
ANGULAR D ISTRI BUTION F ROM H I GH —SP I N STATES

By inspection, we can conclude that the spread of the
spins around the direction of the plane perpendicular
to the beam does not alter the angular distribution
signi6cantly, yet it makes it R little more isotropic, as
expected.

Now thc angular distribution is calculated, and the
collective states are assumed to be in the statistical
region. Equations (11) and (12) are used to evaluate
A~.. For a nucleus with 200 nucleons having rigid
moments of inertia and a temperature of j. McV, we
obtain for J=30:

P(8)ui+1.969 cos'8—1.404 cos48. (16)

Again this angular distribution has to be compared
with Eq. (13c) when J-+J—2 and J=30.

E(8)cei+1.355 cos'8—0.723 cos'8. (13c)

Comparison between Eq. (13c) and (16) shows that
the angular distribution for the two cases differs
considerably.

Finally, thc angular distribution for levels in the
statistical region based on the collective model has to
be compared with results in the same region based on

the single-particle model, ' Eq. (1'I), and on the liquid-
drop model, s Eq. (18). For convenience, again a com-
parison for J=30 is made:

P(8)oti 0—04.cos'8, (17)

E(8)o.1+2.967 cos'8—2.868 cos48, (18)

E(8)ni+1.969 cos'8 —1.404 cos48. (16)
Equations (16), (1/), and. (18) show that the angular
distributions di8er from one another significantly.

IV. SUMMARY

Fo1 a CRSCRde of lotRtlonRl states ln which j~J—2~J—4, the angular distribution is weakly dependent
on J and 3I and is not very far from the asymptotic
form as shown in Eq. (13e). For collective transitions
in the statistical region, on the other hand, the angular
distribution is strongly model-dependent.

Therefore signjt6cant information about the nature of
nuclear states can be obtained from measurement of the
angular distribution of gamma rays from high-spin
states with their spin close to the plane perpendicular
to the' hcavy-1on beam.
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A velocity-dependent potential of the form

V(r,y) = V&(r)+P'e-"—'Vs(r)+Vs(r}p'e
where Va(r) and Vs (r) are Gaussians, is used to 6t the singlet (Q-32Q-Me+) phase shifts for elastic nucleon
nucleon scattering. This exponential velocity dependence replaces the hard core with a short range repulsion~hie»s much»f««han the case of quadratic (e=0) velocity dependence used by Green Levfnger et a$
The two-body scattering problem is solved in momentum space by numerical summation of the porn series;
the So scattering length ls calculated separately by a rapid matrix-inversion method The apphcablbty of
ordinary many-nucleon perturbation theory for this interaction is tested by calculation of the first-order
(Pi) and second-order {P2}potential energy per particle of nuclear matter. A rapid singlet-even convergence
rate of P&/Pi =4.3'pq at k~ —-1.5 F follows as a result of the reduced o8-energy-shell matrix elements of this
two-body interaction, One also 6nds qualitative agreement with the singlet-state potential energy per
particle obtained by Sprung et ul. in their complete nuclear-matter calculation. The harmonic-oscillator
matrix elements required for Hartree-Fock calculations of spherical nuclei are evaluated quite simply for
this potential. Also, since this potential readily separates into relative x, y, and s coordinates, it is well
suited for Hartree-Pock calculations of deformed nuclei.

I. INTRODUCTION
'"

N 1951, Jastrow' proposed a hard-core repulsion as a
~ ~ simple explanation for the observed isotropic pro-
ton-proton scattering at 350 MCV. He realized then
that "Since there may be appreciable nonstatic con-

*Research supported in part by the National Science Foundation.
)Oak Ridge National Laboratory operated by the Union

Carbide Corporation for the U. S. Atomic Energy Commission.' R. Jastrow, Phys. Rev. 81, 165 (1951).

tributions at 350 MCV, the quantitative implications of
a static potential which has been fitted, in part, to a
cross section at that energy must not be given undue
weight. "' Indeed, a quadratically velocity-dependent
repulsion was 1ater found to be consistent with high-
energy (310-MeV) elastic nucleon-nucleon scattering
by Levinger and co-workers. '

~ M. Razavy, G. Field, and J. S. Levinger, Phys. Rev. 125, 269
(1962); O. Rojo and L. M. Simmons, ibid. 125, 2'i3 (1962}.
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The inapplicabi1ity of perturbation theory for cal-
culating nuclear binding energies using such velocity-
dependent potentials was demonstrated by Green and
da Providencia' when they found a relatively slow
convergence rate. It became necessary to invoke the
methods developed especially for strong, short-range
interactions by Brueckner, and others. 4 Using such
methods, Bhaduri and Preston' concluded that a modi-
6ed Levinger-Green potential produces saturation of
nuclear matter provided the two-nucleon wave func-
tion has the appreciable distortion characteristic of a
strong, short-range repulsion.

