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Inserting (A4) into (A2) we get

N, s(r)
Vte' ———Q V,„'(k),' N„s(r)

which has the symmetry of the lattice.
In the impurity problem (3.18) the core states P~ are

not eigenfunctions of crystal momentum a,nd (A6) does
not hold. On the other hand, it is easy to see that the

P& differ from the pure-crystal functions (A3) only in
the neighborhood of V'. Thus, terms in V~ which do
not have full symmetry are localized around the im-

purity and may be absorbed into the definition of V~,',
so that V~, is once more a periodic potential. In fact
V~,' is then identical to the pseudopotential of the pure
crystal, so that the kinetic-energy term in the effective-
Hamiltonian approach (3.19) is associated with the
band structure in the usual way.
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The formalism of the preceding paper is applied to a calculation of the erst excited states of (1) pure
crystals of Kr and Xe; and {2) rare-gas solids containing a substitutional Xe impurity. A Hartree potential
for the bare electron-hole interaction is constructed for each system, and is screened within the random-phase
approximation. Matrix elements of the corresponding pseudopotentials, projected according to the Cohen-
Heine prescription, are derived in the Wannier representation. Band structures inferred from optical data
are fitted to simple interpolation formulas. By transformation to a symmetric representation for the envelope
function, the Wannier difference equations are reduced to manageable form and solved by a matrix tech-
nique. Although the calculations contain no disposable parameters, obtained binding energies and oscillator
strengths are found to be in excellent agreement with experiment.

1. INTRODUCTION

'N the preceding paper' the wave-packet theory of
~ - exciton and impurity states developed by Wannier
and other workers was reviewed. It was asserted that
the wave-packet approach, which has been supposed
to be valid only for shallow states, in fact could be
made to yield satisfactory results for deep states as
well, providing that certain microscopic modifications
of the customary macroscopic theory were introduced.
The purpose of this paper is to examine this statement
in detail for the simplest systems containing deep
exciton and impurity states, viz. , the solid rare gases.
For these systems the calculations turn out to be un-
expectedly easy, and the results in excellent agreement
with experiment. The extension of the methods to
other crystals appears to be straightforward.

We begin our presentation in Sec. 2 with an ap-
proximate treatment of dielectric screening of the
electron-hole interaction in solid rare gases. In Sec. 3
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2. DIELECTRIC MODEL FOR
ISOTROPIC INSULATORS

In Sec. 4 of I we noted that the Fourier components
U, (q) of the self-consistent potential acting between
external charges are given by

V, (q) = V, (0)/e(Y, It =0), (2.1)

where Vs(q) is the Fourier transform of the bare
potential. The dielectric function neglecting local 6eld
effects is'

l(~ k+tlie*"l~k) I'
(2.2)

q mnw W'„(k+q) —W~(k)

4me'

e(q, E=O) =1+-

for insulating crystals, where 8"„and 8' are electron
and hole band energies, respectively, and

(rt k+tII e'&'lrrtk) = (I ' dr p.„s+,*(r)e'&'p (r) (2.3)

~ N. Wiser, Phys. Rev. 129, 62 {1963).

we describe the construction of complete pseudopo-
tentials for the systems studied. Kinetic-energy terms
arising from the periodic crystal potential are discussed
in Sec. 4, which is followed by a reduction of the
Wannier difference equations in Sec. 5. Sections 6 and
7 contain a discussion of the results and comparison
with experiment.
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is a transition matrix element connecting the Bloch
states P„~ and iP„~+,, m and 22 are valence and con-
duction band indices, respectively, and 0 is the volume
of the unit cell. Equation (2.2) corresponds to virtual
excitations of electron-hole pairs of momentum q and
energy

E„„(k,k+q) =W„(k+q) —W (k) . (2.4)

—I.5

— — — Model Insulator

----——Model Semiconductor

For solid rare gases only the outer rip valence shell
need be included in the summation on m in (2.2), since
the other shells are more tightly bound, with negligible
polarizabilities. Moreover, conduction bandwidths in
the rare gases are nearly equal to their free-electron
values'; hence, we may replace the tP„2 by plane waves,
as a first approximation (comparison of the calculations
of e(q,o) by Penn' and Naras for Si shows that exact
representation of the P„q is not crucial). Then the
matrix element of e''1' is given by the Fourier trans-
form of an 22p orbital, which decreases sharply for
wave vectors not contained in the central Brillouin
zone. Thus we may use a two-band model for the
polarization, corresponding to retaining only np ~
(22+1)s atomic excitations; oscillator strengths are ad-
justed to satisfy the sum rule'

p„~ (~1+q ~e'2'(mk)
~
E„„(k,k+q)

