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It is shown that reasonable models of vibrational nuclei can be constructed that explain the large magni-
tude of the static quadrupole moment Qs of the 6rst excited 2+ state of '"Cd, recently derived from the
analyses of the Coulomb-excitation experiments. Since the models considered are kept in very simplified
forms, in order to make their qualitative implications as transparent as possible, they do not necessarily
explain all the other known properties in this nculeus. Nevertheless, it seems that there is room for im-

proving these models while still predicting large Qs, and thus it is concluded that one can continue to consider
'"Cd as a vibrational nucleus, and not a rotational nucleus, in spite of the large magnitude of Q~,

I. DTTRODUCTION

I~ADMIUM —114 has long been known as one of the~ most typical quadrupole-type vibrational nuclei.
The first excited state is 2+ and there is a strong 8(E2)
value between it and the ground state. The next higher
states are 0+, 2+, and 4+ triad states whose energy, and
the E2 (and M1) transitions from them to the first 2+
and the ground states, have every characteristic of a
vibrational nucleus. '

Some time ago Brelt 8f cl. suggested that lt ls possible
to measure the static quadrupole moment of an excited
state of a nucleus by utilizing the reorientation e6ect
in the course of the Coulomb excitation of each state
of interest. In the past year or two, such experiments
were performed at at least three laboratories: Caltech, '
Oak Ridge, 4 and Aldermaston, ' and the static quadru-

*Research sponsored by the U. S. Atomic Energy Commission
under contract with the Union Carbide Corporation.

$ On leave from Tokyo Institute of Technology, Tokyo, Japan.' For the experimentally known spectrum and the electromag-
netic transition probabilities in "Cd see F. K. McGowan, R. L.
Robinson, P. H. Stelson, and J. L. C. Ford, Jr., Nucl. Phys. 66,
97 (1965};D. Kccleschall, P. M. Hinds, M. J.L. Vates, and N.
MacDonald, ibid. 37, 377 (1962).' G. Breit, R. L. Gluckstern, and J. K. Russell, Phys. Rev.
103, 727 (1956).' J. de Boer, R. G. Stokstad, G. D. Symons, and A. Kinther,
Phys. Rev. Letters 14, 564 (1964}.

4 P.H. Stelson, %.T.Milner, J.L.C.Ford, Jr., F.K.McGowan,
and R. L. Robinson, Bull. Am. Phys. Soc. 10, 427 (1965).' J. J. Simpson, D. Eccleshall, and M. J. K. Vates (to be
published}.

pole moment Qs of the first 2+ state of '"Cd has been
derived. The reported values di6er somewhat from each
other, partly because of diGerent experimental setups
and partly because of the difference in the theories used
in deriving Qs from the observed excitation cross sec-
tions. Nevertheless we may safely say that the experi-
mental value of Qs can be summarized as

Q, t *»=—(0.50a0.25) b.

The value of Qs '"» as given in (1) is of surprisingly large
magnitude, because if "4Cd is assumed to be an ideal
vibrational nucleus the expected value of Q, is zero (see
Sec. IIA for a more detailed argument). The magnitude
of Qs&' » is close to Qs

———0.7 b, a value which is ob-
tained. if "4Cd is assumed to be a rotational nucleus
(see Sec. IIA), and is thus the maximum possible
theoretical magnitude that one expects to have, at
least within the framework of simple-minded phe-
nomenological models. Note, however, that the spec-
trum and electromagnetic transition probabilities known
for "4Cd are very much of the nature expected for a
vibrational nucleus, and not for a rotational nucleus.

ttjt'tote added sN proof. Recently P. Stoler, M. Slagowitz,
W. Makofske, and T. Kruse (Phys. Rev. , to be pub-
lished) observed the (p,po) and (p,p') cross sections from
various Sm isotopes ranging from A= 144 to 2=154.
Of these the lightest elements are spherical while the
heaviest ones are rotational nuclei. Stoler et a/. found
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that the observed cross sections from these two groups
diBer markedly from each other, the di8erence being in
the way predicted by the coupled-channel calculations:
$T. Tamura, Rev. Mod. Phys. 37, 679 (1965)$. This
result indicates that the analysis of (p,p') data gives a
powerful tool in telling whether a given nucleus is
spherical or rotational. %e then recall that we already
performed a (p,p') analysis from '"Cd, assuming that
it is a spherical nucleus and obtained good agreement
with experiment, '0 which will thus supply us with
another support to assume that "'Cd is basically a
spherical nucleus. f

Nevertheless '"Cd is not an ideal (i.e., purely har-
monic) vibrational nucleus, and many models have been
proposed in the past to explain the observed deviations
of various quantities from what are expected for an
ideal vibrational nucleus. Therefore what one naturally
asks is whether the models that explained such devia-
tions successfully may also successfully explain the
lai'gc magnitude of Qs. As ls sccli 111 Scc. II, llowevcl,
none of these models give sufficiently large Qs.