The numerical approximations usually made in nu-

dear matter calculations were recently examined by
Brown, Schappert, and Wong, who concluded that
nuclear matter was underbound for potentials having a
hard-core repulsion. Saturation was signihcantly im-

proved by using a "soft" finite repulsion which was

adjusted to 6t two-nucleon scattering data. ~ One might

hope again that perturbation theory is applicable;
however, a nuclear-matter calculation by Sprung'

clearly demonstrated that ordinary perturbation theory
cannot be employed even for these static "soft" core

repulsions.
These parallel developments indicate that for either

static or nonstatic potentials, which are consistent with

two-nucleon scattering, one must deal with very strong,

if not in6nite, repulsions to obtain the correct binding

of nuclear rnatter. Consequently, for the type of potentials

considered, one must face the extremely dificult task
of applying Brueckner theory to 6nite nuclei.

Nevertheless, it has now been clearly shown that the

Hartree-Fock method is a practicable scheme for de-

termining nuclear properties; the harmonic-oscillator

matrix elements of a snsooth two-body interaction are

the basic input information for these calculations.

Muthukrishnan, Krieger, Davies, and Baranger' have

emphasized that the interaction employed must yield

the correct saturation with small second-order correc-

tions for nuclear matter, whereas Svenne, Kerman, and

'A. M. Green, Nucl. Phys. 33, 218 (1962};J. da Providencia,
ibid 40, 321 (196.3); J. S. Levinger, M. Razavy, 0. Rojo, and N.
Webre, Phys. Rev. 119, 230 (1960); 121, 1863 (1961).

'K. A. Brueckner and K. S. Masterson, Phys. Rev. 12S, 2267
(1962);K. A. Brueckner and C. A. Levinson, ibid. 97, 1344 (1955);
H.. A. Bethe, ibid. 103, 1353 (1956); 13S, B804 (1965}; S. A.
Moszkowski and 3. L. Scott Ann. Phys. (N. Y.) ll, 65 (1960);
14, 10'I (1961);Nucl. Phys. 2, 665 (1962).' R. K. Bhaduri and M. A. Preston, Can. J. Phys. 42, 69 (1964).

6 G. E. Brown, G. T. Schappert, and C. Vf. Kong, Nucl. Phys.
56, 191 (1964}.

~ C. %. Iong, Nud. Phy. 56, 213 (1964); 71, 385 (1965};
C. Bressel, A. Kerman, and E. Lomon, Bull. Am. Phys. Soc. 10,
584 (1965).

s D. %'. L. Sprung, MIT Report No. 2098-201, 1965
(unpublished).

~ R. Muthukrishnan and M. Baranger, Phys. Letters 18,
160 (1965); R. Muthukrishnan, thesis, Carnegie Institute of
Technology, 1965 (unpublished); K. T. R. Davies, S. J. Krieger,
and M. Baranger (to be published).

Vil)ars'~ have stressed the importance of 6tting the two-
nucleon scattering data.

We are motivated by the establishment of these Har-
tree-Fock procedures to re-examine the role of the
short-range repulsion. Our goal is to simultaneously
6t two-nucleon scattering experiments and the satura-
tion curve for nuclear matter with a smooth inter-
action. This approach will perhaps indicate the extent
to which strong, short-range correlation effects should
or should not be included in 6nite-nuclei calculations.

In a previous study of this problem, "a procedure of
reducing the oft-energy-shell matrix elements of the
two-nucleon interaction was used to generate a very
smooth effective potential which still matched the scat-
tering data up to 320 MeV. As a preliminary example,
separable potentials were used to 6t the two-nucleon
phase shifts. Successful application of this very phe-
nomenological interaction to nuclear Hartree-Fock cal-
culations, '0 " shell-model calculations, "proton-proton
bremsstrahlung w the photonuclear dipole sum rule 's

and to excited states of the alpha particle, " indicate
that the reduction of oB-energy-shell matrix elements
while 6tting the two-nucleon phase shifts is a reasonable
and useful procedure. IIoweeer, the establishment of a
correct saturation of nuclear matter was not complete,
particularly in the I' wave poten-tial energy calculation
and in the approximate calculation of the second order-
energy per particle terms. A valid calculation of these
second-order terms is now possible. '~ In addition, we
now introduce a velocity-dependent interaction, in-

cluding a long-range local part, which we believe is more
convenient and more realistic.

