
P H YS I CAL R EVI EW VOLUME 150, NUM BER 1 OCTOBER 1966

Inelastic Collisions of Slow Atoms: The Two-Level Model
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A two-level model of an atomic system is investigated in order to study the cross section for certain
inelastic collision processes. An impact-parameter method is employed. The time-dependent Schrodinger
equation has been integrated numerically for some simple interaction potentials. Cross sections for excitation
have been determined and are presented as functions of the parameters describing the model. The results
are compared with those obtained by certain approximate methods. The effects of inclusion of diagonal
matrix elements in the interaction Hamiltonian are found to be large. For a 6xed form of the interaction
potential, two cross sections, which may differ quite substantially, are obtained, depending on the algebraic
sign of the coupling parameters or the energy difference between the states.

I. INTRODUCTION

N a previous calculation, an approximate method
~ ~ was devised for the calculation of the cross section
for electronic excitation in the inelastic collision of slow
atoms. The situation considered was the following: Two
massive objects, A and 8 (either atoms or molecules),
collide. In this collision A undergoes an electronic
transition, either excitation or de-excitation; 8 does not.
Charge exchange and excitation transfer are not
considered.

The collision process was described using the impact
parameter method. In this approach, the relative
motions of A and 8 are assumed to be classical, and
changes in speed or in direction during the collision
process are ignored. The interaction producing the
transition is described by an effective potential V,«
which acts within a subspace of the Hilbert space of A

spanned by the states actually involved in the transi-
tion. Let a;(t) be the amplitude that at time t, A is in
state j.This quantity obeys the differential equation

dc' z
=—p (jI V.„Ik)u,(t) exp( —i, ,t).

dt A I

As was shown in I, we may assume that the matrix
(jI V,«Ik) is traceless. The quantity&o&, ; is given by

Puvp .——Eg—E-

and it is to be noted that the energies of the states in
Eq. (2) are those for A when 8 is absent.

Let the separation of A and 8 be denoted by R. The
interaction matrix elements in Eq. (1) depend on time
through their dependence on R, which may be a fairly
complicated function. The general behavior of the inter-
action should be the following: When R is very large, we
expect (jI Ve«Ik) usually to be proportional to some
negative power of R. Thus, in the case of a van der
Kaals interaction, the matrix elements will be propor-
tional to R 6 for large R; while in the case of proton-
hydrogen interactions, the elements are proportional to
R ' or R ' times a function of angle. As R decreases,
exponential terms will enter with the effect that the
matrix elements will not continue to increase so rapidly.
Finally, for small values of R, the matrix elements
will probably either vanish, approach some constant
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limit, or be rather weakly singular (like 1/R). This be-
havior is apparent for instance in the interaction be-
tween protons and hydrogen atoms in which no singu-
larities occur in the interaction matrix after the trace
has been removed.

An approximate method of solving Eq. (1) was

proposed in I.' We consider the quantities u; to be com-
ponents of a vector a and the elements (j I

V,ff I
k)8

to be elements of a matrix Q(t) which is just the inter-
action matrix in the Dirac picture. The approximate
solution of (1) is

a(t) =expL —iT(t) ja(—~), (3)

in which the matrix T(t) is given by
t

T(t) = Q(t')«'.

Equation (3) is correct only if Q and T commute:

LQ(t),T(t))=0; (5)

however, it remains as a useful approximation in other
situations.

The purpose of this paper is to present some exact
numerical solutions of the time dependent Schrodinger
equation for a simple model which may be compared
with the predictions of the approximate Eq. (3) and
with perturbation theory. Some interesting properties
of the solutions of Eq. (1) emerge which also may be
expected to occur in more realistic models.

The model we will consider here is one in which the
matrix elements (jI U, ttIk) are independent of angle
and depend only on the distance R according to an
inverse power law. This is an oversimplification of the
interaction in regard to real reactions, as was mentioned
above. However, in the case of reactions with large
cross sections, such as the problem of sensitized Quores-
cence discussed in I, the approximation may not be a
bad one. We will also restrict our investigations to a
two-level system. We therefore suppose that

(1IU.«I1)= —(2Ivs«I2)=a& ',
(6)

( I .«12)=(2IU.«I1)=eR "

in which q& and q& are coupling constants.

