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tures as high as 300°K, and there is no obvious reason
why these thresholds should not also be evident for
CdTe if they are really present. Second, this analysis
leaves unexplained the lowest segments of the absorp-
tion which are drawn in to fit the data below segment
(a) in each case. These segments cannot be fitted into
the theoretical framework already described. Last, the
indirect band gaps and threshold energies used in the
calculation are only 10 to 15X 1072 eV smaller than the
energy for the peak absorption by the direct excitons.
In this part of the spectrum, less than one LO phonon
away from the exciton center, phonon-assisted absorp-
tion by direct excitons is expected and, as shown in the
following paper, all of the observed intrinsic absorption
can be accounted for by this process. Thus it is con-
cluded that no major fraction of the intrinsic absorp-
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tion observed in CdTe below the direct-exciton peak
can be plausibly understood as indirect interband or
indirect exciton absorption, and there is no definite
evidence that any of the absorption arises from such
processes.
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Optical Absorption Edge in CdTe : Theoretical*
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Optical absorption in the “edge region” (i.e., for photon energies just below the first exciton peak) due to
the creation of direct excitons with the simultaneous absorption of one and two longitudinal optical phonons
is calculated by perturbation theory for Wannier excitons formed from the conduction and valence bands
around k=0. It is shown that the contributions from the #>1 exciton bands, neglected in earlier calculations,
are quite important and are required for a quantitative study. The results quantitatively account for the
magnitude and for the temperature and energy dependences of the absorption coefficient observed in CdTe
using a (average) hole mass of 0.4, where  is the free-electron mass. These results strongly support the
assignment to CdTe of a ‘““direct” minimum band gap at k=0, contrary to a number of recent contentions
(also based on absorption measurements) that the material is “indirect.” It is noted that the agreement
between the calculated results (including a rough correction for level broadening) and the data extends up
to the temperature range at which the absorption coefficient begins to exhibit Urbach’s-rule behavior. It is
argued from this fact that the mechanism employed in these calculations, as opposed to others recently

considered, underlies Urbach’s rule in, at least, the compound semiconductors.

I. INTRODUCTION

HE temperature and energy dependence of the
optical absorption of CdTe has been repeatedly
measured in the neighborhood of the lowest-energy
absorption edge' and the analyses of these data. have
suggested that this semiconductor has an “indirect”
minimum band gap. The results of an investigation of
a related phenomenon, the photovoltaic effect,” have
been interpreted as favoring this assignment. Further-
more, a calculation of the valence band structure has
supported this picture.®* However, the results of the
# This work was supported in part by the Aerospace Research
Laboratories, Office of Aerospace Research, U. S. Air Force.
1P. W. Davis and T. S. Shilliday, Phys. Rev. 118, 1020 (1960) ;
C. Konak, Phys. Status Solidi 3, 1274 (1963); W. Giriat, Acta

hys. Polon. 24, 191 (1963). .
d 2y\?V. ((}).OSnpitzér and C. A. Mead, J. Phys. Chem. Solids 25, 443
1964).
( 3 M) Cardona, J. Phys. Chem. Solids 24, 1543 (1963). )
4 Professor Cardona has kindly brought to our attention the dis-

measurements of the intrinsic absorption edge in CdTe
by Marple, which are presented in the previous paper®
(hereafter referred to as I) differ in some significant
respects from the earlier data. In addition, it was shown
that the data in I could not be understood in terms of a
reasonable indirect band gap model.

In this paper we start with the opposite assumption
about the lowest band gap in CdTe, that is, that it is
direct. Furthermore, on the basis of the study of the

covery of an algebraic error in Ref. 3 [see M. Cardona, J. Phys.
Chem. Solids 26, 1351 (1965)]. When the correction is remedied,
the calculations yield a positive heavy hole mass.

8 D. T.F. Marple, preceding paper, Phys. Rev. 150, 728 (1966),
hereafter referred to as I.

¢ The fact that this assignment is quite reasonable for CdTe,
and indeed for all the II-VI semiconducting compounds, is dis-
cussed by B. Segall, in Physics and Chemistry of II-VI Semi-
conducting Compounds, edited by M. Aven and J.'S. Prener (North-
Igﬁllancil Publishing Company, Amsterdam, to be published),

ap. 1.



150

electrical transport properties’ and cyclotron resonance?
in n-type material, we take this direct gap to be at k=0.
The absorption mechanism that we consider for photon
energies below the lowest exciton line is the creation of
a “direct” exciton with the simultaneous absorption of
a longitudinal optical (LO) phonon. This process has
been employed earlier to explain the absorption edge in
the wurtzite crystals CdS® and ZnO.** We will show that
this mechanism, with the assumption that the valence
and conduction band extrema are at k=0, leads to an
absorption coefficient which is in good quantitative
agreement with the measured values for CdTe.

Recent measurements and analyses along the lines
discussed below indicate that the phonon-assisted
direct exciton process also accounts for all the intrinsic
edge-region absorption in ZnSe and ZnTe.*® These
results appear to conflict with views of Aten ef al.,'* who
measured the transmission in ZnTe and concluded that
the material is “indirect’” and with Cardona,®#* who
calculated a negative hole mass at k=0 for ZnSe.
Furthermore, on the basis of all relevant available data
it has been suggested that all of the II-VI compounds
have direct k=0 band gaps.’®¢ If this suggestion is borne
out, the absorption edges in all these materials will be
determined by the above mechanism. Similar conclu-
sions probably apply to the IIT-V family, the majority
of which appear to be “direct” semiconductors,'® al-
though the specifically ‘“‘excitonic” aspects will be
somewhat reduced due to weaker exciton binding and
oscillator strengths.

Phonon-assisted direct transitions in the absorption
edge region were first considered by Dumke'® in
processes involving free electrons and holes, i.e., in the
so-called band-to-band transitions. The calculations for
CdS® and ZnO" were similar except that the two-
particle electronic states involved were taken to be
discrete exciton states. In these latter studies, the cal-
culations were greatly simplified by the assumption
that only the n=1 exciton state makes an important
contribution to the sums over intermediate and final
states. While it appears that the results thus obtained

7 B. Segall, M. R. Lorenz, and R. E. Halsted, Phys. Rev. 129,

2471 (1963).
13K). K. Kanazawa and F. C. Brown, Phys. Rev. 135, A1757

964).

( 9 D. G. Thomas, J. J. Hopfield, and M. Power, Phys. Rev. 119,
570 (1960).

0 R. E. Dietz, J. J. Hopfield, and D. G. Thomas, J. Appl. Phys.
Suppl. 32, 2282 (1961).

1 G. E. Hite, D. T. F. Marple, M. Aven, and B. Segall (to be
published).

2D, T. F. Marple (to be published).

3 B. Segall and D. T. F. Marple, in Physics and Chemistry of
II-VI Semiconducting Compounds, edited by M. Aven and J. S.
Prener (North-Holland Publishing Company, Amsterdam, to be
published), Chap. 7.

14 A, C. Aten, C. Z. Van Doorn, and A. T. Vink, in Proceedings
of the International Conference on Physics of Semiconductors,
Exeter, 1962 (Institute of Physics and The Physical Society,
London, 1963), p. 696.