It is the purpose of the present paper to show, in
spite of this situation, that it is still possible to construct
models within the framework of the vibrational nucleus
that give sutficiently large magnitude of Qs. In order to
make such an argument conclusive and transparent, it
is desirable to make the models as simple as possible.
Such simpH6ed models are considered in Sec. III, and
it is shown there that a Qs of large magnitude can in
fact be derived.

Because of their simpli6ed nature, it is expected that
the models considered in Sec. III will not necessarily
explain all the known properties of '"Cd. Nevertheless
the results obtained in Sec. III are encouraging, and
they indicate how the more detailed models are to be
developed in the future. This is discussed in Sec. IV.
The Qs values in some other vibrational nuclei are also
discussed there. 6

II. EVALUATION OF Qs IN TERMS
OP KNOWN MODELS

The present section is devoted to the evaluation of Qs
in terms of models which have been proposed by various
authors for the description of the known properties of
"4Cd. In Sec.II.A phenomenological models are treated;
in Sec. II.B, microscopic models.

A. Phenomenological Models

(I) Harrlorttc Vsbrattorta/ Model

In this model, Qs is zero. This is a trivial consequence
of the fact that the quadrupole-moment operator is a

6 Preliminary accounts of the present paper have been reported;
T. Tamura and T. Udagawa, Phys. Rev. Letters 15, 765 (1965);
in Proceedings of the Topical Conference on Spin and Parity
Assignment, Gatlinburg, 1965, p. 453 (unpub1ished).

~ A. Bohr, Kgl. Dansl'e Videnskab. Selskab, Mat. Fys. Medd,
26, No. 14 (1952};A. Bohr and B. R. Mottelson, ibid. 27, No.
16 (1953).

linear combination of a creation and. an annihilation
operator of a phonon, and thus its diagonal matrix ele-
ments vanish with respect to states that have delnite
numbers of phonons.

(Z) Shell Model

The simplest interpretation in the shell models of the
6rst excited 2+ state in '"Cd is that it is the 2+ state
that belongs to the proton con6guration (gets) '. In
general, the quadrupole moment of a state with spin
I that belongs to a configuration (j)+' (i.e., a two-par-
ticle or two-hole con6guration) is given by

-16' (2I—1)I(2I+1)-'"
Ql ——a2e( —)'-'

( )( )

X(jllr'I'sllj)W(jl jI;j2).

Putting j=
2 and I=2 we obtain

By using (r')= sees' with J4= 1.2A'ts P, we obtain for
'"Cd

Qs= —0.10 b. (2)

Consideration of the effective charge may increase
the magnitude of Qs slightly over that of Eq. (2). If
more complicated configurations are considered, the
magnitude will become smaller than that of (2), as is
exemplified by the random-phase-approximation (RPA)
calculation which will be presented in Sec. IIB.

(3) Rotatiola/ Model

Assuming that the 2+ state concerned is the 2+ mem-
ber of the rotationaP' band bulit upon the ground state,
the Q, is obtained from the well-known relation:

Q.= —(2/&)Qs,

where Qe, the intrinsic quadrupole moment, is defined

by

Prom analyses of the Coulomb excitation' and (p,p')
experiments, " the value of P is known to be P=0.2.
Thus, we get

Qs= —0.70 b.

(4) Wt'lets Jeart Model -(y Urtstable Mod-el)

In order to give a clue to explain the anharmonicity
in the experimental spectrum of "'Cd and other vibra-

'M. G. Mayer and J. H. D. Jensen, E/em~mtary Theory of
ENctear SheN Strlctttre (Iohn Wiley tk Sons, Inc. , New York,
1955).

'%e include the rotational model here, in spite of the fact that
it is quite different from the vibrational model, since it is the
only known model, except those considered in Sec. III, that
predicts large enough Qm.