' J. Callaway and E. Bauer, Phys. Rev. 140, A1072 (1965).
This paper will be referred to as I.
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dt

Z—[—q2R 'a—i+qiR "—e '"'a2j,

[qiR e ~Bi—q2R Gp),

(7)

Therefore, we must investigate the pair of differen-
tial equations

examine the general properties of the solutions of
Eq. (7). Section III contains a discussion of the methods
of calculation. The results of the present calculation
are presented in Sec. IV, where they are compared with
those obtained by the approximate method of I, and
with corresponding results obtained from perturbation
theory. Finally, Sec. V contains a summary of our
conclusions.

in which p&=ppp, i=a» —«pi, and R'=p'+v't' where p is
the impact parameter and v is the speed of 8 relative to
A. We will assume that A is in state 1 at t= —~; thus
the cross section for excitation is

II. GENERAL PROPERTIES OF SOLUTIONS

To facilitate examination of some of the general
properties of the solutions of Eq. (7), it is convenient
to introduce some dimensionless quantities. We de6ne

=2m pl ap(p, ) I'dp,
0

in which ap (p, ~) is the limiting value of ap(t) as
t —+ oo.

Equation (3) furnishes an exact solution of Eqs. (7)
if and only if two conditions are satisfied: (1) &v=0, and

(2) n= l. In this case, it is possible to evaluate the cross
section as given by Eq. (8) in closed form: we give the
results for the transition probability and the cross
section below for reference:

a&(P, ~) I'= (1+qpP/qiP) ' sin'll,

where

p =(lqil/»)"" ',
&=p/pp

x=p)pp/V,

&=qppp" '/lqil

«(qi) =qi/Iqil.

With these substitutions, Eqs. (7) become

d81 —z
PPn —t( +1y)P(ni)f2+ (y)

sty Pn i (1+—yP) nln

+ (q)

(10)

r[—'(s—1)j
[~(1+q2'/qi')]'"

»P"—' I'(-', m)

'qP{2 (e—1)1'(1+2/e—1)

sin[m/(e —1)j(qiP+qpP)) ' (9b)

~{2[-(q:+q.)j '[-:(--1»/~ ~[-:(-)i) =. (9 )

(9a)
= [«(qi)e""~i(y)

dy pn —i (]+y2) n/p

-&tt" '(1+y')'" ""~2(y)3 (11)

We want to investigate the symmetry properties of
the solutions of Eqs. (11).We are principally interested
in the S matrix, which relates the solutions at t= —~
to those at t= ~:

a(")=»(—~) (12)

Equation (12) will be used as a de6nition of S for this

problem. It is easy to show that, as a consequence of
the vanishing of the trace of the interaction matrix,

detS= 1. (13)

For a two-level system S is, of course, a 2X2 unitary
matrix. The requirements of unitarity and unimodu-

larity reduce the number of independent parameters in

S to three. It is convenient to write the elements of 5
in the form

S,,= s;,e'0;;.

Then we have the relations

$11 $22 p

$11=1—$12 ~

$12=$21 y

Hii= —O2p,

pi ———Oni2an-(mod2n. ) .

If the conditions mentioned above are not satis6ed,
the solution of Eq. (7) can only be obtained numerically.
Such numerical solutions are reported and analyzed in
this paper. Before undertaking a detailed discussion of
the calculations, we will summarize the most interesting
results. These concern the dependence of the cross
section on the sign of the coupling constants, or the
sign of the energy difference.

The cross section in the two-level model, if calcu-
lated according to Eq. (3), depends on 0)', qiP, and q2P.

Thus changing the sign of any or all of co, q1, and q2

does not a6ect the answer. The numerical calculations
instead show a rather dramatic dependence on the sign
of the interaction or the sign of the energy difference.
Cross sections for positive and negative values of or of
the same magnitude (and fixed qi, q2, v) may differ by
an order of magnitude, or more. These features of the
results can be qualitatively explained using second-order
perturbation theory. We also 6nd that for 6xed q1, q2,

v, the maximum cross section does not always occur at
co=0, but is slightly displaced from this value. These
results will be discussed in more detail below.

The plan of this paper is as follows: In Sec. II, we
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From this, we see that the S matrix is specified by the
three real numbers»~, Oi2, Oii.

The cross section for the transition 1 —+ 2 is given
from Eqs. (8) and (10):

-=2 p" Pl "(P, ,y=-)l'4

summarized in Table I. We see that in fact the eight
different choices of algebraic sign for the parameters
yield only two different cross sections: that is, there
are only two independent problems. Of course, if the
diagonal elements of the interaction vanish, only a
single cross section will be obtained, regardless of the
sign of co.