15 Q0. Madelung, Physics of III-IV Compounds (John Wiley &
Sons, Inc., New York, 1964).

16 W. P. Dumke, Phys. Rev. 108, 1419 (1957).
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are qualitatively correct, it is not clear without further
investigation what contribution is made by the full
spectrum (both discrete and continuum) of excited
states. In fact, it will be shown (Sec. II) by simple con-
siderations that the contribution of higher excited states
cannot be neglected on the basis of previously given
arguments. A principal purpose of this paper is to deter-
mine to what extent the contributions of the higher
exciton bands modify the simple “z=1 only” result
(Sec. II).

We also calculate (Sec. III) the absorption coefficient
for the process involving the annihilation of two LO
phonons, which is important in the range of one to two
LO phonon energies below the first exciton line and at
moderately high temperatures. With the latter results
we extend our considerations over reasonably wide
energy and temperature ranges.

For many insulators it has been shown that at
sufficiently high temperatures the absorption coeffi-
cient in the edge region obeys Urbach’s rule’ i.e.,
a~exp{— (Eo—hv)/vkpT}. Recently, considerable at-
tention has been given to the problem of understanding
the origins of this simple result. Since the Urbach behav-
ior pertains to the same portion of the spectrum that we
are concerned with here, although perhaps at somewhat
higher temperatures, the question naturally arises as to
what connection, if any, it has to the mechanism dis-
cussed above. This question will be discussed in Sec. IV.

In Sec. V we evaluate the possibility that other
electron-phonon couplings could lead to appreciable
contributions to the absorption coefficient in the
spectral range of interest.

II. THE ONE-PHONON PROCESS

In this section we will calculate the optical absorption
coefficient for the process involving the creation of a
direct exciton and the simultaneous annihilation of an
LO phonon and a photon of energy Av. This process has
a threshold at hv=E,,1— fuw;, where E, ; is the position
of the n=1 exciton absorption peak and %w; is the
energy of an LO phonon at q=0. (Phonon creation does
not enter because we restrict ourselves to kv <E,,1.) To
describe the unperturbed electron and hole (exciton)
system we employ an “effective mass” Hamiltonian,
H,, with the electron-hole interaction taken to be
—eé%/e;|7o—71|, wheree, is the static dielectric constant.
This approximate Hamiltonian determines the eigen-
values and eigenfunctions which modulate the valence-
and conduction-band Bloch functions in the complete
wave function for the state. The effective-mass ap-
proximation should be applicable for the semiconductors
under consideration (certainly for CdTe, the material
we consider in detail) because of the moderately high
dielectric constants (~10) and low reduced effective
masses (~0.1m). A further approximation, that of

17 For example, see R. S. Knox, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1963),
Suppl. 5.
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F16. 1. Schematic representation of the one-phonon (a) and two-
phonon (b) assisted “direct’” exciton optical absorption processes.
The dot at £=0 represents the ground state, the parabolas the
discrete exciton bands, and the hatched area the continuous spec-
trum. The smaller arrows between the bands symbolize the
“scattering” of the intermediate state excitons by the LO phonons.

representing the complex degenerate valence band by
a simple spherical band characterized by a mass ma,
considerably simplifies the problem. Since the much
lighter electron largely determines the exciton structure
and, further, since the details of the valence band struc-
ture would not be expected to reflect themselves in an
essential way in this process, this approximation should
have no serious consequence. The parameter #, is then
some average over constants (the inverse masses 4,
B, and C)'® describing the degenerate valence bands.
The unperturbed exciton Hamiltonian is then

— h2 h2 62
H,=—V,2}—V,2——
2m, 2my, €7

— 52 12 o2
Vei——Vi——, (1)
2u €s”

where M =mq+my and ut=ms +m;™, R=M"(m.r,
+mixn), and r=r.—r;,. The energy spectrum Iis
“hydrogenic,”

Eun(K)— Eg=— B/n>+72K2/2M (2)

where the binding energy B=Rye;2(u/m) with Ry
=Rydberg=13.6 eV; K is the total exciton wave
vector; and the integer # is the principal quantum
number for the discrete states. For the continuum
states, the internal energy is #%k?/2u, where 7%k is the
relative momentum. The eigenfunctions are

V12 exp(iK-R) ¢u(r) , (3)

with V' the normalization volume and ¢a(r)= @nin(r)
the standard hydrogen-atom wave functions (for the
discrete and continuum states), with the exciton Bohr

18 G. Dresselhaus, A. Kip, and C. Kittel, Phys. Rev. 98, 368
(1955); E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
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radius a=ape;(m/u), where ao is the atomic Bohr
radius.19:20

The parts of the total Hamiltonian representing the
unperturbed lattice vibrations and the electron-phonon
coupling are

H;+H,. = Z h""a'(q)aq.v*dq.v
q,0
+ ¥ (u@agevitHe), @

q,0,7

where j=e¢ (electron) and % (hole), o labels the mode,
and @q,0(aq,s*) Is the operator which annihilates
(creates) a phonon of wave vector q and mode ¢ and
H.c. denotes Hermitian conjugate. For the temperatures
and ¢ that we are concerned with, the most important
coupling is that arising from the interaction of the
electronic particles and the polarization associated with
the LO vibrations, the so-called polar interaction (see
Sec. V). For this case,

ui(q)= (£)u(g)
= (k)i[e2mheoV (e —e ) 2g7,  (5)

where e, is the high-frequency dielectric constant and
the different signs occur for the electron and hole. Since
the optical branch is quite flat around q=0 and only
small momenta are important for weakly bound exci-
tons, it is a good approximation to take w(q)= constant.
Finally, we must include the energy of the free radiation
field Hr and electron-photon interaction term, which
for the transition of interest is

H.r=e(mc)'A(r)€ p., (6)

where A(r,) is electromagnetic potential at r, with
polarization vector & and p is the momentum operator
for the electron. The total Hamiltonian H for the system
is taken to be the sum of the unperturbed part H, and
a perturbation H’, with

Hy=H,+H;+Hg,
H'=H,rp+H.r.

The process being considered is illustrated in Fig. 1(a),
where the ground state of the crystal |G) is indicated
by a dot at E=0 and the parabolas indicate the various
exciton bands E.,(K)=E,,+ (#2/2M)K2 In the first
step of the process, which we treat by conventional
perturbation theory, the exciton is created in band 7
with total momentum #K=~0 (vertical selection rule)
when the photon is annihilated. The exciton then under-
goes a scattering to a state with K520 in the band »’
with the absorption of a phonon of wave vector q. The
transition rate for the process is

(G|Hr|n; 0)(n; 0| H,|0'; )2
Eon—hyv

X&(hv+hw;-—Em/——h2q2/2M) . (8)

18 G, Dresselhaus, J. Phys. Chem. Solids 1, 14 (1956).
n R, J. Elliott, Phys. Rev. 108, 1384 (1957).

)

@) =2 /|



150

Here, >, denotes the sum (and integral) over the
complete hydrogenic spectrum including the discrete
and continuous parts. The matrix elements are evalu-
ated by making use of the usual separation of the rapidly
and slowly varying parts of the exciton wave functions.
As shown in the study of exciton line absorption,?® the
first matrix element can be written

em[2mhn(x)/€'w ] (& Puc) a(0) ©)

where 7(x) is the number of photons with wave vector
x, € is the dielectric constant at sv= E,; with the con-
tribution from the =1 state omitted, and P,. is the
momentum matrix element connecting the k=0
valence- and conduction-band Bloch functions. To
obtain (9) the k& dependence of the band matrix element
is neglected. Since ¢,(0) vanishes for /50, there are
transitions only to the s exciton states in this approxi-
mation. Nonvanishing matrix elements (of H.z) to the
$, d, - - - exciton states, which arise from the part of the
band matrix elements proportional to %, k%, ---, are
much smaller than those for the s exciton?* and will
be neglected below. Since the ¢’s involved prove to be
small [viz., ¢< (1/30) (27/ a1atsice) for CdTe], the scatter-
ing matrix elements can be separated into rapidly and
slowly varying parts, and can be expressed as

N (1) 28 xe(a) / & 02 (1)

X [exp (iq-tm,/ M) — exp(—iq-tmu/M) ] pw (r)
=8q,xN () *u(q)[n| U(q)|n'], (10)

with N (%)= (e"*/*T—1)~1, The reduced matrix element
[n|U(q)|n] is essentially the difference of two Fourier
transforms of ¢nen, and its vanishing for ¢— 0 and
n’=n reflects the over-all neutrality of the exciton.