"M. Sskai et a/. , Phys. Letters 8, 19'1 (1964};M. Sakai snd
T. Tamura, ibid. 10, 323 (1964).
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(5) Tamura Komai M-odel

In this model, "in addition to the Wilets-Jean poten-
tial (5), anharmonic potentials that depend on y were
also considered. A potential which was found to be
particularly suited to the explanation of the spectrum
and B(E2) ratios of '"Cd was

V'= —-', k(P —P)cos3y. (6)

Treating this potential as a perturbation, Q, will be
given as

Q = (2/33)'"2f(2 +IIQII2r+), (7)

where
~

2t+) and
~
2s+) denote the one- and two-phonon

states (in the sense of the Wilets-Jean model), while f
is the amplitude of mixing of the two-phonon state into
the one-phonon state. Q in Eq. (5) is the quadrupole-
moment operator. Choosing the parameters in (6) so
that the experimental spectrum and B(E2) values are
best fitted, we obtain

Qs=0.003 b.

The magnitude is very small and the sign is wrong.

(6) Daoidoo Filippoo Mode-l

The expression for Qs in this model is found on p. 242
of Ref. 13;

6 cos3'yo
s= —Qo

7t 9—8 sin'3yo]'~'
(9)

Here Qo is the same as that given in Eq. (3b). The pa-
rameter po may be determined from the known level
structure of '"Cd. Using go=26.75' determined this
way, we get

(10)Qs
———032 b.

(7) Goldhaber Weneser Model-

Based on the idea proposed by Goldhaber and
Weneser, '4 MacDonald" made detailed numerical cal-
culations of spectra and transition probabilities of vibra-

"L.filets and M. Jean, Phys. Rev. 102, 788 (1956)."T. Tamura and L. G. Komai, Phys. Rev. Letters 3, 344
(1959)."A. S. Davidov and G. T. Filippov, Nucl. Phys. 8, 237 (1958)."G. S. Goldhaber and J. Weneser, Phys. Rev. 98, 212 (1955)."N. MacDonald, Nucl. Phys. 48, 500 (1963).

tional nuclei, Wilets and Jean" modified the simple-
harmonic vibrational model by replacing the potential-
energy term' V=-,'CP' by

V= sC(P P—o')

This model succeeded in lifting partially the degeneracy
of the two-phonon triads and in giving the correct ratio
of the energies of the lowest two 2+ states, but as is
easily seen from the fact that the potential (5) is still
independent of the shape parameter y, the Qs predicted
by this model is zero.

(8) Summary

Summarizing this subsection, we see that the pre-
dicted values of Qs are too small in magnitude, although
the values obtained with the models (6) and (7) are
barely within the lower boundary of the experimental
value ~~

B. Microscopic Models

(1) Bamiltonian

The calculations in this subsection are based on the
pairing-plus-quadrupole force model, "where the pairing
force is treated in the BCS approximation. "After per-
forming the Bogoliubov-Valatin transformation, the
Hamiltonian may be written as~' ~2

&=EIo+&9,

+o= QEj~jm djmp

(12)

(13a)

&a= —(sGo)Z, Q.,'Qs„ (13b)

where Ho is the quasiparticle Hamiltonian, while Hg is
the transformed quadrupole force, in which we have as-
sumed that the coupling strengths of the proton-proton,
neutron-neutron, and proton-neutron interactions are
all equal to Go. In (13a), d; t and d; are the quasi-
particle creation and annihilation operators, respec-
tively, of a particle in a single-particle state labeled by
(jm), while E; is the corresponding quasiparticle en-

ergy. In (13b), Q» is the mass quadrupole-moment
operator, which can be expressed as a sum of two terms,
one involving only the pair creation and annihilation
operators As„ t and As„(which are referred to as
"pair operators" in the following), and the other involv-

'6 B.J.Raz, Phys. Rev. 114, 1116 (1959); 128, 2622 (1963)."It may be that the lower limit for Q2 given in Eq. (1) is
too small. The experimental value reported in Ref. 3, e.g., is
Q~ ———(0.70+0.21) b, and if this value is taken, the predictions
of the models (6) and (7) clearly disagree with experiment. A
source of the large uncertainty in experimental Q& in (1) is the
theoretical uncertainty in evaluating the E1 contribution to the
Coulomb excitation cross section via giant dipole resonance, as
pointed out by J. Eichler LPhys. Rev. 133, 31162 (1964)j.Accord-
ing to ¹ MacDonald LPhys. Letters 10, 334 (1964)g, however,
this contribution is likely to be small so long as we understand
that the '"Cd is a vibrational nucleus.' See, e.g., L. S. Kisslinger and R. A. Sorensen, Rev. Mod.
Phys. BS, 853 (1963)."T. II'ardeen, L. N. Cooper, and J. R. SchrieGer, Phys. Rev.
108, 1175 (1957).

soN. N. Bogohubov, Nuovo Cimento 7, 794 (1938); I. G.
Palatin, ibid. 7, 843 (1958).