In Sec. II, we de6ne this smooth velocity-dependent
potential as a simple extension of the Levinger-Green
interaction and in Sec. III show that a reasonable 6t
to the singlet two-nucleon phase shifts is possible. A
nuclear-matter calculation is presented in Sec. IV
along with the demonstration of a rapid convergence of
ordinary perturbation theory. We compare our singlet
state results with those obtained by Sprung and Reid"
in their impressive calculation using the reference

spectrum method of Bethe, Brandow, and Petschek. "
'0 J. P. Svenne, thesis, MIT, 1965 (unpublished); J. P. Svenne~

A. K. Kerman, and F. Villars, Phys. Rev. 147, 710 (1966).
x' F. Tabakin, Ann. Phys. (¹V.) 30, 51 (1964)."J.P. Svenne, W. H. Bassichis, and A. K. Kerman, Bull. Am.

Phys. Soc. 11, 305 (1966); Y. R. Waghmare, J. P. Svenne, and
A. K. Kerman, ibid. 11,305 (1966}."T.T. S.Kuo, E. Baranger, and M. Baranger, Nucl. Phys. 81,
241 (1966);T. T. S. Kuo, thesis, University of Pittsburgh, 1964
(unpublished); C. %'. Lee and E. Baranger, Nucl. Phys. 79, 385
(1966).

I. D ck d W. A. P, Phys. L tt 21, 669 (1966).
"M. Weigel and G. Sussmann, Z. Physik 190, 267 (1966)."Bruce R. Barrett (to be published).
» K. T. R. Davies and M. Baranger (to be published)."R. V. Reid (private communication); D. W. L. Sprung,

P. C. Bhargava, and T. K. Dahlblom, Phys. Letters 21, 538
(1966).
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Rev. 129, 225 (1963).
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Finally, the convenience of this velocity-dependent po-
tential for Hartree-Pock calculations is illustrated by an
explicit evaluation of the relevant harmonic-oscillator
inatrix elements (Sec. V).

Vi(r) = Vie—""'
V,(r) = V,e-o'" (2)

A particularly convenient choice for C(p'), the cutoff
operator, is

where C(p') is made dimensionless by introduction of
the inverse range b of the local function Vo(r). The
quantity s, the smoothness parameter, controls the
magnitude of the oG-energy-shell matrix elements of
the interaction, and the energy at which this cutoff
becomes effective is determined by E,=(2ko/no)s '.
Larger values of s should lead to smaller second-order
corrections in nuclear matter. The dimensionless pa-
rameter D speci6es the relative amount of static to non-
static repulsion; the static force is associated with the
strong, short-range correlations which, if possible, are to
be minimized. Therefore, we have teltutieely set a=0.

The smoothness parameter s can also be understood
as the range of nonlocality of the operator C(p'),

(rI C(p')
I
r') =

~it. (r-r')
dk —e—""'

(2n)' b'

= (16ir'/'b's') '(3—-'~ 'P)e "'""' (4)

In the limit s~o this operator becomes the second
derivative of a delta function and we return to the
Levinger-Green potential. For s)0, Eq. (4) is a func-
tion of the nonlocality $= Ir—r'I which peaks at
&=0 with a smear of range s. The repulsive term in the
Schrodinger equation is therefore the nonlocal kernel

{( ICI ')V(')+V()( ICI '))+(')d '

where the two ranges b and s both determine the
dominant regions of the integration over r'.

a. 7Hz vzl. ocul-ozpzNDzmT Dt TzaacTIom

Let us de6ne a velocity-dependent interaction in the
Hermitian form

V(r,n) = —Vi(r)+C(p') Vo(r)+ Vo(r)C(p'), 0)
where j.' and y are the relative coordinate and mo-
mentum, respectively. %'e seek a generalization of the
Levinger-Green potential which should significantly
reduce the o6'-energy-shell matrix elements of the po-
tential and thereby generate the smoothness requisite
for a rapid convergence of many-body perturbation
theory. We have taken Vi(r) and Vo(r) to be Gaussian
functions

