]

(A —8) (C—8) E8—kk'&

where

C+kk'~—
+ ln ], (17)

(A —c)(8—c) c—kk'i

A —k~2+1k2+P 2 8—k2+lk&2+p 2

C=k'+k"——,'E.

from the 6rst two terms, and at

or
k = -', [+k'+ (2E—3k")'"j
k'=1[+k+ (2E—3k2)'~2j

(21)

from the third. It is this last logarithmic singularity
which causes trouble for real k and k'. The propagator
E(E,p2) has branch points at p= + (2E/3)'". It should
be recalled in all this that E has a small positive imagin-
ary part. In addition to this cut present in P~ and E~,
Eg hs, s a pole at p= [2(E+e)/3] i .

In deforming the contour we must ask not only what
singularities will be produced by the kernel but also by
the inhomogeneous Born term. In this term we put k'
on the energy shell. This makes

k'= [2(E+ 2)/3j'" (22)

and since we are studying breakup we have E)0. This
substituted in (21) gives branch points in the complex
k plane at

k =-', (ak'~i2) . (23)

The other singularities will come from (19) and (20)
with k' taken from (22).

The most convenient contour deformation is the one
used by Hetherington and Schick, namely a rotation;
k —+ ke '~, C»0. We rotate into the lower half-plane
to avoid the propagator singularities. The 6xed singu-
larities from the inhomogeneous Born term place an

There are no singularities at k=k'=0 at 3=8, B=C,
or 2 =C. These apparent singularities come from the
partial fractions used to do the cos8 integral. The only
singularities therefore come from the vanishing of the
arguments of the logarithm. This leads to branch points
in k at

k= ~2(k'+iP. ) and k =+ (-,'k'~iP2) (19)

or in k' at

k'= ~ ( k+iP, ) —and k'= &2(k+iP ) (20)
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upper limit on C. %e see that 4 must be smaller than
the least of

I I I I I I I, I I I I I I I I I, I"I I

/
/I /

arctan(e/k'), arctan(p, /k'). (24)

In the kernel, if we put k-+ ke '+ and p ~ pe '~, the
singularities due to the Born terms will come at

k= ~2(P+iP.e'e) k= +(', P+-iPpe'e) (25)

p=~(-', k+ip, e'~), p=+(kedge'~) (26)

k=-.
l ~p+(2E~"—3p')'"3 or

p=-', I-aka(2Ee"' —3k')'~'], (27)

\

y I

O.I 0.5
I I I I I I I I

I.O

k' IARBITRARY MOMENTUM UNITS)

I I

I.5

where we now understand p and k to be real. Clearly,
so long as C &~x, the eGect will be to move the offending
energy-dependent logarithm away from the integration
path without bringing the P-dependent ones closer.
Hence the prescription is to choose C between 0 and
4~x and suKciently far from the limits imposed by the
inhomogeneous term, and solve the equations.

The remaining problem is to obtain the amplitude
for real k from the amplitude along the contours by
doing the p integral in (1) once more. Whether or not
we can do this depends on the singularities of the Born
term one momentum real. For k real and on the elastic
e-d energy shell, we have already studied the equivalent
problem in the case of the inhomogeneous term, and
there are no singularities in the Born term which pre-
vent the rotation of the p contours by —C. This is the
reason for the success of Hetherington and Schick in
the elastic scattering case. However, since we are inter-
ested in breakup, we want k real and between zero and
(aE)'" From (21) we see that for (—',E)''&k&(—'E)''
(k,clBO(E) I p, b) has a branch point in the p plane just
below the positive real p axis. For k((~2E)'~' this branch
point has negative real part and does not trouble us.
Hence, for k &(-,'E)'' we may rotate the contours to
—C but for (-,'E)'"(k&(-'E)'' we must take the con-

„imp

= Rep

Fio. 4. Contour in the complex p plane for evaluation of Eq. (28).

