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In the energy regime appropriate to classical and semiclassical atomic scattering theory, experimental
data on diGerential cross sections a(8,E) and interference patterns are conveniently analyzed through the
use of reduced variables such as r =E8, p= 8 sin8o (8,E). In forward scattering, the reduced relationship is
the leading term of an impact expansion of the type p(r, E)=P E "tJ„(r). The p (r) are obtained by
eliminating the impact parameter b from expansions of the classical scattering functions of the type
r(h,E)=P E "r„(h), introduced by Lehmann and Leibfried. Backscattering data are to be analyzed
through expansions such as o(8,E)=P„(s.—8)s"o„(E), derived by eliminating b from expansions like
sr —8= y(h, E)=P h'"+'e „(E).If the scattering arises from a potential V(r), the coefficients r„(b), y„(E),
etc., are expressed in the form of integrals over the potentials which lend themselves to inversion procedures
similar to Firsov's by which a lower bound to the potential can be extracted from the scattering data. In
addition to deriving these expansions and testing them on several realistic interatomic potentials, we de-
scribe how the reduced variables they suggest can be applied to the presentation and analysis of experi-
mental data.

A. INTRODUCTION

N calculations of scattering phenomena at moderately
& ~ high energies (in the kilovolt range, for instance) the
so-called impact-parameter approximation has proven
exceedingly useful. ' In the usual treatments that ap-
proximation is based on the assumption that the
motions of the heavy particles in the collision are to be
treated not only classically but as if no deflection at all
took place in the course of the collision. In addition to
estimating total cross sections, the results of such cal-
culations have been successfully applied to the analysis
of small-angle differential-scattering experiments when
such phenomena as charge exchange were under study. '
Recently similar information has become available from
experiments in differential scattering at comparatively
large angles for which the usual assumptions of the
impact-parameter method are clearly inapplicable. '
Nevertheless, it has proved possible to analyze the data
by methods which are a simple extension of those sug-

gested by the simple forms of approximation. Clearly a
further development of the underlying theory of the
method is desirable, and it is to this task that the present
work addresses itself.

Everhart and others have made considerable use of
certain reduced variables for the presentation and
analysis of scattering data obtained at small and
moderate angles. 4 Of particular importance is the re-
duced scattering angle

v =EH,

where E is the kinetic energy and 8 is the scattering

*Supported partially by National Aeronautics and Space
Administration and partially by Standard Research Institute.

' E.g., D. R. Bates, Atomic and Molecular Processes (Academic
Press Inc., New York, 1962), p. 578 B.

2 D. R. Bates and D. A. Williams, Proc. Phys. Soc. (London)
83, 425 (1964).' D. C. Lorents and W. Aberth, Phys. Rev. 139, A1017 (1965).

4 E. Everhart, Phys. Rev. 132, 2083 {1963).

angle, all of which we shall assume to be measured in the
center-of-mass system. The reason for the success of
this variable in particular is that it is in first approxima-
tion a function only of the impact parameter b of the
collision. This simple relationship between ~ and b has
been used for some time in the theory of the collisions
between fast ions and atoms of a solid lattice in radiation
damage and sputtering, where it is known as the mo-
mentum approximation, and Lehmann and Leibfried
showed that it is really the first term of an expansion io
1/E. Similarly, the other functions which enter into the
analysis of scattering experiments such as the reduced
cross section can be expressed as a similar series in
which the successive terms are obtainable as functions
of b alone. ' (That work was done in ignorance of
Lehrnann and Leibfried's treatment. ) Because the
initial terms of these expansions are identical with the
expressions of the impact parameter approximation, we
have chosen to call such an expansion an impact
expansion. Leibfried has also presented a comple-
mentary expansion which is useful particularly in the
very wide-angle region or in the region of backscatter-
ing. ~ There are thus two expansions in effect, the
forward impact expansion and the backward impact
expansion. Lehmann and Leibfried originally derived
these expansions by the use of contour integrals, and
remarked that these can be transformed into integrals
along the real axis after integrating by parts. %e have
found an alternative derivation which leads directly to
the real integrals in question, and which facilitates the
inverse process, the deduction of the potential from
scattering data.

One of the purposes for which these expansions can
be used is the presentation and analysis of experimental
data. Obviously, the impact parameter is not one of the

' (a) C. Lehmann and G. Leibfried, Z. Physik 172, 465 (1962);
(b) G. Leibfried and T. Plesser, ibid. 187, 411 (1965); (c) G.
Leibfried, Bestrahlungsegekte in FestkorPern (Teubner, 5tQ&tgart,
Germany, 1965), p. 37.

6 F. T. Smith, J. Chem. Phys. 42, 2419 (1965).
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quantities directly measured in scattering experiments,
whose results are usually obtained as measured inten-
sities or currents as a function of energy and scattering
angle 0. For this reason it is important to convert the
series expansions from an explicit dependence on the
impact parameter b to a form in which the only explicit
variables appearing are pairs of observable parameters
such as (E,8), (E,r), or (E,y) where p=or —8. The
latter pair of variables is particularly useful in the
backseat tering situation.

The practical need for a backscattering expansion
has only recently been brought home to us. Naturally,
in most experiments the decline in intensities at large
angles in the laboratory system precludes direct meas-
urement of backscattering phenomena. However, the
recent observation of an interference effect in the differ-
ential scattering of diatomic systems involving identical
nuclei makes it possible to deduce information on the
backscattering from the secondary oscillations at inter-
mediate angles approaching forward scattering. ' For
this reason we expect the backward impact expansion
to have immediate usefulness almost as great as that of
the forward expansion.

We have confined our attention here to the expansion
of purely classical functions, primarily the scattering
angle, the impact parameter, the differential cross
section, and the classical action A. As Ford and Wheeler
have pointed out, ' a great many interference effects of
a quantum-mechanical nature can actually be calculated
extremely well through the use of classical approxima-
tions, provided one introduces a classical scattering
amplitude of the form

f(E 8) =o (E 8)"'e' "'""

This procedure has proven highly convenient and
valuable in calculations of He++He scattering, ' " and
in the empirical analysis of data from a number of
other systems such as He++Ne, He++Ar, Ar++Ar,
Li++He, etc."