It is clear that the introduction of the operator C(p')
complicates the solution of the two-body scattering
problem considerably; however, we are willing to pay
this price if it is at all possible to use perturbation theory
in many-nucleon calculations. We now discuss one way
of determining the two-body phase shifts and wave
function for such nonlocal interactions. In order to
avoid the complications of the 'Si+'Di state, we have
restricted ourselves to the singlet states in this study.

re. sol.mrom oz 7Hz scHRoolmezR
EQUATION

To solve the Schrodinger equation, we iterate and
then sum the Born series. There is no bound state in
the singlet states and one could expect convergence of
this series for a sufficiently smooth operator C(p').
The '50 state is almost bound and the Born series con-
sequently converges very slowly at low energies; there
fore, the scattering length has been calculated by a more
rapid method.

The Lippmann-Schwinger equation for standing-
wave boundary conditions is

"dk'k" V&(k Ik')Z, (k'Iko)
A(kIk, )= V,{kIk,)—z

T ~ 0 0

oo

= Vi(kIko) —— dk'

k"Vi(k
I
k')R(k'

I ko) —ko'Vi(k
I ko)R/(ko I ko)

X
k ko

where a zero term is included to provide a nonsingular
integrand. Here k, k', and ko refer to relative momenta,
and the laboratory collision energy is E1.=2Xko' with
&=A'/kg=41. 5-MeV fermi'. The potential is expanded
as

2
(kI V

I
k') =—X Q V/(k Ik') &i„(k)V/~e(k'),

and the potential function V/(k I
k') is

Vi(k I
k') = —(n'/o V /4a9, )e '"+'"/4"i i(kk'/2u')

+ (wl/2V /4boP, )e (&+I'o) /4bo& (—kk /2bo)

)((C(k)+C(k') ), (8)

with C(k) =(k'/b' )e " '; oi(x) is a modiffed spherical
Bessel function of the first kind. '0 The E. matrix,

2
(k'I VI +oo&= & 2 &i(k'I ko)&i (k')&i *(ko) (9)

'o HatuSco kof kf athernaiica/ Fane/con's, edited by M. Abramowitz
and I. A. Stegun (U. S. Department of Commerce, National
3ureau of Standards, Washington, D. C., 1965), Chap. 10, p. 443.
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yields the 3th partial-wave phase shifts for diagonal matrix elements

tanbi(ko) = —koR((ko
~ ko),

whereas knowledge of the off-energy-shell elements (kook') determines the complete two-body wave function

- dk k"&,(k")R,(k ~k.) 2 - k' J,(k")R,(k'~k.)—k. ~i(k;)Ri(ko)k. )
P,(,)= Z.,(k,&)—-P = q&(kor) — dk'---

a

vr 0 k"—ko' 0 k"—ko'

The nonsingular integrands in Eqs. (6) and {11) evaluated at ko=k' are easily expressed in terms of the
derivative of the R matrix,

,
k"(f)leak) vl(k

~
k')R (k'~ k )—k '(8/ak) v (k ( k )R (ko/ko)—Rg(k iko) =—Vi(k [ko)—— dk'

Bk Bk g k"—ko'

Equations (6) and (12) are simultaneously iterated
beginning with the known values of V&{k~k') and

(f)/Bk) V&(k I
k ) The mapping k' 2Xr/s/(1 goo)

the finite region 0&5&1 gives convenient values of k,
k', and ko, for which the integrals are accurately
evaluated with twenty"point Gaussian 1Qtegratlons.

At low energies the Born series for the '50 scattering
converges very slowly; therefore, the singlet even scat-
tering length u. was evaluated. using the relation ()=0),

o,=iim (—tan&o/k)=hmRo(kl0),

potential is smooth enough. For s=o, we 6nd that the
Born series diverges as a result of the dominance of the
operator C(Ps) with increasing energy.

Our parameter search procedure has been to adjust
Vi to give the scattering length a, using Eqs. (13) and
(14); the effective range determines another parameter

TAnrz I. The singlet-even (SEI, SE2) and singlet-odd (So)
potential strengths V1, V~ given in MeV, the inverse ranges e
and b given in (fermis); the scattering length e, and effective
range r are in fermis and the cutoff energy E,=2Xs ~ is in MeV.

where Ro(k
~
0) satisfies the integral equation

ta

R,{k(0)= V (k )0)—— dk'Vo(k
(
k')Ro(k'(0). (14)

SE1 96.0'1 5500 0.85 3.0 240 —24.17 2.42
SE2 94.44 4500 0.85 3.0 332 -24.08 2.34
So 0 1000 ~ ~ «1 14 83 t 1 ~