To arrive at the absorption coefficient, we must sum
over all permissible final-state exciton bands n’ and
all K=gq, the latter introducing a density-of-states
factor, and use the relation

a=(¢)"*[en(v) I an/0t, (11)

where 7(») is the photon density in the range (v, v+dv).
Using dn/0t=2_q,» wq'™, we obtain

a (hll) = ozoEg,121m3N(hwl)
Spn.l=0(0) [%,OI U(q) l nI]
Ezn— hy q=qn’

X Ea " (hv+twy— Ean )12,

4By €2 huwy (1 1)(2M)1/2
ap= - —_— N\ .
(V2 he 4BV \Newy €5/ \ 12
The quantity 478; represents the contribution to the
polarizability from the #=1 excitons and is directly

2

X!

n’

>

n(1=0)

(12)
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proportional to the oscillator strength per molecule for
the n=1line, fi{4mB1(Es1/#)?=4mwe*m™ (N/V) f1, where
N/V is the number of molecules per unit volume]. As
indicated, the matrix elements are to be evaluated at
¢=qn, where ¢, is determined by conservation of
energy and momentum;

h2qn/2/2M=hV+hwl_Ezn’* (13)

The prime on }_,’ indicates that the sum runs over only
the accessible final bands, i.e., those for which ¢,2>0.
The above result has already been given by Toyozawa?
in his study of the exciton problem. By the use of
damping theory, he has shown that the linewidths T',
and level shifts AE,, enter in the expected manner, i.e.,
the energy denominators E,.—hv are replaced by
E 4+ AE—hyv+iT',. We temporarily neglect these
effects. The problem we address ourselves to is the
evaluation of Eq. (12) to the required accuracy.

The simplest approximation, restricting the inter-
mediate and final states to the #=1 band, leads to

a1(hv)= o[ Ez1/ (Ez1— hv) 2N (hwr)

X{OH(pw/ 27 12— [+ (po/ 2 T2
XEa'?(w+hor—E)72,  (14)

where p;=gam;/M (j=e or k). The quantity in the
braces is the difference of the Fourier transforms of
| @n=1]2. Aside from a factor close to unity, (m:2—mg)
X (mi24+m&)~, this is the same expression as that given
by Dietz et al.}® The work of the remainder of the section
is to consider the corrections to this expression. It is
easy to see that (14) is a reasonable approximation when
#wi<KB. For, in that case, the relative smallness of the
energy denominator for the =1 band accentuates the
contribution of that state to the sum over intermediate
states, while energy conservation restricts the final
states to that same band. Unfortunately, this simplify-
ing condition does not apply for the semiconducting
compounds of interest (in fact, generally #w;> B).

The previous arguments® to the effect that the n>1
intermediate states can be neglected because the oscil-
lator strength drops off as #~%, and that the continuum
states can be ignored because of the large energy de-
nominators which enter squared and the weakness of
the scattering from these states to a bound state, are not
as convincing as they first appear. First of all, since the
square of the sum over intermediate states is involved,
it is the ratio and not the square of the ratio of the
various matrix elements and energy denominators that
is relevant. The n-dependent factors in the intermediate
state sum are principally ¢,(0)<¢,| which is  #3.
However, this fairly rapid dropoff is completely offset
by the #® dependence of the density (in energy) of the
discrete states, and the same effective weighting applies
to the low-energy continuum states. It also turns out
that when the normalization and density-of-states

1Y, Toyozawa, J. Phys. Chem. Solids 25, 59 (1964); Y.
Toyozawa, Progr. Theoret. Phys. (Kyoto) 20, 53 (1958).
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effects are accounted for, the appropriately “weighted”
scattering matrix elements from lower continuum states
are nearly equal to those from all but the lowest discrete
states. While these arguments in themselves do not
show that the »>1 bands make an important contribu-
tion, they do indicate that a more detailed study is
required.

A. Intermediate States

We first consider the corrections due to the n>1
intermediate states, limiting the final states to n=1.
These are the only corrections for Av+#uw,—E,3 <2B,
ie., below the n=2 threshold. Also, for the condi-
tions generally met in the compound semiconductors
(#5,;S B), the #>1 bands play a more important role in
the intermediate state sum when kv is close to the
threshold (E.1—#%w;), since then the n=1 energy de-
nominator is not small compared to those for #>1.

The sum over intermediate states has been evaluated
in two ways. In the first, the sum is rewritten as

Qon(O)[n]UIl]:% ea(0)[n| U[1]

n Epn—hv n= E..—hv
2 (0 U1
+- 5O

s0 as to separate out a small finite number N of terms
which are to be evaluated exactly. To approximately
evaluate the remaining terms on the right-hand side,
which is the sum over all states with #> X, we replace
E.. in them by an “average excitation” (E,,). The
infinite summation, which is re-expressed as the sum
over the whole spectrum minus the finite sum as indi-
cated, can be carried out directly using the completeness
property Z,¢,(0)¢.(r)=08(r). The sum over the whole
spectrum equals zero because the interaction vanishes
at r=0. With this result, the absorption coefficient can
be shown to be

(EM)—EM]2

Olw=1(hll) %al(hv)l: (E ).._h

N e E,l—]’ll/ <Exn>_E:vn
X nz———:1n /(E,,.——hl)((Em)—Eu)
X[n,OIU(q)IIJ L (16)
[1U@[1] le=q,

In principle, (E.,) is a function of %»; but since
(E.,)—hv must be fairly large (i.e., > B) because of the
subtracting out of the lower N bands and the contribu-
tion of the continuum, we can conveniently neglect this
dependence. Numerical evaluation (see below) demon-
strates that for a fixed (E.,) the terms with #>2 or
3 contribute only negligibly to the sum in (16).
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In the other approach we explicitly calculate the
matrix elements in a form which permits the summa-
tions to be carried out. The basis of this approach is the
well-known fact that the bound-state and low-lying
unbound-state radial functions for a given ! (but vary-
ing principal quantum number) have rather similar
7 dependence (but different normalization) within the
first few nodes, the region important for the evaluation
of the matrix element. The mathematical expression of
this?? is the expansion of the (unnormalized) radial func-
tion for the discrete states in powers of n~%:

2R (r) = Jara(2)+0[3 (1) (2/2) T 2145(2)
—17(3/2)2144(8) ]+-0(n ™),

where z=(87)2. For the continuum states —#~2 is
replaced by (ka)?= (#%k?/2u)B . Since the expansion in
that case is convergent only for the kinetic energy (of
relative motion) small compared to B, it cannot be used
in the sum over the whole continuum. With the % de-
pendence separated out as in Eq. (17), the summation
over the discrete spectrum can readily be carried out.
In the computations below, the matrix elements for the
n=1, 2, and 3 bands have been evaluated exactly and
the others using (17) have been calculated with the
neglect of terms O(n™%).