In addition to presenting the expansions in question
and their derivations, one of our aims in this paper is to
test their value in some representative calculations. We
have done this using some fairly realistic potentials
which we have previously used to approximate the
potentials for He++He scattering. s Obviously the
expansions are not really necessary when calculating the
scattering parameters from the potentials since the exact
calculations of the integrals in question are almost
trivial. However, we believe the expansions will obtain

7 W. Aberth, D. C. Lorents, R. P. Marchi, and F. T. Smith,
Phys. Rev. Letters 14, 776 (1965).

'K. W. Ford and J. A. Wheeler, Ann. Phys. (N.&,) 7, 259
(1959).' R. P. Marchi and F.T. Smith, Phys. Rev. 139, A1025 (1965).

'0F. T. Smith, D. C. Lorents, W. Aberth, and R. P. Marchi,
Phys. Rev, Letters 15, 742 (1965).

"W. Aberth and D. C. Lorents, Phys. Rev. 144, 109 (1966);
work reported at Fourth International Conference on Physics of
Electronic and Atomic Collisions, Quebec, 1965 (unpublishedl.

their greatest value in the analysis of experimental data
and in the endeavor to extract information about the
interactions from such data. As a matter of fact, the
leading terms in these expansions can be used most
eGectively in simplifying the inversion procedures that
can be used to deduce experimental potentials. We have
therefore devoted a section to these simplified inversion
procedures.

We have limited our attention here to spherically
symmetric potential scattering. Obviously generaliza-
tions can be sought in several directions for use with
more complicated interactions. Furthermore, it is
interesting to speculate about the possible quantal ex-
tension of what is clearly a valuable technique in the
classical approximation.

3. THE SCATTERING FUNCTIONS

It is the task of scattering theory to compute from
an assumed interaction, such as the potential V(r),
observable functions such as the scattering cross section
0- in their dependence on the experimental variables,
especially the energy E and the angle of scattering e.
Because it is conserved in the spherically symmetric
interaction, the angular momentum I., together with its
close relative the impact parameter b, plays an impor-
tant part in mediating the connection between V (r) and
o (E,8), even though I. and b are seldom if ever directly
observable. The usual procedure for deducing a. is Grst
to obtain the deflection function O~ (E,b) (whose absolute
value is the scattering angle 8), invert this function to
obtain b (E,8), and then compute the cross section by the
formula

sin8o (E,8)= P Bb'/B8
~
z. (2)

Of great importance also are the action A (E,O') and the
phase A(E,L), which are connected with each other by
the formula

A (E,O) =h(E,L)—LO.

Not only are these generators of the other scattering
functions,

L(E,O) =bt 2pEJls= —(Ba/BO~)s,

0(E,L)= (Bh/BL)s,

but the action A plays a controlling part both in the
fine structure of rainbow scattering and in the elastic
scattering of symmetric systems such as H++H or
He++He, because of its appearance in the scattering
amplitude f(E,8) of Eq. (1). Also important is the
collision lifetime Q:

Q(E,L)=Q(E,O) = (BA/BE) e.

In a classical computation the scattering functions are
first arrived at as functions of the two parameters E and

b, expressed as integrals over the potential V(r). The
lower limit of these integrals is the classical turning
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1dy
F(*)=-—-= Z 2""'F-(x)

~

ydx x n 0
(22)(12)h=g(y) =y-f(y),

so that
d*/dr =g'(r) =1—|'(r) where

Lagrange showed that, when y is sufficiently close to x,
f(y) can be written as the expansion

dna1
F.(x) = [hn Vn+1(hl/2)]

(/2+1)! dh"+'
(23)

1
f(r) = 2 — [&"(h)f(h)g'(h)).

n~ el dX"
(13) Using these expressions and multiplying through by E,

we obtain a series expansion for the reduced deflection
functionAn alternative form, given by Darboux, is obtained by

setting F (x)dx = Q p"r (b), (24)
[h b )1/2 n=p

h(u) = f(u)g'(u) (14),(E,b) =EO(E b) = —b

on both sides of (13):

The Lagrange problem is to express a function f(y) in Comparing (18) and (18a) we see that it is convenient
terms of a new variable x that is defined implicitly in to write
its turn as another function of y:

h(y) 1 d"
f(y) =, = Z — [f.( )&(*))

g'(y) n~ 22! dx"

where

" F„(x)dh
r (b)= b-

b2)1/2
(25)

It is the latter form that we shall generally have oc-
casion to employ.

3. The Forward Exyansion

The transformations of the classical phase 6 and the
action A follow precisely the same pattern, the phase
being given by

Let us consider the first integral appearing in Eq. (6)
for the deflection function On. If we introduce a new
variable y such that

6 (E,b)

(2~E) 1/2
F(x)[x—b']"dx, (26)

y= r', 2dr/r = dy/y, y p rp', ——

and a second new variable x such that

(16)
while the action, in reduced form, is

(E 1/2

(17) n(E, b) =( — A (E,b) =E
&2/

x= r'(1 —V(r)/E), xp ——b',

the integral in question can be rewritten in the form

" xF(x)dx

pg [h b2)1/2

pr —O=b
" (dy/dx)dx

(18)
2 y[h b2)l/2

= Q p"u (b), (27)
n=O

Clearly we can also write (6a) in the form

* x[x-b']'"
(18a)

where

"xF.(x)dh
n„(b) =

pa [h—b2]»2
(28)

If we now identify y and x with the corresponding
variables of Eq. (12), we see that

t (r) =prV(y") (19)

In order to replace the function y 'dy/dx in the last
integral of (18) with an explicit function of x alone, we

need merely set

The lifetime Q can be found by simple differentiation,
by (4), and its expansion need not be written out
explicitly here.