2rpp P»2'(P, *)&P (16.) IG. CALCULATIONAL METHODS

It will be observed that the scale for the measurement
of the cross-section is pP. The cross section is propor-
tional to p02 times a function of x.

We have yet to consider time-reversal syrrunetry.
Changing the direction of time sends y into —y in

Eqs. (11).This is seen to be equivalent to taking the

complex conjugate of the system of equations. This
gives rise to the condition that

S*=St or S=S~,

where S~ is the complex conjugate, St the adjoint, and
S~ the transpose of S. As a result, we see that the off-

diagonal elements 5», 5» must be purely imaginary;
that is Oi2 ——02i ——&7r/2. Hence, the 5 matrix is
determined by the quantities si& and 0'».

We are now ready to study the effect of changing the
algebraic signs of the quantities gi, q2, and cv (or x). This
will enable us to restrict somewhat the region of values
of the parameters which must be investigated. Let us

suppose that we have obtained solutions for the situa-
tion in which all these quantities are positive (and
therefore that &=+1). We denote these solutions as

ai(+) and a2(+). We will call the cross section calcu-
lated with these values o (+). Now let us change the
sign of q&. However, this is equivalent to changing the
sign of y and interchanging the solutions a~ and a2.

The 5 matrix is unchanged by this, apart from phases,
and so the transition probability is unaltered.

The situation is, however, quite different if we change
the sign of q2. We can not restore the original equations

by the previously mentioned operations. Instead we

obtain an entirely different solution set we will call

ai(—) and a~(—), and a new cross section a(—).
Changing the signs of both q~ and q2 yields the same
cross section as does retaining the original signs of

q~ and q2 and changing that of co. These conclusions are

TABLE I. EGect of changing signs of parameters
on the cross section.

~(+)
~(+)
~(—)
~(—)
~(—)
~(—)
~(+)
~(+)

We have investigated the solutions of Eqs. (11) for
several sets of values of the parameters q~ and g2, and
x. Since the arguments of the last section indicate that
when the eight possible choices of sign of the three
parameters are considered, there are only two diferent
results for the cross section, we have chosen to take
quantities q~, qg always to be positive, and have con-
sidered both positive and negative values of x. If
g)0, we get the cross section 0(+), if x(0, we get
0(—). We also see from Eq. (12), that if the cross
section is measured in units of PP, it is then a function
of k(= pi/q~) and x. The values of k and the exponents
e and 1 which were investigated are listed in Table II.
Our procedure was to obtain the two cross sections
~ (+), and 0.(—) as functions of x in the five cases listed
in Table II.

The reasons governing the choice of the exponents e,
I given in Table II were the following: the case e= 1=6
corresponds to transitions induced by a van der Waals
force and is relevant to the problem of sensitized
fluorescence discussed in I. The case 1=3, m=3 corre-
sponds to the leading term in the interaction matrix for
transitions between levels of the same parity induced by
a Coulomb field, neglecting angular factors. Because of
its intrinsic importance, and also because the numerical
problems are simplest for these values of e and l, we
obtained cross sections for three different values of k.
Ke have also made calculations for the situation roughly
characteristic of transitions between states of opposite
parity induced by a Coulomb field (only if the angular
dependence of the matrix elements is neglected): m=2,
t=3. This case has two features which increase its
interest: first even when @=0, a closed solution to the
differential equations cannot be obtained, but (2) also
when ~/@=0, the cross section diverges logarithmically.

The numerical solution of Eqs. (11) can be obtained
in several different ways. The functions a, (y) are com-
plex, so that one approach involves the separation of
real and imaginary parts in order to obtain a set of four

TABLE II. Values of the exponents e, l, and the parameter k for
which Kqs. (11) were solved.

1
0.2
1
5
1
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linear 6rst-order equations. Alternatively, if we write
the amplitudes in polar form, u, =r,e'&, it is possible to
use the conservation of probability, r12+r22=1 for
all times, to reduce the problem to the solution of two
nonlinear first-order differential equations involving
real quantities, plus one quadrature.