Using o e 72x*/2] ((27/x)dx=~"*"1 exp(—v7"),2 we
find that

[n,1=0|U|n=1]
={S1(pn)+n2[1S3(pr) —72S4(pr) 1}
- {Ph - Pe} )

(17)

(18)

where

Se(p)=—p71 2 (14~ exp[—2/(142)]
X {sin[2p/ (1+p*)] Re(1—ip)~*H
+cos[2p/ (144 ] Im(1—ip)<+},

with Re and Im denoting, respectively, the real and
imaginary parts. With (18) and after the computation
of some sums over #, a(kv) is obtained from (12).

B. Contribution of n>1 Final States

The contribution from the »>1 final states starts at
hv=E,, and tends to increase with increasing /&v. To
compute the sum 3./,>1 in Eq. (12), we employ the
simple generalization to #’>1 of the approach leading
to Eq. (16). We obtain

a(hv)=2;’ Fo (hv)qy/ qw (19)

where Fn(hv) 1is the expression in (16) with
[7,0|U(9)|1]| o replaced by [#,0]U(q)[n"]|q,. The
factor ¢1/¢.- appropriately corrects for the density-of-

22 See, for example, F. Ham, Quart. J. Appl. Math. 15, 31 (1957).
% W. Grobner and N. Hofreiter, Integral Tafel I1. Teil (Springer-
Verlag, Vienna, 1958), 2nd ed., p. 198.
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states term and for the ¢~ factor in the square of the
electron-phonon interaction [Eq. (5)].

In contrast to the intermediate states, final states
with />0 must be included since the interaction scatters
into states of all angular momenta. While, in general,
one would expect the contributions to drop off with
increasing /, it turns out that the /=0 states (for n>1)
do not dominate the sum. To obtain an indication of
the relative importance of the final states with different
/, we note that since the recoil momenta (in units of ¢™)
involved are small (i.e., ga<1), the / component of the
interaction goes roughly as

Julgrmu/ M)~ (—1)" ji(qgrm./ M)
~3g¢rt(m—m) M2, 1=0;
~ g Tt (— D), MY (U111, 10 (20)

This suggests that the /=1 terms will be the largest
contributors and that the />3 terms will be negligible
for our purposes.

To evaluate the required matrix elements and sums
over states we used the approach involving the expan-
sion of R,; in terms of »~2. However, due to increasing
complexity of the matrix elements with increasing I
using Eq. (17), we have resorted to a somewhat modified
approach based on the same general principle. Here we
express R,i(r) within the first few nodes in terms of a
few suitably chosen radial functions of moderately low
principal quantum numbers. It can be readily demon-
strated that for the radial functions normalized as
Ry — 7Y/ (214-1)! for r — 0,

Ry i(r)=Rs (r)+ (n2—i2)a2 (A—1)"2(1—27)

X [Rﬁ,l_Rﬂ—l,l:|+O(ﬁ—4) . (21)

As before, when —#~2 is replaced by (ka)?, the expan-
sion is valid for the low-energy continuum states
[l.e., (ka)*<1]. For the photon energies of interest the
cutoff in the continuum states is at the worst at ka <1.
Furthermore, since the squares of all the scattering
matrix elements decrease fairly rapidly with decreasing
recoil momenta, the contribution of the states with
(ka)*21 to the sum (integral) over states will be quite
small and the use of (21) does not lead to an appreciable
error.

In evaluating the sum (19) for CdTe, we have com-
puted the contribution of the #<4 bands separately.
For the discrete bands with #> 5 we set ¢, = ¢ which was
evaluated for 772=0.02, a procedure introducing an
error in these terms of the order of 297, so that the sums
could be carried simply. The integrals over the con-
tinuum states are carried out numerically. To avoid a
considerable increase in the complexity of the computa-
tions, we have employed the relatively simple expression
for F,» which corresponds to taking N=1 in Eq. (16).
As we will see below, the contributions of the higher
terms in Eq. (16) are quite small at the higher energy
end of the relevant energy range. This is related to the
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F16. 2. The energy of the #=1 exciton line in CdTe
as a function of temperature.

fact that as sv— E,, the contribution of the n=1
intermediate state becomes increasingly important.

C. Application to CdTe

Fortunately, the parameters required to determine
a(hv) are known with sufficient accuracy for CdTe to
make a detailed comparison with experiment feasible.
For the dielectric constants we will use e,=10.0,724
€,=7.05 and ¢=9.0,° and for the phonon energy
fiw;=0.0213 V.27 Thomas’s?® reflectivity measurements
have given E,;(T") from low temperatures up to about
80°K while recent work'? has extended this up to 150°K.
Figure 2 presents these results. Interpretations of the
electrical” and Faraday rotation?® studies have indicated
an isotropic electron mass of magnitude m,=0.11
#+0.01.2° The mass isotropy was confirmed by cyclotron
resonance studies which yielded the mass value of
me=0.0960.005.8 The oscillator strength f;, which
determines the magnitude of a, has been obtained from
a Kramers-Kronig analysis of reflectivity data. The
value of fi=6.1X107*4209, or correspondingly 4m3;
=4.8X107°4+£209.% Of all the parameters, the hole
mass my is the least well known. On the basis of the
separation of the peaks in e due to n=1 and n=2

2 A recent determination by D. T. F. Marple and S. Roberts (to
be published) yields the value of e,=9.7 at T'=4°K. Berlincourt
et al., Ref. 37, obtained the value 9.65 at 7'=90°K.

25 This value was obtained by extrapolating the room-tempera-
ture result [D. T. F. Marple, J. Appl. Phys. 35, 539 (1964)] and
the 7=90°K result (D. T. F. Marple, unpublished) to low
temperatures.

26D, T. F. Marple and H. Ehrenreich, Phys. Rev. Letters 8, 87

1962).
( 27 R. E. Halsted, M. R. Lorenz, and B. Segall, J. Phys. Chem.
Solids 22, 109 (1961).
28 D. G. Thomas, J. Appl. Phys. 32§, 2298 (1961).
2 D. T. F. Marple, Phys. Rev. 129, 2466 (1963).
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I16. 3. A comparison of data from
I and theory in the one-phonon region
(i.e., Ey1—hv <#ew). According to Eq.
(12), the plot should be essentially
temperature-independent. The dashed
curve represents the approximation,
Eq. (14), in which only the contribu-
tionof then=1intermediate- and final-
state exciton band is included, while
the solid curve gives the results which
include the contributions from the
n>1 bands. For both cases the value
mp=0.4 has been used. The heavier
solid curve includes the effect due to
the broadening of the #>2 levels. The
finer segment around E.;; —hvr=~14
meV represents the results for the un-
broadened exciton spectrum (see Fig.
5 and the text).
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excitons, derived]from the reflection measurements,
the rough limits 0.25<m,<0.5 can be determined.®
The absorption coefficient has been calculated for the
three values m;,=0.3, 0.4, and 0.5.