One limitation on our procedure is exposed by Eqs.
(18) and (12a), from which we see that we must avoid
the situation where g'(y) may vanish. This is equivalent
to the vanishing of

1/y= &(r)

and use Lagrange's expansion in the form (15)

n dn

f(r) =-—= 2 — L*" 'v" (*'")].
y dx n-& e!dx"

(2o) E V(r) ,'r (d V/dr), ——— (29)

something that can only occur if V (r) has an attractive
part, and then only for suKciently small values of E.

(21) Often this difhculty can be circumvented by breaking
the integral into two or more parts.
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4. The Backward Exyansion The backscattering angle is then

In the region of backscattering, where O~ is close to
x, it is convenient to use a new angular variable, //l(E, b) = —2bE" G(V)

Vgl/2

q (E,b) = 7« 0'—(E,b) = 2b (30)
V(«) b2

r2 1— where

b2 nial ~ (E) (39)

(4o)q, (E) 2En+'/2 G (V
Vgl/2We now introduce the potential itself as the new

variable of integration,

y= V(«),

so that

If we start with the final integral form in Eq. (8) and
(31) make the same transformations, the expansion of the

action A takes a still simpler course:

y(E,b) = —2bE'"

dr—dy
A (E,b)

2~ 1/2

(32)
gb2 —1/2

«'(y)-

dS
«(y)—

dx [E—x]'/2

dg
H(x) ,jl/2

«&(y) for «(«;, , V; &y& ~;
«&(y) for «)«;„, V; &y&0.

(32R)

The integral then falls into two portions, with the re-
spective limits shown in (32a).

We now proceed to introduce a second variable,

x= V+Eb'/«'=y+Eb'/«'(y),

thus transforming (32) to

(33)

Equation (32) must be modified if the potential is not
purely repulsive but has an attractive minimum where
dV/d«vanishes. In that case we can break the function where
«(y) into two branches,

= (2/) '" 2 b'"~-(E) (41)
n=o

H(x) = Q b'"E"H„(x),
n=o

(42)

( )e ge
H. (*)= L

-'""( )3,
eI dx"

(43)

D. ELIMINATION OF b

2 „(E) dV
E" H„(V—)

(2~)1/2 [E Vjl /2

(p(E,b) =—2bE'"
~ ( 1 d« dy dx

(34)
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(35)

(36)

The expanded function can be written

We can identify f(y) by comparing (33) and (12),

f (y) = b'E/ '(y)—,

and apply the Lagrange expansion (15) by taking

1 dr
h(y) =

"(y) dy

In the previous section we have seen how to express
the various scattering parameters such as O~, A, and 0.

as functions of the two variables 8 and b and have
derived two expansion formulas for these functions. The
variable b has the greatest importance in these ex-
pansions —but since it cannot be directly measured, it
must be replaced by an observable variable, usually the
scattering angle, for the purposes of experimental com-
parison. Since the details of the procedure are different
in the two expansions, we shall continue to treat the
two cases separately.

1. Forward Exyansion

dy
G(x) =h(y) —= 2 (b'E)"G (x),

gg nm

where we have, setting x= V again,

( )++1 dn+1

G (V)= «(2n+1) (V))
(2/2+ 1)/2! d V"+'

We shall here work entirely with the reduced vari-
ables, especially «(E,b) [Eq. (24)) and n(E,b) [Eq.
(27)j. In order to eliminate b we first must invert (24)
to find the expansion

b(E,«) = Q 2"b.(r). (44)

(38)
Assuming that b(2, «) has a Taylor expansion in 2, we
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can identify are needed in Eqs. (47) to (51) can be obtained directly
from Eqs. (25) and (28). Explicit forms that are readily

(45) integrable are given in the Appendix.

r= ro( bo(r)). (46)

and evaluate the partial derivatives in terms of the
known partials of r(o, b) from (24). Necessarily, bo(r)
=b(0,r) is the inverse of r(0,b) =ro(b), satisfying the
equation

2. Backward Exyansion

Here the appropriate angular variable is neither r nor
0' but p(E,b), which is given as an expansion by Eq.
(38a). In this case the expansion is simply a power series
in b, so the inversion to obtain the function

The next two terms are
b=P(E, ~) = Z v'"+'P-(E)

n=o
(52)

(47)
is straightforward. The first term, in particular, gives us

b2(r) = — (2ro(bo(r) )+2bi(r)ri'(bo(r) )
«'(bo(r))

+bio(r)ro" (bo(r))j. (47a)

The existence of (44) as a Taylor series requires that
ro(b) have an inverse and that ro (bo(r)) not vanish.
These conditions are satisfied by most physically real-

istic interactions except possibly at isolated points b„
where ro'(b, ) =0. These are just the locations of rainbow

scattering, where the classical cross section has a singu-

larity and where, in addition, quantal eGects are es-

pecially important. To establish the domain of con-

vergence of (44) is clearly more difI&cult; it will depend
in general both on the interaction V(r) and on the
value of r. We can now insert (44) in n to get

a(E,r)=e(E,b(E,r))= Q o"u (r),

where

dr
2E'" r —(V) (E Vj ' 'dv. —(52a)

o

The next term gives

where

o i(E)

o o'(E)
(52b)

pi(E) =2E"
dr dV

r 4(V) — . (52c)
dV LE—Vfiio

~(E,P(E,v))= +(E,~) = Z o'"O'. (E).

By inserting (52) into (43) we obtain the action as

ao(r)=~o(bo(r)) (49) The first term is easily seen to be

~i(r) =~i(bo(r))+«'(bo(r))bi(r) . (49a)
eo(E) =do(E) = —(2p)'"

r(V)dV
(53a)

Vqiim

To comPlete the set of formulas commonly needed For the higher terms we can use an identity derived
we can write the reduced classical cross section as from (3a)J)

Bb'

p(r, o) =8~(E,f&) sing=-', r
BT

BA 2
b= (2uE)- = 2 (-+1)o

' O'. (+E) (54)
pg n=o

If we assume, for definiteness, the signs appropriate to a
simple repulsive potential, we find, using (44), that

~o(r) = —bo(r)/ro'(bo(r))
and

with the result that

(&+1)e„„(E)= (~E)2) ioP„(E) .