'~ T. Tamura and T. Udagawa, Progr. Theoret. Phys. (Kyoto)
26, 947 (1961)."T.Tamura and T. Udagawa, Nucl. Phys. 53, 33 (1964).

tional nuclei, and found that (after an error made by
Raz" in a previous calculation of similar content is cor-
rected) this model predicts various known properties
of "4Cd fairly well. MacDonald also evaluated Qs and
found that

Q,= —0.30 b.
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ing the scattering operators Q,2„, which are de6ned
shortly. Thus

Q
—

Q2 (o&+Q (~) (14)

Q."=—E- .( )(A.'+(—)"A —.) (15 )

Q2."=Z- g.(a)@2. (15b)
vrith

A2ga:A2% =D12 2 ($1$2mlm2I2u
fPLI'Nsm

Xdi2~2 dj iei, (16a)

(1',2„=—e2„(12& =D12—' g (—)/~ 2(jij,m, —m)22 u&

fSISnm

Xdjimi de-m*, (16b)

D12 I-1+b/1923

(3) E&)aluahon of Q2 in Random Ph-ase APProxima&ion
(RPA) and Higher Random Ph-ase

A pproximation (HRPA)

Since HRPA" includes RPA" as a limit, it is con-
venient to write down the expression of Q2 for HRPA
6rst. In HRPA" the wave function ~%'2)2() is assumed to
have the form

[+2u&=&2u'~ +o&,

Il2M"=g {a(a)A2)2('+b(a)(—)~As sr }

+ g {a(a,P) P(22v)'~2M)A2, tA2„et
ag P s'v

+ b(a,p) g (—)u(22-'~ 2—M&A„.A2,.e},

g.( )=-g.(12)=5-"D--(j.II~I.llj.&

X (&;,V;2+ I/;, V;,), (1/a)
where ~%'()) denotes the ground state while a and P de-
note a pair of single-particle states.

Inserting (24) and (26a) into (20), Q2 is rewritten as

X (&,U;,—V;,V;,) .

If (14) is inserted into (13b), Hq is rewritten as

IIq ——Hq&'&+Hq&"&+Hq&'&,

Hq( ) = —1G Q„Q ( )tQ2 ( )

Hq""=-'GZ (Q "'Q2 "+cc)f

Hq(~) — 2G2+„Q2„(~)tQ2„(e)

(17b)

(19a)

(19b)

(19c)

(Z) The S/a/ic QuadruPole Moment Q2

If the wave function of the 2+ state is denoted as
~
422&), thc quadrupole 1110111ciitQ2 1s cxpl'csscd as

Q2= $161r/5j"2(%22
) OR(E2,0) ] %22&. (20)

In (20) 5K(E2,u) is the E2 transition operator, which
can be written, if the mass quadrupole-moment operator
Q2„ is decomposed into the proton and neutron parts,
Q2„(p) and Q2„(n), respectively, as

~(E2,u) =e.Q"(p)+e-Q2. (n) (21)

e„=e+e,«
(22)

//n= eeff p

where e,(& is the effective charge. ' As in Eq. (14), each
of Q2„(p) and Q2„(n) can be decomposed into two terms

Q2„(p)=Q2 '&(p)+Q2 &'&(p), (23a)

Q2. (n) =Q2."(n)+Q2."(n). (23b)

Inserting (23a) and (23b) into (21), BR(E2,/2) is now

re™expressed as

Q2= 9«/57" 5'oI &22~ (E2P)Il22'I+o&

+$162r/5 J&'(ee f
822m(') (E2,0)I422 [ O2& (27)

=Q2(i)+Q2(2)

In evaluating the matrix elements that appear in (27),
we shall retain only the dominant contributions. Thus,
in calculating Q2&'& we consider only the contributions
from the one-pair modes in 8~22 and 822 Li.e., we con-
sider only the first term of (26b)$, while in calculating
Q2&'& we retain only terms that are nonvanishing when

the boson commutation relations are assumed for the
pair operators A~ and A. The resulting expression is
given Rs

Q=Q "+Q&"

Q2(»=4(10&r/7)'/2 g e, p ('&D12D12D22g, (12)
g~y, n 128

X{a(13)a(23)+b(13)b(23)}w(jij222;2j2), (28a)

Q2(2&=8(22&/7)'/2 Q e, Q (')
r yn a&|t

X{a(a,P)Ea(a)g. (P)+a(8)g (a)j
+b(a,P)Lb(a)g. (8)+b(P)g.(a)j} (28b)