In order to insure accuracy in the calculations, both
approaches were programmed for numerical computa-
tion, also using two different methods for solution of
the equations. In one method of calculation, the system
of four linear equations obtained by separating real
and imaginary parts was integrated using a predictor-
corrector method given by Hamming. ' In the second
approach, the fourth-order Runge-Kutta method was
used to solve the pair of nonlinear equations discribed
above. In both methods the 5 matrix element s~2 was
determined as a function of p for specified values of x.
Enough values were considered so that the cross-section
integral of Eq. (16) could be evaluated with reasonable
accuracy. However, for small values of P, an approxi-
mate method had to be employed as will be described
below. Values of s» obtained by the two integration
schemes were compared for a sufhcient selection of
values of the parameters to give con6dence in the
correctness of the programs. A further check on calcu-
lations was furnished by the known analytic solution
to Eqs. (11) when o1 =0 and 22= l.

Our difhculty was encountered. For small values of

P, the terms of Eqs. (11) are large, and the S matrix
element $» is a rapidly oscillating function of P, with
a period which decreases repidly as P~O. This be-
havior, which is also predicted by the approximate

0.8—

0.7—

0.6-

0 5'-
O1 CV

0.4—

0,3-

0.2—

O. I

0
0 0.6 0.9 l.2 L5

I"zG. 1.The transition probability, s» is shown as a function of
the dimensionless impact parameter p for the case m=6, l=6,
& =1, x=~1.The upper solid curve represents the case in which
the parameters g2, co are positive L0 (+)); the lower solid curve
that in which either q2 or ~ is negative Lo (—)g. The upper dashed
curve shows the result of erst-order perturbation theory, Eq. (22);
the lower dashed curve is that obtained from the approximate
solution, Eq. (20}.

solution, Eq. (3) is shown in Fig. 1 in a specific example.
This behavior is a consequence of the singularity of the
interaction at R=O, and would not be expected to
occur in more realistic examples in which the interaction
is not singular. To follow the oscillations in careful
detail for small values of P would have required a very
large amount of computer time, so the following pro-
cedure was devised: The quantity s~~' was approximated
for small P by

$12 (P) 2 [Cl+PC2] ~

The quantities c~ and c2 were determined graphically
from the maxima of s~2'. The factor of ~ takes account
of the oscillatory behavior of the true s»'. Because of
the factor P in Eq. (16), the contribution to the cross
section from the region in which extrapolation is
necessary was usually of the order of 10%%uo. The ex-
trapolated formula may be expected to give accuracy
within 10% itself, so that the uncertainty in the cross
section due to this extrapolation would be, in most
cases, of the order of 1%%uq. Certain exceptional cases, in
which the cross section is small, have a somewhat larger
uncertainty, perhaps 5 or 10%.

IV. RESULTS AND DISCUSSION

In Fig. 1, we show the quantity of s~q' as a function
of P for the cases n=6, t=6, k=1, x=&1. In Fig. 2,
the same quantity is shown for m=3, )=3, k=1,
x=&0.1. These curves are, in most qualitative re-
spects, quite typical of all those we have studied. The
following features of the results deserve emphasis:

In the first place, the transition probability is seen
to oscillate rapidly as P decreases, as was mentioned in
the previous section. The origin of these oscillations is
easily understood from application of the approximate
Eq. (3) to the two level problem. It was shown in I
that in this case

$21 sill L2 11 +2 21 )
2 11 +T21

where T;;= T,,(t= oo), and the matrix T(t) was defined
in Eq. (4). The elements of T are rapidly increasing
functions of p as p decreases. Oscillations of the transi-
tion probability are to be expected in all cases in which
the interaction is sufficiently strong, and such oscilla-
tions are in principle experimentally observable, al-
though actual observation might be quite dificult.

Second, we see that there can be a very large differ-
ence between the transition probabilities for x)0 and
x(0, corresponding to the two different solutions dis-
cussed in Sec. II, except for large values of p. This
difference is not predicted either by perturbation theory
or the approximation of Eq. (3).Neither is this behavior
predicted by the calculation of Rosen and Zener' who
found a,n exact analytic solution of Eq. (1) with &TWO

~ R.. Hamming, J.Assoc. Computing Machinery 6, 37 (1959). ' N. Rosen and C. Zener, Phys. Rev. 40, 502 (1932).
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FIG. 2. The transition probability is shown for the case m=3,
1=3, k=1, @=~0.1. The curves have the same signi6cance as
in Fig. 1.

for a special form of the interaction. As will be seen
below, their failure to 6nd this feature is presumably
due to their neglect of the diagonal elements of the
perturbation. Similarly, a comparison of exact and
approximate solutions of (1) for certain other inter-
actions reported by Skinner' failed to reveal this eGect.
However, Bates' has observed that the diagonal matrix
elements should be important.