Without evaluating any further integrals we can
obtain the leading term in the classical cross section:

Sy T' (51a)
1 Bb'

~(E,o)= . = Z o""~-(E),
2 sing Bp,

(55)

The derivatives of r„and n„with respect to b that where we find immediately, by using (52) and expanding
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I/sing itself, that

.(E)=2~o'(E)=,
~o'(E)

(55a)

I Syi(E)
~i(E) =8Po(E)Pi(E)+3Po'(E)=, —, (55b)

3~0'(E) v 0'(E)

Thus we verify that the classical cross section goes to a
finite limit in backscattering.

'4 O. B.Firsov, Zh. Eksperim. i Teor. Fiz. 24, 279 (1953).' G. H. Lane and E. Everhart, Phys. Rev. 120, 2064 (1960)."J.B. Keller, I. Kay, and J. Shmoys, Phys. Rev. 102, 557
(~956).

E. THE INVERSION PROBLEM

1. Treatment of Experimental Data

The problem of deducing the interaction from scatter-
ing data has provoked a very considerable literature. In
the classical limit, with a sphericaOy symmetric poten-
tial, Firsov showed how the potential function could
be extracted from differential scattering data at a
fixed energy. ' ' This elegant method, which is broadly
equivalent to some other treatments of the same
problem, "will form the basis for our discussion here.

Ideally, if experimental scattering data were of
absolute accuracy and if it were available over the full
range of angle from 0 to m (in the center-of-mass
system) at a single energy E, there would be no problem
in extracting the potential by Firsov's method—
provided we are dealing with a monotonic repulsive
interaction. Practically, we are obliged to deal with a
limited angular range of data, of limited accuracy —but
we can extend the domain accessible to measurement
greatly in another dimension by varying the energy E.
There is therefore much to be gained by combining all
the data from a wide range of energies in a single
inversion procedure, instead of being restricted to the
limited and incomplete sets of data available at each
separate energy.

Because of the extremely rapid falloff of the intensity
of experimental scattered currents as 0 becomes large,
in practical cases the cross section 0 (E,8) is often known
only for relatively small angles in the forward direction.
In that event it is natural to express the data in terms of
the reduced variables suggested by the forward impact
expansion, namely the reduced center-of-mass scattering
angle v =EH and the reduced center-of-mass cross sec-
tion p(E,r) = 8 sin80 (E,8). This variable has at least two
advantages: uncertainties in the energy E are not
introduced into p (though they cannot be avoided in r)
and the steepness of fall with which 0 (E,r) is afflicted
at small v is greatly ameliorated.

Calculations using several potential functions have
shown us that the higher terms in the series (57),
namely, p&(r), p2(r), etc , are function. s that usually if
not always decline rapidly as v~0, unlike po(r).

Consequently a plot of the functions p(E,r) versus r at
several values of E reveals a set of curves that follow the
asymptote po(r) at small r and then peel away from it
at higher v successively as E increases. Each curve
p(E,7) terminates at a=Em because its range of 8 ends
there. In a number of cases where simple potential
scattering can be expected to dominate, the experi-
mental data when plotted as p(E,7) versus r on a single
plot show a similar tendency to follow a single asymp-
tote at small 7 and then peel away as w and E increase.
Consequently it is possible to delineate the asymptotic
function po(r) directly. In some cases the definition of
this function can be improved by plotting p(r, c) versus
&=E-' for each value of r, and reading po(r) as the
intercept in an extrapolation to e= 0; with less accuracy
it is also possible to estimate pi(r) from the slope of
such a plot. In this way it is often possible to fix po(r)
experimentally over a range of v. that is enormous
compared to the range accessible at any single energy
E by itself. This function po(r) can now be inverted to
obtain the potential.

The result,

2 (dbo 1~~)=~o(~) = ~ Po(~)

"Po(t)
bP(r) =2 dt,

(56)

(57)

assumes that we can extrapolate the declining inte-
grand to infinity; alternatively, we can content our-
selves with obtaining a lower bound for bo

..
'*

po(t)
bp'(r) &bo'(r)r*) =2 — Ct.

Inverting these relationships, and noting that r is a
monotonic decreasing function of b t at least if V(r) is
pure repulsive), we can obtain ro(b) as the inverse of
(57), or Tp(b t*) as a lower bound to ro(b), obtained by
inverting (58):

v p(b)) 7 p(b, r*). (59)

From higher terms in the series (50) we might also
obtain estimates of bi(r)& b2(v), etc., from which 7 i(b),
etc. , could be obtained by an argument like (47).

The inversion to obtain ro(b) can be properly carried
out only if b is a single-valued function of 7. For a
monotonic repulsive potential V(r) this is always the
case; for a potential with an attractive well b(r) is
single-valued as long as 7 exceeds the reduced rainbow
angle ~„and b is smaller than some upper limit b,. Even
with an attractive potential, then, it is possible to find

2. The Forward Inversion

The erst step in the Firsov inversion procedure is to
obtain the relation between the impact parameter b and
the scattering angl" -or, in our case, between b and v.
This is done by integrating the equation
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(64)

f(h,y)ch
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. ( -y)'"(y- )'"
C

Chf (h)

F (h)ChW (r)=—

given y

2 '~~* ro(b, r*)Cb
Wo(r, b, )=—

2 ' * o(b)Cb(—
b2 r2) 1/2

'"V""()3 (63)
(n+1)|C(r~)"

In particular,

(63a)W0(r) = V(r).
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3. Analysis of Interference Data

In practical cases where interference patterns are
measured in forward scattering it is often impossible to
deduce the action A (E,O) associated with scattering in
a single state. Instead, the patterns observed represent
the interference between two or more scattering ampli-
tudes of the form of Eq. (1), each with its own a,ction
A, (E,8) derivable from its own potential V;(r). The
oscillating part of the observed cross section,

o (E,e) =,'
i fi(E,8)+fs(E,O) i', (68)

from which in turn an inverse function can be obtained,

ro(b) . (70b)