Because of the approximations made ln evRluatlng

Q, &'&, (28a) is exactly the same expression as one gets
for Q, with RPA, although the values of the expansion

coeKcients a(a) obtained in RPA differ from those ob-

tained ln HRPA.

gg(E2)M) gg(e)(E2/2)+gg(e)(E2 u)

aK('& (E2,/2) = e2Q2„('& (p)+ e„Q2„&'&(n),
m&'& (E2,/2) =e2Q2„('(p)+ e„Q2„'&(n)

(24)

(25a)

(25b)

(4) I(/umerical Canicula/ion 2n RPA

In RPA we neglect the last two terms of (18),and the

second terms of (26b) and (28). Under these simplifica-

tions the energies of the 2+ states (o„are obtained Rs
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solutions of the following dispersion equation:

2E g,'(n)
Go Z =1, (E-=E~i+E~ ).

a @a2 (gn2
(29)

(5) Numerical Calculation in HRI'A

In Ref. 22 the result of a detailed numerical calcula-
tion based on HRPA was given, which showed a fairly
good agreement with experiment of the energies of the
one- and two-phonon states and also of a few low-lying
quasiparticle states in '"Cd. The B(E2) values were
also in fairly good agreement (although a critical
argument will be given on this point in the next sec-
tion). In the course of this calculation the expansion
coefficients a(n), b(n), a(n, P), and b(n, P) that appeared
in (26) have been calculated, and thus we can use them
in (28) to evaluate Q, . The resulting value of Q2 is
found to be Q2= —0.082 b.

The energy of the first excited 2+ state is of course the
smallest solution ~oi of (29). With this &oi, the expansion
coefficients u(n) and b(n) in the first term of (26b) are
given analytically as

1 g.(n) 1 g. (n)
a(n) = —,b(n) =——

PE, oui — XE +~i
4E,orig, 2 (n)

(E 2 ~2)2

By inserting (30) into (28) the value of Q2 is computed,
and turns out to be Q, = —0.077 b.

R &'"»=1.2+0.2, (32)

which is to be compared with the ideal value E1=2.
In order to see the relation between the large magni-

tude of Q2 and the large deviation of R,&'"» from 2, we
shall consider a phenomenological model, which is very
simple and thus may not necessarily succeed in explain-
ing all the known properties of "Cd, but nonetheless
can demonstrate the relation very clearly.

A. Phenomenological Model (Model A)

Let us assume that the wave functions f(22) and
f(22) of the first and second excited 2+ states are given
as orthogonal linear combinations of those of the one-
and two-phonon harmonic-vibrational 2+ states, ll)
and

l
2). Thus

y(22) =u, ll)+a2l2),
4 (2 )= —a2I 1)+ail 2)

(33a)

with

tudes of various B(E2) transition probabilities are not
exactly those predicted by the ideal vibrational model.
It would then be a natural guess that the large magni-
tude of Q, is somehow correlated with the deviations
from harmonicity of some of the above-mentioned
quantities.

The quantity whose value deviates considerably from
the ideal value, and thus is of particular concern to us,
is the ratio E1 which is de6ned as

Ri —B(E2;—2, —& 2i)/B(E2; 2i —+ ground), (31)

where 2& and 22 mean, respectively, the first and the
second excited 2+ states. Experimentally it is known
that'

(6) Summary ai +a2 = 1. (33b)

Summarizing the arguments of this subsection, we
conclude that both RPA and HRPA give the correct
sign to Q2, but with too small magnitudes.

III. MODELS THAT PREDICT LARGE Q2

As we have seen in Sec. II, all the models so far pro-
posed for the vibrational nuclei have achieved varying
success in explaining known properties (other than
Q,) of '"Cd but have failed to predict suKciently large
values for Q2. The rotational model predicts a suKciently
large value, but as was noted in Sec. I the known spec-
trum and various transition probabilities of "4Cd have
all the characteristics of a vibrational nucleus rather
than a rotational nucleus. Thus, to be consistent, we
believe that there must exist one or more models that
predict a suS.ciently large theoretical value for Q2 with-
out going outside the framework of the vibrational
nucleus.

'"Cd is a rather typical vibrational nucleus, as we
have emphasized in Sec. I; but it is nonetheless not an
ideal vibrational nucleus. The energy spectrum shows
deviation from harimonicity, and the relative magni-

In this model Ri and Q2 can be expressed as

Ri= 2(2a22 —1)2/ai2 (34)

ai2=0.86 (and a22=0. 14)

which gives, by (35),

IQ21=o.58 b.