After the integral is replaced by a ten™pointHermite
integration formula, so the function R(k~0) is rapidly
found to an accuracy of 1% by a matrix inversion. To
calculate the CBective range it is then only necessary
to iterate Eqs. (6) and (12) twenty times. At higher
energies the Born series converges rapidly provided the

u and we are left with three free parameters Vs, k, and
s to 6t the 'Sg and 'Do phase shifts. ""The results of
this adjustment are presented in Figs. j. and 2 and
Tables I and II. The corresponding (Ez,—1.14 MeV)—
wave function is shown in Fig. 3 and is seen to be very
smooth. At higher energies the wave function is, of
course, pushed out by the repulsion; however, the wave
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FIG. 1. The 'So phase shifts for the SE1 potential parameters

(see Table I) as a function of laboratory energy. Also shown are the
erst-Born-approximation phase shifts. The circles are the VLAM

(Ref. 22) and the triangles are the Amdt-MacGregor (Ref. 21)
phase shifts.

40 80 . 120 l60 200 240 280 320 360
ENERGY (LAB) (Mev)

Fxo. 2. The 'D~ phase shifts for the SE1 potential parameters
as a function of laboratory energy. The circles are the VLAM
(Rcf. 22) and the triangles are the Amdt-MacGregor (Ref. 21)
phase shifts.

21 R.. A. Amdt and M. H. MacGregor, Phys. Rev. 141, 873
(19t t ).

~2 G. Breit et A., Phys. Rev. 120, 2221' (1960); 122, 1606 (1961).
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FIG. 3. The two-body wave function of relative motion in the
'So (SE1); this case if for E{LAB)=1.14 MeV and 80=0.952
radians.

function is smooth at all collision energies. It was also
found that 6tting the singlet-even phase shifts requires
small values of s and b ', thereby confining nonlocality
effects to short distances. A singlet-odd ('Et) 6t is
presented in Fig. 4 and Tables I and II; the errors in-
dicated for these phase shifts are quite large and are
taken from Ref. 2j.. Ke have, of course, several alter-
native singlet phase-shift 6ts; the 6ts presented here
have been selected on the basis of the following nuclear-
matter calculation as well as the phase-shift 6t.

The qualitative phase-shift fits obtained for this
interaction indicate that nucleon-nucleon elastic scat-
tering does not by itself demand a hard-core repulsion
if nonlocal or velocity-dependent eGects are permitted.
Therefore, we now investigate the binding energy of
nuclear rnatter as a further indication of the role of the
short-range repulsion.

IV. NUCLEAR MATTER

Nuclear matter is an in6nite system of interacting
nucleons which is made amenable to theoretical
studies by elimination of the nuclear-surface and
Coulomb-force difhculties. This hypothetical system
determines whether a given two-nucleon force would
yield the correct binding and density when applied to

FIG. 4. The 'E& phase shifts for the singlet odd (SO) potential
parameters. The circles are the YLAM phase shifts (Ref. 22)
while the Amdt-MacGregor phase shifts are indicated by the
error bars.

6nite nuclei. For example, the intimate relation be-
tween the saturation of energy and density for the
in6nite and 6nite systems has been demonstrated in
recent calculations employing saturating forces for
which the Hartree-Fock method should be applicable. '

Moreover, a potentiap having a soft-core repulsion
failed to give binding in both the in6nite and 6nite
systems when calculated by perturbation theory and
the Hartree-Fock method. ' "This does rot imply that
such forces are unrealistic, but rather that the use of
perturbation theory and of the Hartree-Fock method is
invalid for such forces. These calculations illustrate
another service provided by nuclear-matter studies,
namely, the validation of the calculational method,
which is the aspect of nuclear matter emphasized in
this paper. To validate the use of the Hartree-Fock
method for 6nite nuclei, a perturbation-theory calcula-
tion of the binding energy of nuclear matter should
converge rapidly.

For this reason, the energy per particle E/A of in-
6nite nuclear matter has been calculated using

E/A = ,'eP+I'L+I's—
where the Fermi energy is es ———,Vs'. ()L= Is'/its) and

TanLs IL The calculated phase shifts (radians) as a function of laboratory energy for the 'So(SL), 'pL(bL), and 'DL(SL) singlet states.
Also shown are the corresponding f}jrst-Born-approximation phase shifts bog, B~, .and b2q.