FIG. S. Comparison of amplitudes calculated along the deformed
contour, solid line, and along the real axis, dashed line. The
amplitude shown is the doublet p-wave n+d —+ e+d with one
leg on the elastic energy shell at incident laboratory neutron
energy of 14.1 MeV. T(k,k') has units of inverse momentum.

tours shown in Fig. 4. %e then have

(k,clBO(E) I p, b)P&(E,p')(p, bl T,(E) lk', d)p'dp

(k,clBO(E) I
pe-'e b)P (E p'-"~)

X(Pe-'' bl To(E) Ik', d)P'dPe "e

+ L(k,clBo(E) I p+, b)—(k,clBo(E) I p»))
XP.(Ep')(p, bi~, (E) lk', d)pdpj. (2g)

p+and p refer to paboveandbelow the cutand p is
the maximum extent of the cut along the real p axis.
%e have assumed the amplitude does not have such
a cut. Ke can easily compute the discontinuity in the
Born term across the cut, but we do not know the am-
plitude on the real axis, in general. Examination of (21),
however, shows that as k goes from (-'E)" to (-'E)'"
p„goes from zero to (E/6)'". Since (E/6)''&(-'E)' '
and for k&(-,'E)'~' we know the amplitude along the
real axis from the rotated contour integral only, the
problem is solved. To calculate the amplitude for
k&(~E)'" we calculate the integral along the rotated
contour. For k) (2E)'~2 we add the part from the Born
cut, but we only need the amplitude for k & (—',E)'~' to do
this, and we have that without the extra cut. This is the
prescription we have used in the paper.

In Fig. 5 we show an amplitude calculated in this way
as well as the erratic amplitude obtained from inte-
grating along the real axis and averaging over the loga-
rithmic singularities. The oscillatory behavior shown
in the figure depends on the integration mesh. For the
amplitude on the energy shell there is also considerable
gain in phase-shift accuracy in a few partial waves from
going to deformed contours, although there is no sig-
nihcant e6ect on the cross sections.
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Fzo. 6. Proton energy spec-
trum in the breakup at proton
laboratory angle of 4.8' for two
choices of neutron-neutron
scattering length. The experi-
mental data are from Ref. 3.
All quantities are in the labora-
tory frame.
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In all this analysis we have assumed the scattering
amplitude itself has no singularities that hamper our
contour deformation. In principle we should verify this.
A method for locating the singularities of the amplitude
is to assume they all come from the Born term, put
their location in under the integral in (1) and study by
contour pinching what new singularities are generated
in the amplitudes; put these in in turn, and so on until
no new singularities appear. This is essentially equiva-
lent to finding all the singularities in the Neumann
series. Since it has been shown that this series exists for
sufficiently large energy, " it would be surprising if the
number and location of singularities depended drastic-
ally on the energy. Unfortunately, we have not been
able to carry out this program in full largely because the
number of singularities generated in each iteration in-

creases. It does seem that they get farther away from

the real axis in each iteration so that the contour rotation
procedure is valid, but we cannot prove it. In the special

case of no vertex function, that is, replacing all the

factors of 1/(ks+Itl') by 1, the number of singularities

is small and does not increase and we can show that the
rotation procedures are valid. Unfortunately, this is a

» V. V. Yam, doctoral dissertation, University of Pennsylvania,
1965 (unpublished).

singular case for which Fredholm theory is not valid. "
Therefore the problem remains open.

IV. RESULTS

We have calculated by the methods outlined above,
the differential proton energy spectrum at fixed angle
do/dQ„dEs for the reaction n+d~ 2n+p at several
laboratory angles for incident laboratory neutron en-
ergy of 14.4 MeV. Our theoretical results are shown in
Figs. 6 and 7 where they are compared with the avail-
able experimental data. ' ""The experimental proton
energy resolution is 0.75 MeV. Our theoretical curves
do not include any energy smearing. At 4.8' where the
neutron-neutron low-energy interaction is most impor-
tant, we show the theory with both choices of neutron-
neutron scattering length in the final propagator. The

"R.D. Amado, Phys. Rev. 132, 485 (1963).
'~ K. Ilakovac, L. G. Kuo, M. Petravic, I. Slaus, and P. Tomas,