(36)

(37)

This Q, has sufficiently large magnitude and thus indi-
cates that the deviation of R& from 2 is indeed consistent
with large Q2.

Since the relative sign of the amplitudes e1 and u~

depends on the details of the interaction that causes
the mixing of the one- and two-phonon states, the sign
of the Q2 is undetermined to the extent of this simple
consideration. It does not seem difficult, however, to

Q2 ——(12/5) (72r)
—' 'aia2ZR2'p, (35)

where P is just the zero-point amplitude of the quad-
rupole-type surface vibration and is to be put equal to
P 21,10

On putting Ri of (34) equal to 1.2, the mixing pa-
rameter ai2 (and u22) is determined, and the result is
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think of an interaction of a reasonable form that pre-
dicts the negative sign to Qo, and thus we can conclude
that we have succeeded in constructing a model that
explains the observed value of Qo.

I+oM) —IC'o~")&+flCo~")& (38)

3. Microscopic Model (Model B)

As we have seen in Sec. II.B, neither RPA nor HRPA
gave sufficiently large magnitude for Qo, though the
sign was predicted correctly. On the other hand we saw
in the preceding subsection that we can conceive of
a phenomenological model that can explain the large
magnitude of Qo in a very clear and natural way.

The reason for the success of the model A was that
we considered a mixture of the one- and two-phonon
states in order to describe the wave function of the 2j+
state. If we note this fact, then it is by no means sur-

prising that RPA failed to give a large magnitude for

Qo, since the wave function of the 2i+ state in RPA is

just that of the one-phonon state. By the same reason-

ing, however, it is quite embarrassing that HRPA has
also failed, since in this model the 2~+-state wave func-
tion has been described from the beginning as a linear
combination of those of the one- and two-phonon states;
see Eq. (26b).

Faced with this difficulty, we recall that, though our
previous HRPA calculation" predicted the energy spec-
trum and various transition probabilities fairly success-

fully, it gave nevertheless a value 0.85 for Ej, which is

too small compared with experiment by about a factor
of 0.7. In Ref. 22 a possible origin of this small R~ was

discussed, and it was argued that perhaps it lay in the
fact that the wave function assumed in (26b) was too
restrictive.

Indeed, if we take the first term of (26b) as the opera-
tor (to be operated on the ground state) that creates
the one-phonon state, then the operator to create
the two-phonon state must be a bilinear product of
these one-phonon creation operators (with appropriate
Clebsch-Gordan coefficient and normalization factor).
In other words the term which corresponds to the
second term of (26b) is to be of the form (writing

somewhat symbolically) (A+At)(A+At) =AA+A&A&
+AA&+A&A. Compared with this, it is seen that the
terms of the form AA &+A&A are missing in (26b), and

this fact might have been the origin of the too small

E&. There was a mathematical difhculty which forced

us to neglect this type of term in the HRPA, "but it
is by no means impossible to include them, if we are

going to treat the mixing of the one- and two-phonon

states in a simple perturbation calculation. We shall

show that this can be done very easily, and that the

resulting Qo has a sufficiently large magnitude. (For
Ri see the discussion in Sec. IV.)

The wave function ~%'oM& is now described, introduc-

ing a mixing amplitude f, as

which is nothing but the first term of (26b)—as

I
C'o~")

&
= f~oM'I +o&, (4Oa)

ICo~' ')=—P (22»'j2M&Bo.'Bo ~eo). (4Ob)
V2 vv

In calculating the mixing amplitude f in (38) we first
recall that the term H(&("& in (18) was left out and only
HQ(' was used in RPA. We also note that the strength
of HQ &'~ was fixed in order to give a correct value of
&oi Lin (29)J, and this procedure also fixed the strength
of HQ("'. Therefore the perturbation calculation to mix
~Coi(('&) into ~Co~i("& through H()"" has no adjustable
parameter. In the first-order perturbation calculation

f is easily found to be

f= —(1/~i) ko j'"GoQo "Qo"
where Qo('& and Qo('& are defined by

Qo"=5(3)'"2 DioDioDoog, (12)
123

(41)

X (a(13)u(23)+b(13)b(23)

XW(jijo22;2jo), (42a)

(42b)Qo"= 2 g.(~){s(~)—b(~)}.

The meaning of the notations that appear in (42) can
be found in Sec. II.B.