This gives the average reduced scattering angle as a
function of a single impact parameter. Following the
notation of previous sections, and assuming that any
difference function bfp is smaller than the associated
average function fp so that Taylor series expansions in
bfp are allowed, we can now formally define the func-
tion bnp(b) and deduce:

is of the form

where

cos[2+$(E,r)j, (68a)

~ (b) = o'L (b)+ l~ o(b)3- o'[ (b) —l~ o(b)j
= lap(r p(b))+ (dap/dr) „(b)b-r p(b) + . (71)

Using (3a) we thus find, to first order in the difference
functions,

1V(E,r) = [Ai(E,r) As(E—,r) j/h (69)
Sap(rp(b)) = bnp(b)+bbrp(b) . (72)

By following the oscillations as E is varied over a
wide range, it is possible to determine Ã absolutely and
not merely modulo s.. As we saw in Eqs. (27) and (65),
the proper reduced action variable is 3 multip1ied by
a velocity, so the experimental values of 1V(E,r) are best
handled by plotting the reduced variable

ba(E, r) = (E/2p)'~hX(E, r) (69a)

against v. There results a series of curves at different
values of E peeling away from the common asymptote
bap(r), the first term in the series

The purpose of this tedious manipulation was to con-
nect the observed function bap(r) with the potentials,
which can be written as the average V and the
difference 8V.

By Eqs. (23), (25), and (28) we see that the functions
np' and 7 p are linear in the potentials, so that the right-
hand side of (72) is a functional of bV(r) alone:

bnp(b)+burp(b) = (x b')i"hF p(x—)dx

ba(E, r) = P s"ba„(r).
n=O

(69b) (73)

The precision with which the oscillations of an inter-
ference pattern can be located means that the function
Sap(r) [and possibly higher functions ba„(r)j may con-
tain much more information than is available in the
measured amplitudes of the cross section (the envelopes
of the oscillating pattern, for instance). It is therefore
important to exploit bap(r) fully in extracting informa-
tion about the interactions. As Kverhart and Russek'
have earlier noted, hap(r) is closely connected with the
difference potential bV(r) and provides much informa-
tion about it.

Since Sap(r) represents the difference between two
functions arising from two different potentials, we can-
not proceed directly as in Eq. (65a) to obtain a relation-
ship between ~ and a single impact parameter. However,
if we assume momentarily that we know something
about the individual functions ap'(r) and ap'(r) whose
difference is Sap(r) and whose average is ap(r),

( ) = l[ '( )+ o'( )), b ( )= '( )— '( ), (70)

We know the function on the left-hand side of (72) as
a function of v,' to convert it to a function of b, we need
to know rp(b), which depends only on the average
potential V(r). Depending on circumstances, we may
know V(r) well enough theoretically to make a reason-
able calculation of rp(b), or we may be able to evaluate
the latter function experimentally from the average
behavior of the cross section a(E,r). One way or another,
we can now assume we know the left-hand side of (72)
as a function of b, which we can equate with (73).

The ground has now been prepared for the 6nal step
of the inversion procedure, which we accomplish by
constructing the transform Ip(r) and applying the
Dirichlet integration (61):

2 "bap[r (b)]db'
1p(r)='

(P r')'"—
we see that an average impact parameter can be
derived,

r2

b V(~»s) dx. (74)

bp(r) = dap/dr, —The difference potential is obtained by differentiating

"F.P. Ziemba and A. Russek, Phys. Rev. 115, 922 (1959). 8V(r) =dI p(r)/dr'. (74a)
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1 y (E)dE
M (U)=-

En+i l2[U Egil2
' (75)

insert (40) and apply (61), from which we find

M'„(U) =— G„(V)dV

( )
Lr """'(U)j (75a)

(2l1+1)n!d U"

In particular,

M g(U) =1/r(U) . (75b)

Similarly from the A„(E) of Eq. (43) we can construct

4. The Backscattering Inversion

Where backscattering data are available, the in-
version problem is considerably simpler than in the
forward-scattering limit. Sy extrapolating the cross
section o(E,y) or the action G(E, q) to q =0 we can
obtain the functions o „(E), 8 (E), and from the o„(E).
it is easy to deduce the p„(E) by (55a). If the inversion
is carried out from the functions y„(E) no intermediate
calculations involving b need be made.

If we know one of the functions q„(E), we construct
the transform

one finds the function C(E,L), creates the transform
M(U, I,), and evaluates it:

1 ~ C (E L)dE U

M(U, L) =— = —L(2p)-»' G(x)dx
2x 0 (U—E)'"

(2p)'"r~(U, L)

where 'fp is the classical turning point for motion with
the energy U and angular momentum L. From ro(U, L)

'

the potential V(r) can immediately be found.

F. EXAMPLES

I. The Screened Coulomb Potential

The exponentially screened Coulomb potential is one
of the most useful approximations to the interactions in
ion-atom scattering. Using it, potential parameters
have been deduced by Lane and Everhart" from experi-
ments on a number of scattering systems. Classical
scattering cross sections have been computed exactly
for this potential, and the small-angle reduced cross
section has also been obtained. Lehmann and Leibfried5
have given the 6rst few terms in the forward expansion
for the scattering angle. We can usefully supplement
these results with the initial terms of expansions for the
reduced action and the reduced cross section.

H the screened Coulomb potential is rvnritten

N (U)=
()

~ (2@)1/2 En[ UEgi/2'

from which we And

(76)
V(r) = (Bc/r)e 'l', —

it is convenient to express all the scattering parameters
and functions in dimensionless form:

U U

Xo(U) = — Po(V)d V= — r(V)d V (76a)
0 p

P= f/c=Z. ~"P.( ),
e= B/E,

=«/B=t/ =2- ""(p),

(80)

(81)

cV„(U)=— [r—2n+1(V)]
n! d V"—'

for e&0. ('76b)

( n+1 dn 1—
H (V)dV=—

8 sineo (E,8)=p(t, r) =Pn c"pn(r) . (84)

E~'l A(2E, b)
n= —

i
=n(e, P)=a(e, r)=Q e"a (r), (83)

2@i Bc

"(P)= &(2P), -
(82a)

9 2
"(p)=-

8 9P'
~.(3P)—~.(3P) .