Nucl. Phys. 43, 254 {1963).
"The results of an apparently similar but less extensive calcu-

lation have been reported by Phillips PA. C. Phillips, Phys. Letters
20, 50 (1966)g. His results are quite different from ours and shed
no light on the scattering-length problem. The reasons for the
discrepancy of the two calculations are not clear. We should note,
however, that Phillips obtains his two-body o8-energy-shell
amplitudes by straightforward solution of the integral equations
along the real axis, and as we noted above, this can be a dangerous
procedure.
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Fn. 7. Proton energy spectra at proton laboratory angles of 10', 20', 30', 4$'. The experimental data is from Ref. 13.

general features and trends of the experimental data
are reproduced by the theory. The magnitudes are not
so well reproduced. The fact that we are low at the
forward angles and high at the backward angles is con-
sistent with our having the correct total cross section. '
The disagreement, particularly at the forward angles,
presumably arises from our neglect of higher partial
waves ln the nucleon-nucleon foI'cc. To send a pI'oton
nearly straight ahead with most of the neutron incident
energy, we require a fairly energetic "head-on" collision
involving many forces we have lef t out. In spite of these
inadequacies we 6nd the ability of our simple zero-
parameter three-body theory to fit the data as well as
it does gratifying. In fact the experimental data at the
smallest angle is actually an average over 0' to 8' and
thc closs scct1on 1S rapidly valylng with aDglc 1D this
region. Averaging our theory over such angles might
improve agreement with experiment. In Fig. 8 we plot
separately the doublet and quartet contribution to the
diGerential cross section at a proton lab angle of 4.8 .
The pronounced peak near maximum proton energy in
the doublet is a reRection of the large neutron-neutron
scattering length. At all angles the predominant struc-

ture of the differential cross sections comes from the
doublet contribution, the shape of the quartet contri-
bution being essentially featureless. %'e demonstrate
this point in Fig. 9 where the doublet and quartet con-
tributions at proton angles of 30' and 45' are plotted
separately and compared with phase space at 45'. Note
that the peak near maximum proton energy persists io
the doublet (although greatly diminished) even at these
angles. In the cross section it would be dificult to see
with present energy resolution.

V. WATSON THEORY AND THE NEUTRON-
NEUTRON SCATTEMNG LENGTH

Ke have seen that our theory does not 6t experiment
suSciently well to allow the question of the neutron-
neutron scattering lengths to be settled. Since our theory
is exact (within the limitations imposed by the restric-
tive interactions we take) it may be used, not just to
compare with experiment, but also to compare with the
approximate theories used to study breakup. The most
popular of these is the 6nal-state-interaction theory of
Watson. ' The strong peak at the upper end of the proton
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FIG. 8. Doublet and quartet contributions to proton energy
spectrum at 4.8' with neutron-neutron scattering length of
—23.78 F.

energy spectrum for forward proton angles in the experi-
mental data and in our theory seems to indicate consid-
erable enhancement due to final-state interactions be-
tween the two neutrons at very small neutron-neutron
relative energy. Watson theory would describe this en-

hancement by saying that in this region the breakup
amplitude has the phase of neutron-neutron scattering
and therefore has the rapid dependence of that ampli-

tude. Thus, near maximum proton energy in the forward
direction, we can write the break-up cross section in
the three-body center-of-mass system as

do/dE~dQ= C'k/
I
ik+-,'rok' —1/a I', (29)

where a and ro are the neutron-neutron scattering length
and effective range and k is the magnitude of the relative
neutron-neutron momentum. It is related to the proton
momentum p and the total center-of-mass energy E by
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a, both the exact and the Watson result peak at about
the same proton energy, but the Watson peak is wider
in both cases than the exact result. Since in comparing
the Watson theory with the experiment one would
normalize it and smear it over the experimental resolu-
tion, which has always been much wider than the 0.05-
MeV difference in the position of the peaks, it is the
width of the peak that is relevant to extracting the
scattering length. Since, furthermore, the larger scatter-
ing length gives the narrower peak, an analysis by
Watson theory of our data smeared to simulate the ex-
periment, would give too large a scattering length. Addi-
tion of the breakup cross section from the quartet
channel (which is incoherent with the doublet and does
not depend at all on the neutron-neutron scattering
length) would complicate the issue further since it turns
out to be small, but rapidly varying in this region.