Using (38) through (42) the evaluation of Qo is

straightforward, in particular since we use the same
approximations as those introduced in evaluating the
matrix elements of (27). Thus, we obtain a quite similar

result to that of HRPA of Sec. II.B, Qo being expressed

as a sum of two contributions, one coming solely from
the one-phonon state, and the other coming from the
admixture of the two-phonon state to the one-phonon

state. Furthermore, the first contribution is exactly the
same as that in (28a). Thus the final result is

Qo
—Qo(i)+Qo(o)'

where

Qo('&=right-hand side of Eq. (28a)

Q, ('&'=16L7r/35]'"f g e, P &'&g (n)
a=p, re a

(43)

(44a)

Using (41) and (44) and the values of various quan-

tities that have already been fixed in Sec. II.B (1) (or

Here ~Coor('&& and. ~Cour(o&) are the wave functions of
the one- and two-phonon states obtained in RPA, and
thus are expressed —by using the one-phonon creation
operator

Bogart Q——(a(c)Ao)&r~t+b(c) ( )~A—p»r~}, (39)
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rather in Ref. 21), the evaluation of Q2 in (43) is
straightforward. Ke have evaluated it for three values
of the effective charge e,n and the result is summarized
in Table I under the heading of model 3, where the
result in terms of HRPA is also given for comparison.
(The values e,ii=0.83 and 1.2 are the ones that were
required in getting the correct value for B(E2; 2i+~ ground) in RPA" and HRPA") With e,f' —0.83|
which must be taken for consistency here, we get
Q2= —0.44 b, which is somewhat smaller than that
obtained in Sec. III.A, but still is sufFiciently large to
explain the experimental results. The sign is also given
correctly. We thus find a second model that predicts
Q2 in agreement with experiment. It is to be noted that
this model is not very different in its essence from the
first model (model A). In both models the most impor-
tant point is that the 21+-state wave function is written
as a linear combination of those of the one- and two-
phonon states.

IV. DISCUSSION

As we have seen in Sec. III, there exist models that
can give rise to sufficiently large theoretical magnitudes
of Qi, and this convinces us that we can treat "'Cd
within the framework of the vibrational model in spite
of the large Q2, at least so far as we are interested in the
properties of the low-lying states.

The models considered in Sec. III are very crude,
and not much argument about the properties of '"Cd
other than Q2 has been made there. For example, we
have made very little discussion about the energies or
the transition probabilities in connection with the two-
phonon states, and to be consistent such investigations
certainly have to be made. Such a detailed investigation
cannot be made with the simple models of Sec. III and
have to wait for a more sophisticated extension of these
models.

Still, within the framework of the models of Sec. III,
it is possible to make semiquantitative, or at least
qualitative arguments about the extent to which our
models are consistent with the known data, and this we
will now do.

In evaluating Q2 in model A in Sec. III.A, we utilized
the experimental knowledge of Ri defined in (31).
Another quantity whose value is characteristic of vibra-
tional nuclei, and thus is important in identifying a
nucleus as a good vibrational nucleus, is another ratio
R& which is defined as

R~ B(E2; 2~ ~ ground)/I——I(E2; 22 ~ 2i); (45)

that is, the (reduced) branching ratio of the E2 transi-
tions from the 22+ state to the ground and 21+ states.
For an ideal vibrational nucleus R~=O, and in many
actual vibrational nuclei R2 divers from zero but still
is very small. In particular in" Cd we have'

R,&: & =O.O&SWO.OOS.

TABLE I. Calculated and experimental values of the quadrupole
moment of the 6rst excited 2+ state of '"Cd, in barns.

We can evaluate R2 in model A, since we know the
wave functions of the 21+ and 2~+ states. The result is

R2("& =uP/2 (2a&2 —1)'=0.14. (47)

This value is about one order of magnitude too large
compared with (46), and this constitutes one of the
difficulties of model A as it stands. It should, however,
be noted that model A is a one-parameter (ai) theory
in that only the mixture of one- and two-phonon states
were considered, and further that there exists no value
of ai that gives simultaneous agreement of Ri and R2 of
Eqs. (34) and (47) with their respective experimental
values. In a more refined calculation, which has to be
made in the future, clearly a more complicated mixing
must be considered, and if this were done we might get
small values for R2. Incidentally, it may be worthwhile
to remark here that several phenomenological mod-
els" ""and a microscopic modep' gave values for R&
in good agreement with experiment; see Eq. (46).