The backscattering inversion is intimately related to Lehmann and Leibfried give the first 3 terms of (82):
Hoyt's inversion procedure, "which formed the basis for
Firsov's work and which is in turn related to the "(p)=&.(p),
Rydberg-Klein-Rees method for deducing potentials
from vibrational spectra. After integrating the cross
section at axed energy to obtain the relation between
backscattering angle and angular momentum,

L'(E, v) =— ~(E,v')d~'
2P p

'9 F. C. Hoyt, Phys. Rev. 55, 664 (1939).

The first term in the expansion of p(r, ~) is identically
the inverse of ro(p), i.e., the function po(r) satisfying
the equation

=& (Po)
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For brevity, whenever we write pO hereafter we shall
imply just this function po(r). Thus, the function
pi(r) is

PO ao

TABLE I. Reduced scattering functions:
screened Coulomb potential.

—POKi(2PO)p()=
P~0(PO)+&i(PO)

The first two terms of (84) are given by

(80b) 5.000 X10'
2.492
1.656
1.238

3.995 X10 4

1.592 X10 3

3.563
6.296

0.00
0.02
0.04
0.06
0.08

—9.931 X10 i
-9.776
—9.566
-9.321

5.003 X10'
2.506
1.674
1.259

0.5000
0.4821
0.4646
0.4491
0.4347

po(r) = PO'&i(PO)

PA 0(PO)++1(PO)

pi(r)/po(r) =4 i(r) =
PO+0(PO)++1(PO)

X(2PAo(2Po) —& (2Po)l &+(&+No ')po( )]} (84b)

9.855 X100
7.020
4.7/6
3.058

2.060
1.430
1.009
7.164 X10 '

4.932
3.403
1.981
9.982 X10 &

9.757
1.880 X10 2

3.726
7.924

1.449 X10 j

2.366
3.559
5.023

6.940
9.123
1.271 X10o
1.775

0.10
0.14
0.20
0.30

0.42
0.56
0.72
0.90

1.12
1.36
1.74
2.26

-9.045
—8.452
-7.519
-6.018

-4.482
-3.083
-1.941-1.082

1.010
7.255 X10o
5.127
3.468

2.509
1.895
1.469
1.155

-4.468 X10 & 8.917X10 ~

—6.765 X10 3 6.901
1.804 X10 2 4.720
2.561 2.877

0.4212
0.3967
0.3643
0.3190

0.2V45
0.2316
0.1908
0.1523

0.1124
0.0775
0.0264

—0.0280

.(p) = —[&.(p)+w. (p)],
i(P) =l[~0(2P)+2P&i(2P)], (85)

and then the final result,

To express the reduced action we obtain first the
functions

4.990 2.323
1.980 3.098
9.938 X10 3 3.695
4.943 4.317

4.048 4.490
1.993 5.133
1.345 5.496
9.904 X10 4 5.780

2.82
3.60
4.20
4.82

5.00
5.64
6.00
6.28

1.847 1.706
1.066 8.285 X10 2

6.492 X10 3 4.743
3.761 2.662

3.203 2.250
1.777 1.236
1.265 8.805 X10 ~

9.V43 X10 4 6.763

—0.0764
—0.1321
—0.1697
—0.2039

—0.2134
—0.2441
—0.2614

"( ) = —p.(p.)+po~ (p.)], (83a)

~i(r) = 2&0(2P0) (83b)

In Table I we present the result of an evaluation of
the functions (80a), (83a), (84a), and (84b). In addition
we can find limiting expressions valid at large and small
r by using the expansion formulas for the Bessel func-
tions. When P is small and r is large, we find

7.000
4.546
2.652
1.554

9.120 X10 5

5.364
3.160
1.865
1.102

6.093
6.494
6.996
V.500

7.991
8.493
8.993
9.493
9.993

6.60
7.00
7.50
8.00

8.50
9.00
9.50

10.00
10.50

7.204
4.921
2.867
1.876

5.004
3.427
2.134
1.327

1.157 8.246 X10 4

7.110X10 ~ 5.115
4.363 3.174
2.674 1.964

—0.2869
—0.3035
-0.3231
—0.3423

—0.3596
-0.3767
—0.3933
—0.4029

"(p)=p—:—
32P

123
"(P)=( /2P) "«+-

8P 128Po

which can be inverted to get the expressions

(87a)

po(p) =p+k+
32p

(87b)

pO(r)=r '—r '[2 ln(2r) —0.6554]+. , (86)

PO(r) = r r[0 ln(2r) ——0.0386]+ ~ ~ . (86a)

The first term of (86) shows the characteristic Coulomb
behavior of the reduced cross section, a special case of
Eq. (58), and the higher terms show the incipient
deviation due to the exponential screening. At large P,
where r is small, we can use the asymptotic expansions
to obtain the equations

We have included in Table I one further quantity
which will prove of some value in later applications. It
is a dimensionless parameter characterizing the motion
in r of a feature that depends on the energy in such a
way that the classical turning point ro remains fixed. If
we define

z(o,ro) = r—'(ar/cjo) „,

and expand in powers of e, the first term is

, &(p) &"(p)-
Zo(p)=« '(p) ri(p) kp—

8

(88)

(88a)

where we may insert P ro/c. This parameter i—s of use
in connection with the detailed study of curve-crossing
perturbations whose effect is concentrated near a fixed
value of the classical turning point ro.'

The data in Table I can be used to construct the
two-term expansion of p(o, r), Eq. (84b), for various
values of e. We have carried out this evaluation in a
number of cases for which exact calculations were made
by Everhart, Stone, and Carbone. '0 Qualitatively, their

49 2545
«(p)=~ 'I—

E2epl 32p 2048p'
(87c) "E.Kverhart, G. Stone, and R. J.Carbone, Phys. Rev, 99, 1287

(1955).
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IO" and the higher terms P„are proportional to r", so that
we can write

p(r;)/ps(r) = 1+2 8"D-(~);
n=l

(92b)

10
10 I 0 10 10 10

—(radians) = v
Eg
B

it is significant that this quantity is actually independ-
ent of e. The parameter Zo is independent of v-.'