One further point about the relation of our theory to
Watson theory deserves mention. One might guess that
the statement of the validity of Watson theory trans-
lated into our model is that near maximum proton en-

ergy only the term in which the last interaction is be-
tween the neutrons is important. That is, of all the terms
only the one in which the correlated pair in Fig. 1 is
a neutron pair is important. Since the entire rapid
Watson-type dependence of this term is in the neutron-
neutron propagator, a further criterion for the validity

k = (k~ 'p'P'—- (30) Quartet

The factor of k in front of the right-hand side of (29)
is a phase-space factor and C is a positive constant not
given by the theory. It represents the part of the
breakup that occurs before the final neutron-neutron
scattering and is assumed to depend weakly on k or p in
this region. It is used to normalize to the data. Equation
(29) for the breakup is plotted for the two choices of
scattering length in Fig. 10, along with our exact results
for the doublet part of the breakup only. The Watson
result has been normalized to the exact one at the peaks,
and only the upper end of the spectrum is shown, since

only it is relevant. We see that for the two choices of
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FIG. 9. Doublet and quartet contributions to the proton energy
spectrum at 30' and 45'. At 45' we also show phase space.
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of Watson theory is that the off-energy-shell ed —+ prp

amplitude depend weakly on the proton momentum.
In fact this does not happen. The propagator does give
a factor just like the Watson factor in (29), but the
nd —+ py amplitude is rapidly varying in this region and
the term taken as a whole does not have the sharp
peak. In Fig. 11 the contribution to the cross section
from the term corresponding to Fig. 1 with final neutron-
neutron term is plotted and compared to the full theo-
retical cross section. The neutron-neutron term is of the
same order of magnitude as the full cross section but
because of the rapid dependence of the off-shell ampli-
tude, much less strongly peaked. %hen the other terms
contributing to the breakup are taken, however the
peak reappears. This occurs through a complex inter-
play of amplitudes and phases and it is not clear whether
it is an accident or not. The only clue we have so far is
that the off-shell amplitude seems to have a square-root
singularity at maximum proton energy, which would
account for its rapid variation. However, the general

question of whether the resemblance we Gnd between
Watson theory and the exact theory is an accident re-
mains. If the confusion of Watson theory in this prob-
lem is due to the square-root singularity in the off-shell
amplitude, it is a threshold effect and would not apply
to problems in which there is a resonant two-particle
interaction above threshold. We are presently studying
these questions.

VI. CONCLUSIONS

As a result of our calculations of the reaction n+d
—+ e+e+p with separable 8-wave spin-dependent in-

teractions between pairs we conclude:

(A) The exact treatment of the three-body problem
with abbreviated two-body forces accounts for the major
features of the breakup reaction.

(B) Better agreement with experiment requires a
better two-body force. Probably this would mean going
to a considerably higher level of difFiculty and would re-



866 R. AARON AN D R. D. AMADO

[ r t

15

10

11.0
I

11.2
I

I 1.5

Kp (MeV)

I

I I.'8
I

11.9
I

12.0
I

12.1 12.2

FIG. 11.Contribution to the cross section involving only final neutron rescattering, dashed line,
compared with full doublet for the two scattering lengths, solid line.

quire the use of very large fast computer memories,
which are now just becoming available. It would cer-
tainly require the contour-deformation methods we
have outlined in Sec. III, because of the reduction in
computer storage space it allows.

(C) Short of a really good theory that fits all the data,
it does not seem hopeful that one will be able to extract
the neutron-neutron scattering length from n-d breakup
experiments with confidence. In particular, watson
theory seems to be misleading in this reaction.