In comparing the theory to the data in I, it is con-
venient to plot o/N against E;(T)—#hv® in the one-
phonon region since according to the theory this should
remove the principal temperature dependences. (At low
T only relatively small residual temperature effects
would be expected. These would be attributable, for
example, to the variation of linewidth (see Sec. IV) and
some parameters (e.g., €;) with temperature.) This is
borne out in Fig. 3, which shows data from I taken at a
range of temperatures plotted in this fashion. The values
of a(kv) employed in Fig. 3 were obtained by subtract-
ing from a(hv) for a given temperature the measured

% The “light” and “heavy” hole (of the degenerate valence
band) may be contributing to the broadening of the =2 peak.
But, for the consideration of this report the ‘“heavy” hole is
probably the more important one because of the larger density-
of-states factor.

20 24

2°Kabsorption at v+ E.1(T)—E.1(2°K). The reason
for this is, as suggested in I, that the absorption for
T<24°K appears to be an extrinsic effect. This is sup-
ported by the fact that for these temperatures a(hv)
shifts rigidly with E,;(T). The dashed curve represents
ai(hy)N-' (Eq. 14) for the parameters discussed above
and m;,=0.4. It is apparent that the calculated curve
qualitatively represents the data well; and this indicates
that the mechanism employed is probably the correct
one. However, quantitative discrepancies do exist. For
example, near the threshold (e.g., at Ea—hv=15 to
19 meV), the data fall below the calculated curve by
nearly a factor of two (this is most convincingly seen at
moderately low temperatures where the two-phonon
contributions, etc., are not so significant). At higher
kv, the data lie well above this approximation with the
discrepancy being greater than a factor of five at
E1—hv=4 meV. The corresponding results for #;=0.5
lie somewhat higher but do not provide a more satis-
factory fit to the data. The ai(kv) values for m,=0.3
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fall well below those for m,=0.4 and are thus in even
poorer agreement with the data.

In Fig. 4 we show the contribution of the various
corrections discussed above for a 7;=0.4. The result ob-
tained by summing over the discrete intermediate
states, which is indicated by the dashed curve, is
significantly below a; for (E,1—#Av) between 37w, and
hw;. This indicates that there is some cancellation of the
matrix element for =1 by those of the higher inter-
mediate bands. This is in line with the fact that the
simplest application of the approximation involving the
closure property leads to a complete vanishing of the
sum {i.e., if E,, is replaced by (E,,) in the left-hand
side of (15), we find >_,((E)—hv)1¢,(0)[2| U|1]=0}.
The results obtained using Eq. (16) with N=23 are
shown for (E,,)—E;n=4.3B, 7.5B, and 10.7B. For a
fixed (E..), Eq. (16) converges fairly rapidly with the
n=3 term being typically about 79, of the first term at
the threshold end and dropping to a negligible value at
the higher end of the range. The shape of the curve for
the lowest value of (E.,)—E, is too steeply rising and
featureless, and in addition requires a somewhat too
large value of f to obtain the correct magnitude. The
curves for 7.5B and 10.7B are reasonably satisfactory
in regard to both shape and magnitude considering the
anticipated raising of the high-energy end by the final-
state corrections. These values of (E,,) are not un-
reasonable in view of the subtracting out of the n=1, 2,
and 3 bands and the expected contribution of the con-
tinuum states. Also, we should note that the results are
not very sensitive to the choice of (E.,).

The correction arising from the »>1 final-state
exciton bands, shown in Fig. 4(b), is clearly quite
significant. It has a much larger magnitude than the
corrections associated with the »>1 intermediate states

60 T T T L
g T (b) 7
-~ L i
3
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c 1 i 1 L *
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F1G. 4. Calculated contributions to the absorption coefficient
from #>1 exciton bands. (a) The corrections to a; which arise
from #>1 intermediate states. The dashed curve is the result
obtained by including only the discrete spectrum while the solid
curves are results obtained by Eq. (16) using the indicated value
of the parameter (E.,). (b) The contributions arising from the
n>1 final-state bands. The value m3=0.4 was used to obtain
(a) and (b).
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illustrates the effect of including the line broadening of the n>1
exciton states.

for kv above the n=2 threshold. This correction is
roughly four times as large as the simple approximate
result, ai(hv) [Eq. (14)], at the upper end of the
experimental energy range (ie., Es—Av~4 meV). In
line with our expectations, the /=1 final states con-
tribute over 809, to the total while that for the /=3
states is at most about 19} (and that at the highest
energy considered). For /v only slightly greater than
the threshold for the continuum states (i.e., A»
>Eq—hwi) these states make the principal contribu-
tion to the sum. The sharp rise around E,—hv~14
meV followed by a plateau is due to the fact that the
n=2 l=1 contribution rapidly attains its peak value
and then begins to drop off for v above the threshold
for the =23 and the higher discrete bands.

It is clear from the above that except when B is
considerably larger than 7w;, it is necessary to take into
account the #>1 bands in order to obtain quantitatively
significant results. For CdTe the contributions from
these states are such as to reduce the absorption coeffi-
cient by roughly a factor of 2 near the one-phonon
threshold and to raise it by about a factor of 5 at the
highest observed values of a/N.

Figure 5 shows the sum of the various contributions
to a(kv)/N in the one-phonon case for the masses
mp=0.3, 0.4, and 0.5. The curves for the different
masses differ most for v below the =2 threshold. The
reason for this is that for the n=1 final state (and, in
fact, for all states with even /), the electron and hole
parts of the scattering matrix element cancel as
mu/me.— 1. For the /=1 states, on the other hand. the
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matrix elements tend to increase as the mass ratio ap-
proaches unity. One feature of these curves which is
clearly not evident in the data (Fig. 3) is the shoulder
at E;i—hv=~0.014 eV associated with the =2 thresh-
old. That this shoulder is not observed results from the
appreciable line broadening for =2 and higher exciton
states at the relevant temperatures (7>40°K). From
the fact that structure in the 2°K reflectivity data which
is attributed to the n=2 line is completely absent at
22°K, we can infer that the #=2 linewidth is several
meV at 20°K. If a linewidth of this magnitude had
been incorporated in the calculation, the shoulder
would be completely smoothed out. This is illustrated
for the m;,=0.4 curve by the dashed segment which was
obtained by the simple and admittedly crude procedure
of folding the above result, Fig. 5, into a Lorenztian
line shape function with a width I'=2 meV.

Of the three curves in Fig. S, the one for m;=0.4
provides the best fit of the data. This curve, including
the effect of the n=2 broadening, is shown as the solid
curve in Fig. 3. It can be seen that except in the im-
mediate vicinity of the one-phonon threshold the cal-
culated result for m;=0.4 is in good accord with the
data over its full range (over which «/N varies by
about 10%). The discrepancies at the one-phonon thresh-
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old are most noticeable for 7>80°K and tend to in-
crease with temperature. These are due primarily to the
broadening of the #=1 line and to the contribution
from the two-phonon process, both of which will be
discussed below. The results for 7;,=0.5 are a little too
large for hv<E,—#hw; while the m;=0.3 results are
definitely too low in this region.

III. THE TWO-PHONON PROCESS

The process that we are concerned with here is a
direct extension of that treated in Sec. II, and is
schematically described in Fig. 1(b). In the first step of
the third-order perturbation process, the crystal is
excited from its ground state to an intermediate state
consisting of an exciton in band » with K=0 (i.e.,
|n; K=0)) by the annihilation of the photon. The
exciton is then scattered into the second intermediate
state |n’, K=q) by the absorption of the phonon of
wave vector q; subsequently, it is scattered into the
final state |#”, K=q+4q') by the absorption of the
phonon ¢’. In the other possible set of intermediate
states the order in which the phonons are absorbed is
reversed.