FIG. 1. Convergence behavior for the screened Coulomb
potentiaL The forward-scattering approximation converges in the Z (region to the left of the solid line. The backward-scattering ex- o P,

pansion converges in the region to the right of the dashed line.

r(-',„)
2~'" 1'(s (p+1))

2. The Simple Power Law

If the potential has the form

V/8 = (c/r) ~,

the reduced scattering functions can be put in form of
Eqs. (80) to (84). Lehmann and Leibfried' have shown
that the reduced scattering angle (82) involves the
functions

1'[r.(~+1)p+-:jf'Lll.(~)=(-)"~ ""'
r(n+2]r( ', (I+1)p-ej-

= (—)"0 "'""'C-(~). (90)

Similarly we find

~.(P)=( )" '~+(~+ )1~.—(1 )P '"'"+" " (91)

The first two terms of the cross section then are given by

po(r) =p 'L&s(p)/r'j"" (92)

p() u —2~6)
~ (.)= (92a)7

p &o'(p)ps(r)

results parallel the prediction of (84b) and Table I,
showing that the correction pt(r) =ps(r)fr(r) ispositive
at small v and negative at large r. Taking as an example
the scattering at 36', in the range 0.1&e& 10 the maxi-
mum deviation between ps(r) and the exact p(r, e) is
about 17%; when the second term ept(r) is included
this deviation is reduced to less than about 3% in all
cases.

Because of the awkard series inversions that are
involved in the calculation, it will probably be quite
dificult to obtain general convergence criteria for series
like (83) and (84). However, Leibfried and Plesser' have
developed such criteria for the forward and backward
expansions of the function r(e,P) They gi.ve a plot show-

ing the domains of convergence of the two expansions in
the (e,P) plane. By using the exact classical integration
to evaluate r(e,P), we have mapped these domains in
the (e,r) plane, Fig. 1. Even though the convergence
properties of each series may be different, for lack of a
better criterion we may look to Fig. 1 for some warning
about the regions where our expansions should be
treated with suspicion.

1'(u+ )1'( u)
X (93)

~f'( —1)1'(s(p+1))-

as p increases from 1, Zs(p) decreases from s, becoming
negative for p&3.

He -He

0
0 1.0 2.0 3.0 4.0

Ee x 104—eVdeg

5.0 6.0

FIG, 2. The reduced action computed by various approximations
for the He+-He potential at 300 eV. The upper set of curves are
from the gerade potential and the lower set from the ungerade
potential.

3. A Numerical Example

While some of the common analytic potentials lead to
readily integrable expansions for the forward-scattering
expansion, this is much less true for the backward ex-
pansion. Here the Coulomb potential is an exception,
but the expansions are not very valuable in that case
since they can be immediately summed to get the well-
known Rutherford formulas. In order to test the back-
ward expansion, we have carried out the integrations
numerically for the 6rst two terms of both the forward
and the backward expansions, using two fairly realistic
potentials, namely, the gerade and Nngerade potentials
we have used earlier in the analysis of scattering in the
system He++He. ' We have carried out the comparisons
for three energies, namely, 15, 50, and 300 eV, for which
we had already made an exact classical computation.
Figure 2 shows the comparison for the classical action
a(r) at 300 eV. The results are similar at 50 and 15 eV,
the principal conclusions being that the two-term ap-
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proximation nowhere deviates from the exact results by
more than 2~2% and that the crossover point where the
backward expansion becomes more reliable than the
forward one occurs in all cases at about 90'.

In view of the attractiveness of using just the first
term of the forward expansion in the inversion to obtain
potentials from experiments, it is important to take note
of the range in 0, at each energy, over which we can rely
on a one-term expression. If we can tolerate at 10%
error in ap(r) as an estimate of a(p, 2.), the one-term
expless10I1 ap(T) CRI1 safely be used ollt to RIlgles of about
45' in all the cases tested. However, in the Negerade case
at 15 eV this permitted range has also a lower bound at
about 25' (about twice the rainbow angle), below which
the effects of the attractive well make the approximation
unreliable.

G. APPLICATIONS

This paper has been concerned with the development
and justification of certain expansions which can be
used as tools for the analysis and interpretation of data
from differential scattering experiments. Ke intend to
make use of these tools in forthcoming publications.
Here we shall brieQy outline some of the applications we
have in mind.

In the presentation of data from the usual scattering
experiments in which forward scattering is measured,
there are great advantages to using the reduced scatter-
ing angle 2 =Ee and cross section P = 0 sin8o (8). Indeed
as differential-scattering experiments become more com-
mon, we suspect that it will soon become desirable to
adopt a standard method of presentation of their results
and we urge our colleagues in this field to consider this
set of variables for that purpose. In an analysis which
we are now completing of differential scattering in the
systems He++Ne and He++Ar this coordinate system
allows a uniform presentation and compilation of the
scattering data obtained by Aberth and I.orents" along
with that obtained by Fuls, Jones, Ziemba, and Ever-
hart, " ranging in laboratory energies from 10 eV to
100 keV and ranging over a span of more than 10~ in the
reduced scattering angle. Both because the resulting
curves are not so steep as the cross section 0 itself and
because of the close connection between v and the
classical turning point, this coordinate system reveals
several features that are obscured by the presentation of
cross-section data in its original form.

In conducting further analysis of the experiments on
He++He, we expect to exploit the backward-scattering
expansion in connection with the nuclear symmetry
oscillations in the interference pattern. The interference
peaks also give information on the relative phases of the
scattering amplitudes and their analysis requires the
employment of the expansions for the reduced action

as well as the reduced cross section. Vsing these reduced
data we expect to be able to employ the inversion pro-
cedures we have described here to extract the potentials
from the scattering data alone.

The exponentially screened Coulomb potential is the
simplest analytical form that can be used to represent
the interaction over a very wide range of internuclear
distances. In the cases of He++Ne and He++Ar we
have found that the reduced cross section fits the
screened Coulomb form quite well over a very large
span of the reduced angle. As a result, it is possible also
to associate a unique value of the impact parameter b

with each value of the reduced angle r. Ke are thus
able to locate various features of the interactions such
as crossing points entirely from the empirical data
provided by the scattering.