As for the energies of the 22+ and 21+ states, we get
E(22)/E(2i) = 2.72 in model A, which is large compared
with the experimental value, 2.17. This is not a diiTi-

culty, however, since no shift of the ground-state en-

ergy has been considered yet. With the introduction of
reasonable interactions between the ground and the
excited 0+ states, it is expected that the ground-state
energy is depressed from what it was before the interac-
tion was considered, and this certainly decreases the
ratio E(22)/E(2i) from the above value. This interac-
tion may also push up the first excited 0+ state to
slightly below the 2&+ state, in agreement with experi-
ment. All these arguments, including further that of the
energy of the first excited 4+ state, can, however, be
made more definitely only after more complicated. cal-
culations are made.

As for model 8, the quantities discussed above are
calculated as follows:

E(2g)/E(2i) =2.15 (2.17),
Ri&a& =1.65 (1.25&0.25),
Rp& &=0.047 (0.015+0.005),

(48)

where for ease of comparison the corresponding experi-
mental values are given in parentheses. R2& ) is still too
large compared with experiment, but is much smaller
than R2&A&. Indeed R2&B) is only a little larger than twice
the upper limit of R2&'"», and thus embodies the char-
acteristic smallness of Rg in vibrational nuclei. R1( ) is
also larger, but only very slightly so, than the upper
limit of the experimental Ri~' ».

HRPA Model B
eeff g2( ) g2(~) gS 'g2( ) g2( ) qm

0.83 -0.054 -0.028 -0.082 —0.077 -0.362 —0.439
1.0 -0.060 -0.031 -0.091 —0.079 —0.432 —0.511 0.50 +0.25
1.2 -0.068 -0.035 -0.101 —0.082 -0.520 —0.602
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The value of Qa= —0.44 b given for model B in Sec.
III.B may seem slightly too small to make this model
satisfactory. It should be noted, however, that Qa in this
model is a rather sensitive function of the position of
the single-neutron state 1hi~~2 in the shell model. In the
calculation of Ref. 21, we assumed that e&y„„,—~2~„,
= 2.4 MeV. If this energy difference is increased to 2.8
MeV and the calculation of Sec. III.B is repeated
[which now requires e,«=0.904 in order to fit the ex-
perimental value of B(E2; 2i+ ~ ground) j we get

Q2 ———0.586 b,

which is of quite large magnitude.
As far as the above arguments are concerned, model

B seems somewhat preferred to model A. The situation
is different, however, if we consider the Qq values of
other Cd isotopes. Recently in Oak Ridge experiments4
similar to those for "'Cd have been made for '"Cd and
"'Cd, and the results indicate that"

le.("'«) I(le.("'«)
I &le.("'cd) I,

the sign being always negative. Since it is known ex-
perimentally' that

R (n'Cd))R (u4Cd))R ("'Cd), (51)

and the larger Rt gives rise to the smaller Qa in model
A, as is easily seen by comparing Eqs. (34) and (35)
[for a fixed value of j3(E2; 2i+ —+ ground), which is
known to be approximately the case'j, we can conclude
that model A is in accord with the experimental result
(5o).

On the other hand model B predicts that

I e ("'cdl
& I Q ('"cd)

I & I e.("'cd) I, (52)

which is just opposite to (50). The reason we get (52)
is that in going from '"Cd to "'Cd, the neutron orbit
1hi~&~ is more and more filled, and its large positive
contribution to Qm increases accordingly, making Q2 a
smaller negative quantity.

~ P. H. Stelson (private communication).

In this connection it may be of interest to measure
Q2 in vibrational nuclei that are heavier than "4Cd, for
example, the Te isotopes. In these nuclei the above
1krt/2 orbit is more and more filled (in the sense of the
BCS theory), and contributes a large positive value to
Q2, making Q2 itself a positive quantity. In particular,
model B indicates that the Te isotopes may have posi-
tive Qm. Since (52) contradicts the experimental result
(50), this argument should not be taken too seriously.
Nevertheless such experiments still seem of great inter-
est in clarifying the structure of the vibrational nuclei.

We conclude this section by considering the magnetic
moment, p,2, of the first 2+ state of "4Cd. In model A
(plus the hyclrodynamic model), we would get

p2&" i = 2Z/2 =0.86 nm,

while in the model B we expect to get

JLf,
~(~) =2.38 nm.

(53)

Since the difference between (53) and (54) is so large,
the observation of p2 certainly would be quite useful in
discriminating between models A and B [though it
should be noted that we would not get the result (53)
for model A, if the assumption of the hydrodynamic
model were not used]. We have been informed that an
experiment to observe p& is under way. '4

'4 S. K. Bhattacherjee {private communication).
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