SE1

L=O
&0 &oa

SE2 SE1 SE2 SE1

l=2

SE2
8'

SEi SE2
8y

SO
&is
SQ

5.98
26.71
60.42

103.96
153.3
203.8
252.7
332.6
462.0

1.05
0.854
0.610
0.394
0.221
0.094

0.45X10 ~

—0.087-0.130

1.06
0.871
0.632
0.414
0.233
0.092-0.015—0.147—0.276

0.396
0.602
0.593
0.446
0.236
0.048—0.078—0.180—0.177

0.391
0.602
0.602
0.459
0.235
0.011—0.161-0.337—0.432

075X10 4

0.27X10-~
0.016
0.047
0.088
0.128
0.160
0.198
0.229

0.74X10 4

027X10 ~

0.016
0.046
0.086
0.125
0.157
0.193
0.222

0.71X10 4

0.25X10 ~

0.015
0.041
0.077
0.111
0.140
0.176
0.209

070X10 4

025X10 ~

0.015
0.041
0.075
0.110
0.138
0.172
0.204

—012X10 '
—038X10 '
—0.155—0.303—0.413—0.449—0.419—0.290—0.109

—018X10 R

—0.54X10-~—0.232—0.424—0.493-0.455-0.371—0.220—0.072
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TABLE III. The potential energy per particle of nuclear matter (MeV/A) as a function of kz (ferlms) for the various singlet-star
potentials. Here I'1 and E~ are the erst- and second-order potential energy per particle, respectively, and E1L'501 is the 6rst-order
potential energy per particle from the 'So state alone.

Z, I
IS,j

SE1 SK2 SK1 SE2 So SE1
P2
SE2 SO

1.2
1.4
1.5
1.6
1.8

—12.78
—17.74
—20.29
—22.81
—27.63

—12.78
—17.81
—20.40
—22.97
—27.81

13427
—18.99
—22.16
—25.51
—32.74

13427
—19.04
—22.24
—25.61
—32.83

+ 1.66
+ 3.58
+ 4.91
+ 6.50
+10.37

—1.01
—0.94
—0.96
—1.04
—1,38

—1.06
—1.06

1 ~ 15
1e32

—1.88

—0.43
—0.74
—1.88
—1.01
—1.18

the density of nuclear matter is

P = (2/3Ir') kv'.

';the first-order potential t-=Iiergy Pj is calculated froIIl
the poteotial function V/(//~k) LEq. (8)j»sing

kJ

EI———X g (22+1)(2T+1) dk

V. HARMONIC-OSCILLATOR MATRIX
ELEMENTS

In this section, the velocity-dependent potential
defined by Eqs. (1), (2), and (3) is shown to be particu-
1al;l')~ convctl. icll t for .l.Iai tl'ce-Focts. calcula t1oris which
CIIlploy llarIIIooic-osctllator wave 1 tltlcttoIIs 'D, .(r) ds
ihe initial basis for the single-particle orbitals. The
essential two-body information is then contained in the
matrix element

3 k I k'~
Xk 1—— — Vzkk, 1/ p V y, = — ~*rt/, g ~ re

2 kp 2 kI.")

whereas the second-order potential energy per particle
I'~ is given by + q „*(r)V,(r) j „(r)dr

AX PI'(~
or &P

(/Iv i
V

i or)(o r
i
V i,/Iv

' vt)I—
k„'+k,I—k.'—k, ' + P.*(r)V2(&) ~ (r)dr, (19)

JTSZZ'
dK dkdk'J'Iv"'(K, k,k') . (18)

Here the quantum numbers JTS denote the various
allowed two-body states and we have taken the effec-
tive mass III*=III. Equation {18)involves an integration
over the domain S defined by the overlap of two Fermi
spheres separated bye with @12K+k~ &kv and P~IK&k'~

p kp. PI'cvlous rough approximations fol thc lntcgI'a, -

tion over X) have not been employed here; instead,
the second-order potential energy E2 has been accurately
calculated using a complete method of integrating
which is described in Ref. 17. The function Fzz.

ls given ln Rcfs. 11 and 17.
The first- and second-order potential energy per

particle are presented in Table III and in Figs. 5 and g.
The convergence rate PI/PI=4. 3% at kv=1.5 F is
seen to be very rapid in the singlet-even state when
s=0.585 F.A smaller smoothness parameter gives much
slowct co11vcl'gc11cc wlllch bccolllcs I'I/I I= 24%
(kv ——1.5 F) in the Levinger-Green s=0 limit. For the
singlet-odd (IEI) state the convergence rate is only
EI/81=18% at kv=1.5 F, which is su%ciently rapid
for these smaller potential energy contributions. The
significance of these results will be discussed in Sec. VI.