The transition rate for this process is

2

w?(Qui(q')| 22

- n)—
Wq,q' "=

em?y

a’,n’’ Exn"—]il’

[0'|U(q)[n"” " |U(q) |n] ,
{ +(q—q )}
Epnr+312@M ' — hy— oy
X[ Eent+302(q+q' )2 M1 —hv— 200, ],

(22)

where (q— ¢) corresponds to the previous terms with q and ¢’ interchanged.

This transition rate and the related absorption coefficient are considerably more difficult to compute than the
corresponding one-phonon quantities and, consequently, we will not attempt quite as detailed an analysis. We
consider the quantity inside the absolute sign in (22), which is the analog of (15), and carry out the sums over the
two sets of intermediate states using the approach employing the closure property. (However, to avoid excessive
complexity, only the =1 band is subtracted out of both sums.) When the sums are carried out successively, we
obtain

¢1(0) /<Ew,)—E¢1
Eur— I\ (Y —hy

Milad)= ){[11 U@ 1101 U(q) | n]

1 1
X [ - }
Eot s WP@?M ™' —hor—hy  (Eaw)+302q°M '~ hoy—ho
[1U(@U(q")|n]
l <E:m”>+%h2q2M_1“ hwy— hy

+a— q')} . 3)

where (q— ¢q’) indicates the previous terms with q and ¢’ interchanged. In principle, the two quantities (E.,.) and
{Ezn) which arise from the two factors in the original energy denominator are different, but because the difference
should be small and because keeping them different would essentially introduce an extra adjustable parameter, we
will in general set both of them equal except when we consider the final-state corrections (for hv— E.;— fx;) be-
low. We will take this parameter to have a value (7.5B) which provided reasonable results for the one-phonon case.

To calculate the absorption coefficient from (22), it is necessary to sum over all phonon wave vectors g and ¢’ and
all final bands #. Converting the sums to integrals over the ¢’s in the standard way, and carrying out the angular
integrals (most simply accomplished by choosing the polar axis to be along one of the two vectors, say, q), we



150 OPTICAL ABSORPTION EDGE IN CdTe: THEORETICAL 743
obtain
’ ¢1(0) 2 <E1n>—E11 2 (anta ’
Zle(qq)l2=(2M/h2)[V2/(27r)4J[ ]( ) / 0dg / T S
aa’ Epy—hvd \ (En)y—hv / Jo |2n—al

where x,2=2M %% (hv+2hwi— E,,) and { }’is the bracket in Eq. (23) with the restriction that 2q-q'=x,2—q*—q".
Using (11), (22), and (24) and setting ¢g=2za", we obtain finally for the two-phonon part of the absorption

constant

€s 47!'6 e? MN\? hw; 2
e N
ma (¢)2\hc/\4u/ \ B

where

.E;,;l 2 <E;cn’>_Ezl 2
( > ( ) N2(hw)d_ Io(hv),
E.i—hv n

(Ean)—h =

©dg [Bntz dgf
I,(hv)= / — / —|[1]UQ22e) |11[1] U (22'a~*| ][ (6422 '~ (d422)~]
0 2 /)

Bn—z] %

with
b= (E,—hoi—hv)M /4uB,
d= ((Eznr)— hwi—hv)M /4uB ,
and
Bn=3xna.

For hv<En+3B—2hw;, the n=2 threshold, only
I,1#0. As in the one-phonon case, for photon energies
at which the final-state corrections become significant
the lowest exciton band begins to dominate in the
second set of intermediate states (»”') by virtue of the
relative smallness of the corresponding energy de-
nominator. Thus, in computing the final-state correc-
tions we restrict #” to n”’=1, or equivalently we set
(Ezwr)= in (23). To evaluate the I, for the high
discrete states or continuum states, we approximate
the matrix elements [1|U|n] by the technique dis-
cussed in Sec. II.

We note that the expression for the two-phonon part
of the absorption constant above is only valid for
E g 1— hv> hwy because of a singularity due to the vanish-
ing of the second energy denominator for iy greater
than the one-phonon threshold. This singularity is
eliminated when the exciton linewidth is properly in-
corporated into the theory.

A. Comparison with Experiment

Since the theory predicts that the absorption constant
is essentially proportional to NV (#w;)? in the two-phonon
region, it is convenient to plot aN-2 against E,1(T)— hv.
From the absorption-constant measurements of I at
90, 102, 115, 130, and 150°K and E,(T) from Fig. 2,
we obtain Fig. 5. It is evident that within the experi-
mental uncertainties [e.g., £, (7) is not known to be
better than 4-0.001 eV at 150°K], the data thus plotted
form a curve that is essentially independent of tempera-
ture. This in itself is some confirmation of the theory.

The solid curve in Fig. 6 represents the calculated
values of a(Av)N~2 in the two-phonon region evaluated

+(d+2)7[1|U(22a)U (22'a™") [n]+ (2 — ) |?,

with the same parameters employed to obtain the one-
phonon results depicted in Fig. 4 (in particular,
mp=0.4). For comparison, the results for #;=0.5 are
shown as the dashed curve. At the higher energy end
of the range considered, the calculations include the
final-state contributions from #>1 estimated in the
manner indicated above. The calculated results for
mp=0.4 (the parameter yielding the best fit for the one-
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F16. 6. A comparison of the data and theory in the two-phonon
region. The plots are in a form analogous to that used in Fig. 3.
The solid curve represents the calculated result for m,=0.4 while
the dashed curve that for ms=0.5.
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Fic. 7. Approximate treatment of the effect of exciton line
broadening on « in the one-phonon threshold region. The dashed
curves are the sums o ph+asph calculated for zero linewidth. The
solid curves are the results of folding the above into Gaussian line-
.shaigefflixéctions with widths obtained from reflectivity data given
n Kei. .

phonon case) are seen to be in quite good agreement
with the data in regard to both magnitude and shape.
In fact, considering the rather approximate nature of
our evaluation of (22), the agreement is as satisfactory
as one has reason to expect. The small discrepancies
around the two-phonon threshold (E,1—hv= 2%w;~42.6
meV) are analogous to those at the one-phonon
threshold, and are due to the considerable linewidth at
the temperatures of interest and to the three-phonon
contributions. The results for 7;=0.5 are too high by
almost a factor of 2 for E;;—/%v in the range 26 to 30
meV. This tends to strengthen our belief that #;,=0.4
is the more appropriate (average) value for the hole
mass.

IV. THE ABSORPTION COEFFICIENT AT
MODERATELY HIGH TEMPERATURES

In this section we consider some aspects of the
absorption at moderately high temperatures. The sum
at different temperatures of the one- and two-phonon
contributions to a calculated above must exhibit dis-
tinct thresholds. These thresholds are quite evident in
the data (I, Fig. 2) for the TS 80°K, but are blurred
out at higher temperatures. This smoothing out of the
threshold shapes is due to the combined effect of the
relative increase of the two-phonon contribution and
the increase of the exciton line breadth with increasing
temperature. To illustrate this, we employ the simple
and crude procedure of folding the sum of a;,n and asph
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(extrapolated into the one-phonon region)* into 4
Gaussian line-shape function. The results obtained for
T=80° 102° and 115°K using the approximate line
widths of 3, 5, and 7 meV, respectively, obtained from
reflectivity measurements'? are shown in Fig. 7. The
similarity in shape to the data is sufficiently good to
indicate the role of the exciton line broadening. The
larger linewidth and the poor convergences of the
perturbation series at higher temperatures make the
above approach seem very dubious there. In a more
complete treatment the level broadening (and level
shift) would be more integrally incorporated in the
calculation.