Note added i', Proof. Dr. Frank Chilton has kindly
called our attention to the connection between the
variables (p, r) of the forward impact expansion and the
variables usually employed in the analysis of elastic
scattering at very high energies. In that case, the inde-
pendent variable is taken as the 4-momentum transfer
squared, t; with equal masses and in the limit of small
angle 0 and high relative kinetic energy E, this is re-
lated to v'.

t=4P', Ic'—sin'0/2 —& P', c'8I

—Q(g+2pc2)02 ~ +282 —T2 (94)

For all known examples, 0,& is independent of energy
and A may be either independent of energy or have a
slight energy dependence. This fact appears to be a
consequence of an expansion theorem, since we have
in the limit

P (& E) Pp(r) PI(2 )+
dt 2v2 2r~ 27.~E

~ ~ ~ (96)

It would appear to be useful to seek the proper general-
ization of the small-angle expansion to the case of
classical relativistic scattering.

APPENDIX A

The integrals needed in evaluating the functions of
Eqs. (47) to (51) can be written in various forms. A
version convenient for quadrature by various methods
including Gauss-Mehler is given here. It must be re-
Inembered that V= V(xI'2)

In elastic scattering at high energies it is found experi-
mentally that the function

da, I/dt =a, IA e"'.

"E. N. FuIs, P. R. Jones, F. P. Ziemba, and E. Kverhart,
Phys. Rev. 107, 704 (1957).

2p(b) = c-
pm dx (x—fP)'"
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np(b) =
p~ dx (x—b')'" (A2)

b "d'V2 dx
r, (b) =— (3x 4—b')

2 b2 de (x bs)1/s
(A5)

r p (b) = —b n p (b) = 2
"d'V dx

(x—2be), (A3)
b~ dS (x—b')'"

oo d2't/r'2 dS
n, (b) =—— (x'+4xb' gb—4)

3 b~ dS (x bs)r/2
(A6)

"d'V dS
(3x—4b')

dS (x—b')'/s
(A4) rt'(b) =—

oo d'3PQ dÃ
(x'—8 xb'+lb')

dS (x—b')'"
(A7)
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Approach to the N-Body Problem with Hard-Sphere Interaction
Applied to the Collision Domains of Three Bodies*

G. SANDRI AND A. H. KRITZ

Aeronautical Research Associates of Princeton, IncorPorated, Princeton, New Jersey
(Received 19 May 1966)

%e present a simple numerical method for determining the phase-space domains that correspond to a
chain of successive collisions among N hard spheres. The method is applied to the three-body problem, and
it is shown to yield with ease results that are dificult to obtain analytically. The exact phase-space domains
corresponding to the allowed collision chains among three spheres are described in full detail for the coplanar
case.

I. INTRODUCTION

]t ONSIDERABLE attention has been given recently~ to the density dependence of gaseous transport
coeKcients. ' ' The transport coefficients are of con-
siderable physical importance since they fulfill a basic
role in determining the macroscopic distributions of
density, temperature, and Row velocity. For a gas in
which only two-body interactions are operative, the
transport coefficients satisfy "Maxwell's law" 7; namely,
the transport coeKcients are density-independent.
Density dependence of the transport coeKcients results
when three-body interactions are included.

Three-body interactions are essential to describe
transport properties in two types of gases, gases which
are "dense" (P&5 atm, T=300'K) and gases in which
chemical transmutations occur. The understanding of

*This work was sponsored by the Air Force Ofhce of Scientific
Research of the OKce of Aerospace Research, under Contract
No. AF 49(638)1461.' J. V. Sengers, Phys. Rev. Letters 15, 515 (1965}.' E. Cohen and R. Dorfman, Phys. Letters 16, 124 (1965).

'K. Kawasaki and I. Oppenheim, Phys. Rev. 139, A1763
(1965).' G. Sandri, The Physical Foundations of Modern Kinetic Theory,
Dn Dynamics of Fluids and Plasmas, edited by S. Pai (Academic
Press Inc., New York, 1966)g.

~ G. Sandri, R. Sullivan, A. Kritz, and F. Schatzman, Aero-
nautical Research Assouates of Princeton, Inc., Report 74, 1965
(unpublished).

J. van Leeuwen and A. Weijland, Phys. Letters (to be
published).

J.Jeans, Kinetic Theory of Gases (Cambridge University Press,
London, 1946).

dense monatomic gases requires knowledge of the bulk
viscosity coefficient. This transport coeflicient as de-
duced from the Boltzmann equation vanishes identically
for monatomic gases, since this equation includes only
binary collisions. With regard to reacting gases, one can
readily verify that even the simplest association-
dissociation reaction requires a three-body collision as
a consequence of energy and momentum balance.

The recent interest in the density dependence of
transport properties was triggered by the discovery
in 1961 that Bogoliubov's method' for systematizing
the kinetic theory yields divergent results for all non-
equilibrium density-dependent effects in neutral gases.
Moreover, Bogoliubov's method, which is of sufhcient
scope to describe ionized gases, yields divergent results
for the plasma properties when calculations are extended
beyond the lowest order in the plasma parameter

(scans)

Bogoliubov's technique yields formally the effects
of e-body collisions on the transport coefficients. But,
by giving this formal solution, Bogoliubov imposes an
asymptotic behavior on the transport properties
("functional assumption") which, in view of the con-
vergence difhculties, contradicts three-body dynamics.

G. Sandri, Mimeographed Rutgers Lectures, 2962-1962,
(unpublished); Ann. Phys. (NY. ) 24, 332 (1963); 24, 389 (1963}.

¹ ¹ Bogoliubov, I'roblems of a Dynamic Theory in Statistical
Physics (Moscow, 1946). LEnglish transl. : by E. Gora, in Studies
in Statistical Mechanics, edited by J. deBoer and 6. Uhlenbeck,
(North-Holland Publishing Company, Amsterdam, 1962), VoL Ij.