where p, and v denote the quantum numbers nlm for
the relative motion of two nucleons in a common
harmonic-oscillator potential. The function p„(r) is
related to the harmonic-oscillator wave function
v. (r) by

I/ (r) =(rlc(P') I V.& (20)

We assume that the Moshinsky-Brody transformation
to Ielative coordinates as well as proper treatment of
spin and isospin have already been included. Exchange
matrix elements present no difficulty; a factor of
1—(—1)s+r+I is simply introduced.

The fIrst term of Eq. (19) is easily evaluated using the
normalized harmonic-oscillator wave function

~ (I)—l1T (Pr) lo—(//2m~/I)1 I+I/I(PIrI) P' {r)

where the oscillator length is P '=(2A/cue)I/' for the
standard de6ni. tion of coordinates r= r~—r~ and
R= g(fI+rI). Tile normahzatlon Is E~t =2P F(II+1)/
/tl'(n+I+ ~a) g The requi. red integral involves the
Laguerre polynomials I. '+'~' and is found in a table
of Laplace transforms. " The result is given in the
Appendix.

23 Bateman Manuscript project, Tables of Integru/ Transforms
(Meoraw-Hill Book Company, Inc., 1954), Vol. I and II.



For the nonlocal part of the matrix element, we must
first evaluate rp„(r), which is expressed as

-l2

e l4,

lS'

~ik. t
e—""y„(k).

bs Bss (27r)sls

The harmonic-oscillator wave function in momentum
space ks

p„(k) =E g 'i'" —'(k/p-)'e &&'i»'

&(L„'+'is(ks/Ps) Fi„(k). (23)

Fortunately, the integration required in Eq. (22) is
foiUoct 10. t:d,bllla, t.cd trd, Q5forIDs '

p "20-
X

& -22-
K
hlx
LLJ

~s 24.

& -2S-l-
6

-28

&a~I= (2r' —1)"(Pr)'e te'"Jsol '+"s(UP'rs)Fr„(k),
]i+3/2

i= 1+2s—'P' U=—f '(2—t) '.
Here p, (r) is very much 1ike a harmonic oscillator which
has been scale distorted by the action of C(Ps). The final
integration required for the last two terms of Eq. (19)
is also found in Ref. 23. The harmonic-oscillator matrix
clement ks then the explkcktq 6nktc sum gkvckl kn thc
Appendix; this sum is quickly evaluated on a computer.

Another great advantage of using this form of ex-
ponential velocity dependence, along with Gaussian
forms for Vt(r) and Vs(r), is that it is also easy to find
a simple expression for the matrix elements using an
anisotropic harmonic-oscillator basis which separates
into x, y, and s degrees of freedom. %C expect therefore
that this type of potential should be useful in Hartree-
Pock calculations of deformed nuclei.

VL CONCLUSION

The qualitative phase-shift 6ts found using this
exponentially velocity-dependent potential (Figs. 1, 2,
and 4) again demonstrate the possibility of replacing
the hard core by a nonstatic, 6nite repulsion. More-
over, the off-energy-shell matrix elements of this in-
teraction are signi6cantly reduced by the cutoff operator
C(ps) "; the resulting two-nucleon wave function
(Fig. 3) is smooth as is required for the rapid converg-

'4 D. V. %'ong, Nucl. Phys. SS, 212 (1964); E. Predazzi, Ann.
Phys. (N. Y.) 36, 250 (1966); A. E. S. Green and R. D. Sharma,
Phys. Rev. Letters 14, 380 (1965).These authors have shown that
strong velocity dependence exists in the two-nucleon interaction.

l, 2 I.3 l.4 I.5 1.6 1.7
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'

Fxo. 5. The singlet even (SE1) potential energyper particle of
nuclear matter including the complete second-order contributions
(Table III) as a function of density measured by ky. The results
of Ref. 18 are indicated by circles for the Reid potential, by
triangles for the Hamada-Johnston potential, and by squares for
the Sressel-Kerman-Lomon potential.

ence of many body perturbation theory (see Table III).
The singlet-even convergence rate I' s/Et=4. 3%%uq at
k~ ——1.5 F is rapid and would be reduced even more by
introducing an effective mass m~4m.