Another noteworthy feature of data in I (Fig. 2) is
that « has a nearly exponential dependence on Ez3— /v
for T3130°K. This exponential dependence is an
example of the well-known Urbach’s rule, which has
been the subject of considerable discussion.!” Most of
these discussions have taken the point of view that the
Urbach behavior must be understood in terms of
localized excitons, self-trapped in the case of intrinsic
excitons. The strong-coupling configurational coordinate
approach has been invoked (even though weak coupling
might be appropriate for the exciton line region) and
the absorption is pictured as being accompanied by the
absorption of many phonons. Toyozawa® has shown
that in this framework Urbach-rule behavior follows
from the existence of local normal modes for which the
linear term in the electron-phonon interaction vanishes.

The success of the present weak-coupling perturbation
calculations tends to argue against the necessity of the
above picture for the case of intrinsic excitons, at least,
in the compound semiconductors. While it is true that
our results become unreliable at the temperatures at
which the fully developed Urbach dependence occurs,
they are reliable and are in good agreement with the
data at slightly lower temperatures at which « is ap-
proximately Urbachian. It is thus suggested that, at
least in the partially polar materials like CdTe, Urbach’s
rule is initimately related to the mechanism considered
in this paper—that of photon absorption through the
creation of the (unlocalized) excitons accompanied by
the annihilation of a few LO phonons. We have not
obtained the analytical exponential expression from our
results. This would require more complete treatment in
which higher-order effects would be included. We note
that during the period in which this paper was being
written, Mahan® has calculated the spectral-density

3 As noted earlier, azpn is singular for hv> E;;—#iw; when the
linewidth is neglected. The extrapolation used was an extension
of the solid curve in Fig. 6 to the value 2.8 X103 at E,;—hv="7iw;. In
principle the procedure used is inconsistent since the extrapolation
of ez ph makes sense only when I's%0. However, for the purposes
we are concerned with it is the smearing of the one-phonon edge
into the (two-phonon) region of lower absorption that is most
significant.

#2Y. Toyozawa, Technical Reports of the Institute for Solid
State Physics (Tokyo), Series A, No. 119, 1964 (unpublished).

% G. D. Mahan, Phys. Rev. 145, 602 (1966).
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function for an electron coupled to LO phonons by
Egs. (4) and (5) in a certain intermediate-coupling
scheme. He finds that for 27/ %w;<<1 the spectral func-
tion has the Urbach energy dependence.

V. MECHANISMS INVOLVING OTHER
ELECTRON-PHONON COUPLING

Although it has been shown in the previous sections
that the absorption edge for CdTe can be understood
quantitatively in terms of the process involving the
polar interaction between the excitons and LO phonons,
it is of interest to evaluate the role that other electron-
phonon interactions play in the spectral region under
consideration. Inasmuch as the data (see Fig. 3) suggest
that some high-energy phonons, most probably optical
modes, are involved over at least a major part of the
energy range, we will start by considering couplings
with the optical modes and in particular those around
q=0. It is well known that there is no coupling to the
polarization of the pure transverse modes because
divP,=0. The electronic particles also couple to the
optical modes of both polarizations through a nonpolar
interaction which can be expressed by (4) if the function
u(q) for the hole, for example, is given by un.2=2#C2/
oVhw,ar? where pis the density of the crystal, az is the
lattice constant, and C, is a constant having the dimen-
sion of an energy.?* We need only consider the inter-
action with the hole since the coupling with the electron
is very much smaller.®> By comparing the nonpolar to
the polar interaction, Eq. (5), we find that the ratio of
the corresponding absorption constants for the one-
phonon case is approximately Cg2(ga)?[mp(weara)?
X (e —e™) ], where (ga)?is evaluated for a typical
recoil. From energy conservation it is found typically
(ga)?210. For CdTe, then, the ratio is no more than
3X10*C£(eV), and thus is very small for any reason-
able value of Cy (which is thought to be about 10 eV).34:36

The contribution from interactions with phonons
having wave vectors far removed from the center of
the zone (i.e., g~2m/az), can be seen to be unimportant
even at critical points where the phonon density is
relatively large. This follows from the magnitude of the
square of the matrix element of #(q) which is roughly
(14 (7m.a/Mar)?*T* and is typically in the range 10~2
to 1074 and from the fact that the coupling constant
would be smaller than that for the polar interaction
at q=0.

For the two-phonon region, we must consider in addi-
tion to the above the possible role of electron-phonon
coupling terms quadratic in the lattice displacements.
With these terms the annihilation of the two phonons
would take place in one step (a second-order perturba-
tion for the complete process of photon and phonon

(1;‘51(;1). Ehrenreich and A. W. Overhauser, Phys. Rev. 104, 331
3 The matrix element corresponding to Cy vanishes for the Ty
Bloch state.
36 M. Aven and B. Segall, Phys. Rev. 130, 81 (1963).
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absorption) in contrast to the two steps required in the
case of the linear interactions. While at present very
little is known about the magnitude of these terms, it
seems unlikely that they would be of comparable im-
portance to the iteration of the polar interaction. This
view is based on the estimate of the relative importance
of the polar and nonpolar interactions made above.
One feature of the bilinear interaction that is note-
worthy is that, in contrast to the one-phonon and
iterated two-phonon cases, certain matrix elements,
(n]|exp[i(g+4q')-r]|»n’) with q+q'~0 and n=#’, are
not small for q far from the center of the zone. Since,
however, this can occur only in a restricted part of the
available phase space (i.e., for g=—q’), and, since the
effective coupling constant is probably not very large,
the effect of these bilinear terms is small compared to
that of the iterated polar interaction considered in
Sec. III.

Finally, we consider the contribution of processes in-
volving the absorption of acoustic phonons, which
might conceivably be significant at A» close to the n=1
exciton line particularly at low temperature. From con-
servation of momentum and energy it is found that
B —hv=1tw,q—#*q*/2M for the one-phonon process,
and that E;;— /v has a maximum value of $Mv 2, where
9, is the sound velocity. Using the typical value of
4% 10% cm/sec for v, it is found that (Eu—7v)max
~5X 1075 eV. Thus, while this process might contribute
to the exciton “line” shape and width, it does not con-
tribute to the absorption of interest in this paper. The
smallness of (Ez1—%v)max results from the fact that the
exciton’s recoil energy is larger than the phonon energy
except for very small ¢, namely, ¢<2Muv,/%. For the
two-phonon process, however, E—hv="hv(¢+¢")
—12(q+q)2/2M, and the recoil energy is very small
when ¢'=~—gq. In this case E,—hv=2#v,q, values of
which are in the range of interest for reasonably large
q (i.e., qSO.ZKBz).