5.0—

It will be observed that as Iti decreases, the first
maximum of the transition probability occurs for
approximately the same value of P in the two cases,
(x)0 and x(0) but the magnitudes of the transition
probabilities, at the first maximum differ by a factor of
approximately 4 in Fig. 1 and 1.5 in Fig. 2. It is not
necessary for the transition probability to attain a
large value for oscillations to begin. For larger values
of x, the difference between the transition probability
curves becomes even more striking, and for @=3, the
difference in the cross sections o (+) and o (—) amounts
to nearly two orders of magnitude. For small values of
x, the transition probability curves for the two solutions

I 0090—
80-
70—
60-
50—

40

N.
~O

20L

O
IOI—

LLI 8
(D

(0

0
IX
C3

2.0

I.O
I

0.0
I

0.5
I

I.O
I

I,5

O
I—
(3

0.5
M

Fxo. 4. The dimensionless cross section is shown as a function
of IxI for the case e=3, 1=3, k=.2. Curves have the same
significance as in Fig. 3.

0.2

O. I

come together. The behavior of the cross section as a
function of x is shown in Figs. 3—/ in the cases we have
studied (which are summarized in Table II).

Let us compare these results with those of perturba-
tion theory. First-order perturbation theory gives the
result

S2 2
p4
—2 (1~ V.ii~2)e '"'dt

—cc

(20)

Pro. 3. The dimensionless cross section,~/pp' is shown as a
function of IxI for the case n=6, 3=6, k=1. The upper solid
curve represents 0.(+); the lower solid curve shows 0.(—). The
intermediate dashed curve shows the result of the approximate
method described in I for this case.

For the potential of Eq. (6) this becomes

g
—2 ~p n1—

Sgi =g E'&
„ ii is (o&p/U)

I'(e/2) fsVP" ' 2U'

4 B. G. Skinner, Proc. Phys. Soc. (London) 77, 551 (1961).' D. R. Bates, Discussions Faraday Soc. 33, 7 (1962).
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0.40
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O
1.0

o
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0.5

(3
0.4

O
~ 0, 10
~o o09
m 0.08

0.07
~~0.06
~~ 0.05
C3

0.04
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ox.j

0.2— 0.02

0. 1 I I

0.2 04
I I

0.6 0.8
I

1.0
0.0 I

0 0.5 1.0 1.5

FIG. 5. The dimensionless cross section is shown as a function
of ~x~ for the case x=3, l=3, k=1. Curves are drawn as in
Flg. 3.

FIG. 6. The dimensionless cross section is shown as a function
of ~x~ for the case v=3, l=3, f,'=5. Curves are drawn as in
Flg. 3.

in which E represents a modified Bessel function of the
third kind. A finite cross section can not be obtained
from Eq. (20) unless a lower cutoff is imposed.

The results of first-order perturba, tion theory are
also shown in Figs. 1 and 2 for the parameters con-
sidered. It is seen that the agreement between the
Eq. (21) and the exact calculation is good nearly up
to the first maximum in the case x)0, but very poor
for x(0.Of course, for suKciently large P, the difference
between the two transition probability curves goes to
zero, and Eq. (20) is a good approximation. The results
of the approximate calculation of I which leads to
Eq. (19) are also shown in Figs. 1 and 2. It is seen. that
this approximation leads to results intermediate be-
tween those of perturbation theory and the exact cal-
culations. When &o=0, Eq. (19) is exact, as has already
been observed. The cross sections computed using the
results of I are also shown in Figs. 3—7. The approximate
method of I gives a reasonably good representation of
the average of the two cross sections when x is small.

It is quite helpful in understanding the difference
between the two transition-probability curves shown in
Figs. 1 and 2 to consider the second-order terms in the
perturbation expansion in a simple example. Prom
general perturbation theory, we have the S-matrix

expa, nsion

z
5=A ——

PL

d&Br(t)+( )

X Ch CkrHr (t)Hr (tr)+, (22)

where we may take for the interaction-picture Hamil-
tonian Hr(t) the matrix Q mentioned in the introduc-
tion. We want to look at the second-order terms in the
expansion. The second-order calculatiori is rather diK-
cult with an interaction proportioned to 8 ", unless it
is done numerically. For illustrative purposes we have
chosen instead