Solution of the two-body Schrodinger equation is
greatly complicated by this radical velocity depend-
ence; nevertheless, it is possible to sum the Born series
for scattering in all but the sSi+sDt state. For this

wS
X

tn
ct: 5.
tsj
K
tLt

U4

i- 5.
O
L,

1.2 1.71.5 l.4 I 5 . I 6
FERMI MOMENTUM {ki ) {fERMIS)

Fro. 5. The singlet-odd (Sol potential energy per particle of
nuclear matter, including the complete second-order contributions
(Table III), as a function of density measured by k~. The results
of Ref. 18 are indicated by circles for the Reid potential, by
triangles for the Hamada-Johnston potential, and by squares for
the Bressel-Kerman-Loxnon potential.
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state, Weinberg's quasi-Born approximation should
be useful. "

We wish to emphasize that the phase-shift fits pre-
sented in this paper were not chosen solely for the
quality of fit. It is especially clear that the 'D2 and 'P&

6ts can and should be improved. The potential parame-
ters (Table I) were chosen by considering the cor-
responding energy per particle of nuclear matter as
well as the phase shifts.

It is not yet possible to conclude that nuclear matter
saturates with this force (for D=O) since the triplet
state contributions are not known. Nevertheless, it is
of interest to compare our singlet results, including the
second-order terms, with the singlet potential energies
per particle calculated by Reid, Sprung, Bhargava, and
Dahlblom" which were kindly made available to us.
In Figs. 5 and 6 we see that the agreement is very good.
Again, this fit is not altogether accidental, since we have
selected from many singlet fits those which give poten-
tial energies per particle closest to the Reid-Sprung
values. This procedure makes our calculation ue adjust-
ment rather thl2n l2 prediction Howev. er, we view nuclear
matter as a means of preparing a potential for use in
Hartree-Fock calculations, and consider it significant
that it is possible to simultaneously fit the phase shifts,
have rapid convergence of perturbation theory, and
agreement with the singlet nuclear-matter results of
a more complete calculation which is known to give
saturation. ' In addition, the harmonic-oscillator matrix
elements (Sec. V) are simple and should be useful in
Hartree-Fock calculations for both spherical and de-
formed nuclei.

Our 6ts should be improved by addition of the one-
pion-exchange potential, which is readily accommodated

by the local part Vr(r). The assumption of zero static
repulsion D=0 is perhaps too strict and the introduction
of some static repulsion could be helpful. The determina-
tion of the two-nucleon wave function at short distances
and the magnitude of oG-energy-shell matrix elements

is, of course, an experimental problem; we believe that
this smooth potential form may also be useful in analysis
of such experiments.
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APPENDIX

The harmonic-oscillator matrix elements of this
velocity-dependent interaction [Eqs. (1), (2), and (3)j
are given by the Gnite sum

(22nlm ~
V

~ P Pn)=m&LP&mm'&nB n'l'

t (—1)"r(n+n'+i+22 —k)on2(n, n', t)
XZ

- tIt=o (n —k)!(n' —k)!k!
(A1)

for the normalization X„22=2p2F(n+1)/[1'(n+t+-22)].
The index k takes on all integer values up to e or e',
whichever is smaller. Following the steps outlined in
Sec. V, one finds BR2(n,n', t) as a function of the potential
parameters Vg, V2, u, b, and s and of the oscillator

lengthP '= (2A/m40)'t'

5R2(n, n', l) =m2(n', n, l)
LVy2lg2(n+n') —42(g2 P2)2

X (l22+p2)kn n' l -$+—(—V—
h
—

2p
—l)

X (M2(n, n', t)+Mr (n', n, l) ) . (A2)

The function M2(n, n', l), the nonlocal contribution to
Eq. (19), is expressed in terms of the quantities t, U,
and V as

(V—U—1)&(2t-l—1)n(V —U) n—2(V—1)n' —2

M2(n, n', t) =
P'n+n'+l+I —ktl+$ 2(V—U—1)

(n+n'+t+ '2 k)-—
2Vt'

where

(n —k) U't' (n' —k)
+(t+ 22)t '+2nU+-+, (A3)

2(V—U) 2t'(V —1)

t=1+»2P2
U= t'(2 —t)-'-
V=-,'(1+t ')+P 'b'

(A4)

Computer evaluation of Eqs. (Ai) to (A4) permits rapid calcultaion of these harmonic-oscillator matrix elements.

"M. Scadron and S. Weinberg, Phys. Rev. 133, 31589 (1964).