The relative importance of the piezoelectric and defor-
mation-potential couplings for the two-phonon case can
be gauged by the ratio [4rCe/e,E1g; %, where C is the
piezoelectric constant, E; the deformation potential for
the holes, and ¢;=(Ea—hv)/2%v, is the minimum
value of ¢. With the value of 2 eV for the presently
poorly known value of £y and C=1.01X 104 (esu)/cm?,%
the ratio for CdTe is <10~ for all 4» of interest. The
ratio is smaller than unity for all other II-IV and IIT-V
compounds except possibly for those few having much
larger piezoelectric constants (e.g., CdS and ZnO).

From the remark made above about the matrix
elements of the bilinear terms and the fact that q=~—q’
for the two acoustic-phonon processes of interest, it is
reasonable to question whether the bilinear terms in the
interaction with acoustic phonons can be neglected. One
means of obtaining some information about the magni-

37 D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129,
1009 (1963).
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tude of this interaction, which can be written
Dy, P (aqgaqe’@ta) titg*qei@=0 1)+ H.c.,

is to note that it leads to a shift of the band edge which
in lowest order is

qm
AEg=2h(npv,)™" f qdg N (10 )[Dgq 4Dy ].
0

If the D,,, are relatively slowly varying functions of ¢
for ¢ up to gr=kT/%v,, the above is roughly (3p#v,%)~
X (D©@+4D®)(kT)2, where D denotes the average of the
Dy, over 0<¢<gr. It is known empirically that the
band edges of the compounds exhibit a shift propor-
tional to 7% from T=0 to 7'~ 100°K (see Fig. 2). If the
above expression for AEg accounted for the observed
shift, Daz2=~1 eV. However, since Mahan®® has shown
that the band-edge shift can be reasonably well ac-
counted_for by the deformation-potential interaction
alone, D is probably at most only a fraction of the
above value. From these considerations we have esti-
mated that the bilinear terms could not contribute to
the absorption coefficient as much as the iterated-linear
term. This proves to be sufficient for our present
purposes. We note that a strong ¢ dependence in the
D,,, would lead to a temperature dependence different
from the observed 7% behavior. This fact implies a
small magnitude for such terms.

We have estimated the absorption coefficient for the
two acoustic-phonon process with the deformation
potential interaction using Eq. (A2) of the Appendix
and the parameters employed in Secs. IT and III. For
any reasonable value of the deformation potential (i.e.,
E1<10 €V), the resultant absorption coefficient is too
low by several powers of ten for all photon energies of
interest (i.e., E;1—hv>4 meV).

It thus appears that no electron-phonon interaction
other than the polar coupling to the LO phonons can
contribute appreciably in the spectral region of interest
(i.e., the range of the present data).

VI. CONCLUSIONS

It has been shown that the calculated optical-ab-
sorption coefficient corresponding to the mechanism of
LO phonon-assisted ‘“‘direct” exciton creation is in
quantitative agreement with the absorption of CdTe in
the edge region reported in I. The only essential adjust-
able parameter used in this calculation is the average
hole mass which was taken to be 0.4 m, a value com-
patible with the observed exciton line spectrum. The
agreement extends over a spectral region extending from
just below Av=E.; down to hv=E —2%w; and over
a considerable range of temperatures—from about 40°K

38 G. D. Mahan, J. Phys. Chem. Solids 26, 751 (1965).

SEGALL

150

up to about 150°K, where the simple perturbation
employed probably ceases to be useful. On the basis of
these results, other proposed mechanisms for the edge
absorption, such as the one associated with the electric
fields at the surface,  can be ruled out for this material.

Aside from providing an understanding of the ab-
sorption edge itself, these results coupled with the
demonstration in I that the CdTe data cannot be under-
stood in terms of an indirect band gap, as had been
suggested! earlier, strongly indicate that the band gap
in CdTe is direct and is located at k=0.

The present calculations have shown that the higher
exciton bands (i.e., #>1 and the continuum) make very
significant contributions to the absorption process con-
sidered. For CdTe, for example, it was found that
through a cancellation of the matrix elements the higher
intermediate states lead to an approximate halving of
the absorption constant for photon energies just above
the one-phonon threshold. On the other hand, the
n>1 final-state bands yield appreciable positive con-
tributions: at the highest energy at which data are
available (E,—hv=0.004 €V), the present results are
approximately five times larger than the simple result
obtained by restricting the initial and final states to the
n=1 band.*! It is thus clear that, while the simple
approximation leads to a qualitative understanding of
the absorption, the corrections considered above must
be included in a quantitative study.

From the agreement of the present calculations with
the absorption data up to temperatures at which
Urbach’s behavior is manifested, it is concluded that the
mechanism considered in this paper is the one under-
lying Urbach’s rule in moderately polar materials like
the II-VI semiconducting compounds and, perhaps,
even in more polar materials. It was noted that the
exciton linewidths at the relevant temperatures are
sufficiently large to smooth out the distinctive spectral
features (e.g., threshold edges) found at lower tempera-
tures and in the calculations in which the widths are
neglected. In the previous discussions of Urbach’s
rule, significant localization (i.e., self-trapping) appears
to be required. In contrast to these approaches, which
are essentially strong-coupling approaches and which
employ a configuration coordinate model, the present
mechanism retains the free (mobile) exciton and the
(unlocalized) lattice phonons.
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APPENDIX: CALCULATION OF es..(hv)

The approximate calculation of the absorption coeffi-
cient for the process involving the absorption of two
acoustic phonons, az..(hv), generally follows the pro-
cedures used in Secs. I and III. In particular, use is
made of Eq. (22) with a #(q) appropriate for coupling
to acoustic modes and with %w; replaced by #w(q) = #vg.
For the deformation-potential interaction, the coupling
we will consider (see Sec. V),

u;(q)=E;(%/2pV )", (A1)

where E; is the deformation potential for the electron
(7=e) and hole (j="#). Since, as noted in Sec. V, we are
concerned with photon energies such that E.;—hv=~3
to 5 meV, we can reasonably use the approximation
that only the #'=1 term of the first intermediate state
summation need be retained. Performing the sum-
mation over the second set of intermediate states (n')
by the same procedure utilized in Sec. III, we obtain
for the quantity analogous to M»(q,q’) a result identical
to Eq. (23) except that the factor ((Esn)—E:1)/
({Egnr»)—hv) is replaced by unity (and %w; by #vg
and #vg’).

It can readily be seen that the creation of final-state
excitons in a #>1 band requires rather energetic
acoustic phonons and thus occurs with a much lower
transition rate than for the #=1 band. The result can
be legitimately simplified by requiring that n=1.

ABSORPTION EDGE
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As noted in Sec. V, conservation of energy requires
that q~—q’ for kv in the range of interest. With this
fact, the integral over q’ can be performed and it is
found after some manipulations that the result can be
written as

473 Ep* hc Be,
()12 (2m)® € (pev)?

2MN\24ho\V2s E,1 \?
Y
h? a E.1—hv.

Iac(hv,T)=f dzn2(2,T) (z—32,)1/?

a2ac(hy) ~

X{Lg(pe/2)+EEg(pn/2) ]
X[[22—Az+d (hv) T1—[52— Az+d(») ]
+[14+ (E/ En)*+2E.Ei'g(2) 52— Az+d (») 171} 2,
(A2)
with
g(z)= (142772,
dv)= (Ea—h)M/4uB,
d(”)= ((Exn”>_hV)M/4p'B,
A=Mva/#,
n(Z>T) = [eXP(’YZ/ T) - 1]—1 )
zi=(Ea—hv)a/4hv,
v=2hv/aKp,
pi=qam;/M .