Q,&= (Hr)d7, = V, I expL —(t'co~;t+n [It ()j, (23)

since in this example the S-matrix elements can be
obtained easily in terms of elementary functions. In
Eq. (23) we take V;q independent of time, and, as
usual, consider a two-level system. We suppose Q is
traceless, so that V~~———V22. However in contrast to
the procedure of formal scattering theory, we do not
let a —+ 0 or even suppose that it is small. We are inter-
ested in s~2 as a function of o,. After a straightforward
calculation we obtain the second-order S-matrix
element:

See, for instance, S.S. Schweber, Arl Irltrodlctiorl, of Reluti @istic
Quentgm Field Theory (Harper and Row, New York, 1962),
Chap. 11.

z 2nVg2- 6Vggo)
Si2= —— 1+

t't us+up tr (4rr'+op)
(24)
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FIG. 7. The dimensionless cross section is shown as a function
of ~x~ for the case a=2, l=3, %=1. Curves are drawn as in
Fig. 3.

in which co=co». We see that (in conformity with the
previous discussion) S» is purely imaginary. This
guarantees unitarity to this order. The quantity in
front of the square brackets is the 6rst-order expression
for S~2. We see that the e6ect of second-order correc-
tions is to multiply the first-order formula by a factor
which is greater than i if co V~~ is positive and less than
1 if co is negative. Of course, for perturbation theory to
be meaningful, the second-order correction must be
relatively small. Then we see that the transition prob-
ability is independent of the algebraic sign of V~2, but
is greater than that predicted by first-order perturbation
theory if ~V»&0 and smaller if coV»&0. These con-
clusions are in accord with the results of the machine
calculations, and with the statements of Table I con-
cerning the sects of changing signs of the parameters.
Finally, we note that if re=0, Eq. (3) is valid; and the
second-order correction vanishes as is predicted by the
results of I.

The over-all behavior of the cross section as a func-
tion of x= (ceps/V) may be surmnarized as follows: For
small values of x the cross sections vary linearly with
x. However the two cross sections o.(+) and o (—) may
exhibit radically different behavior. The cross section
o (—) is a decreasing function of x, and is well approxi-
mated by a decreasing exponential: o ~ exp( —bx), with
b a function of e and k. The other cross section, o (+),
varies more slowly, and, at least in some cases, begins

by increasing initially with x. For large x, o(+) also
appears to approach exponential decrease.

The dependence of the cross section on x is influenced
by the parameter k, which determines the relative im-
portance of the off-diagonal and diagonal eIements of
the interaction. This can be seen from inspection of
Figs. 4—6. When k is small, the off-diagonal elements of
the interaction are large compared to the diagonal, and
we see that the cross sections o (+) and o.(—) do not
differ greatly. The maximum of o (+) occurs either at,
or close to, x=0. However, when k is large, so that the
diagonal elements are large, not only is the cross section
reduced in magnitude, but the difference between
o (+) and o (—) is greatly enhanced.

These results disagree with some of the predictions
made on the basis of the approximate analysis of I.
The treatment given there did not reveal the substan-
tial dif'ference between o(+) and o(—); nor did it
predict exponential decrease of the cross section for
large values of x.

I.et us finally consider the dependence of the cross
section on the range of the interaction which, in the
present examples, is characterized by the exponents
e and l. It is apparent that o/ps' increases with decreas-
ing e when x is small. This is in accord with the predic-
tions of Z. However, the cross sections decay more
rapidly with increasing x for the smaller values of e,
so that the o/ps' increases with increasing e when x is
large. The rather special case in which m=2 warrants
special comment. In this situation the cross section
diverges logarithmically as x —+ 0. The reason for this
is apparent from perturbation theory: in that case the
quantity s» is proportional to I/P when P is large and
x= 0.

Consideration of the results of the numerical calcu-
lations reported here leads to the following conclusions.
The approximate solution of the time-dependent
Schrodinger equation proposed in Eq. (3) furnishes a
convenient method of enforcing the requirements of
conservation of probability. In several respects, it is in
substantiaI agreement with the exact calculations,
particularly in regard to the prediction of an oscillatory
transition probability when the interaction is strong.
This may be its principal merit. Other methods of
insuring unitarity, such as that in which we divide
a(t) as computed from perturbation theory by its
norm may not (and the example does not) exhibit
this feature. For smaIl values of the quantity x, it
gives a reasonable approximation to the average of the
two cross-sections o(+) and o (—). Its worst defect is
that it cannot predict the substantial difference between
the two cross sections o(+) and o (—) which the numer-
ical calculations show to exist when x is not zero and the
diagonal elements of the interaction matrix do not
vanish.