= (k2/2m)q'. (2.5)

With k restricted to the first zone, we obtain the
approximate result

e(qo) =1+(27rkse2/m) Pg LE (k, k+q)) '. (2.6)

An important characteristic of rare-gas crystals is
the large energy gap between valence and conduction
bands. This has the effect of reducing the sensitivity
of (2.6) both to the shape of the bands and the approxi-
mations made to the oscillator strengths. In addition
the valence-electron overlap is small, so that the
valence bands have small width. For our purposes it
is sufhcient to represent the pair excitation energies by
a free-electron model with a large "zero of the energy. "
Thus we may write

E„„(k,k+q) =E@+(k2/2m) (k+q)', (2.7)

I.O
0.0 0.5

q (a, u)
I.O

Fio. 1. Dielectric function of argon (atomic units). The solid
line is our model for an isotropic insulator, based on a parabolic
excitation spectrum. For purposes of comparison, Penn's model
for an isotropic semiconductor is shown by the dashed line (based
on parameters appropriate to Ar). The "breakdown length" Q i
for the insulator dielectric function is less than the atomic radius
of Ar (3.55 a.u.).

and ~0 is set equal to the experimental value. "Equa-
tion (2.9) is shown in Fig. 1 as a function of wave
number q for Ar; similar results are obtained for the
other rare gases.

Our model for an isotropic insulator differs somewhat
from Penn's model for an isotropic semiconductor. 4

The values obtained from his interpolation formula
(with the parameters adjusted to Ar) are also shown
in Fig. 1. In both models e —+1 when q

—+~, while
e~ eo as q ~ 0. Consequently there is no screening of
the electron-hole interaction for r=o, while e(r) ~ep
for large r, in agreement with macroscopic considera-
tions. ~ The scale of the breakdown region in real space
may be determined from the definition of e(r):

where
)K+q) pK—

q)
&(q) = t» ') I+tan-'(

kk, &

kp (K+q)'+ kp'—ln
2q (K—q)'+ kp'

Here E is the average "radius" of the Brillouin zone,
given by

422rK2 =82rs/0,

where Eg is the band gap. Substituting (2.7) into
(2.6), we obtain

1 8—=p
e(r) r

w(q)e'&'
(2-)"(qo)

(2.10)

e(qo) —1+(8~me2/i'22) Q L(k+q)2+k 2]—2 (2 g)

where kp2=2mEg/O2. In terms of the static dielectric
constant ep the isotropic part of e(qo) is given by

Where te(q)=42re2/q2 iS the FOurier tranSfOrm Of the
Coulomb potential and I' denotes the principal part.
In order to simplify the integration of (2.10) we replace
(2.9) by the simpler function

e(qO) =1+ (.,—1)Z(q)/Z(0),
' J. C. Phillips, Phys. Rev. D6, A1714 (1964).' D. R. Penn, Phys. Rev. 128, 2093 (1962).' H. Nara, J. Phys. Soc. Japan 20, 778 (1965).' P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958).

(2.9)
F(q) = 1+ (ep 1)n K /(—q +n K );

n is chosen to provide a good fit to e(q,o) and is of order
unity for the rare gases. After a trivial contour inte-

' W. Kohn, Phys. Rev. 110, 857 (1958).



J. HERMANSON

03-

O.I—

,' -Oj ~
I

-03—

n -05-

from E~, , we may write

q (r—R,) =P& F(R)a„a(r—R;), (3.4)

where n denotes the first conduction band. Inserting
(3.4) into (3.2) we have

Qa f W(R—R') —Ebaa. +V(R,R'))F(R') =0, (3.5)

where

-I.O

and
W(R—R') =(uR f1~„ofuR')

U(R, R') =(rbRf V„'frbR')

(3 6)

gration we 6nd the result

1/e(r) = 1/so+ L(eo 1)/eo] exp( —Qr), (2.11)

where Q= eo'~'nK. We note that because Eg is large the
breakdown length Q

' is less than the atomic radius.
Then e(r) may be replaced by eo outside the central
cell. Within the core region of the "impurity" the
simple random-phase —approximation (RPA) result is
not expected to be valid. On the other hand, the
excited electron has almost no amplitude in the region
since it must be orthogonal to the core levels (cf. I,
Sec. 3). Thus, local field effects can be neglected, and
we may write for all r

V, (r—R,)= Vb(r —R,)/e( f
r—R, f),

where Vb(r —R;) is the unscreened potential.

3. IMPURITY POTENTIALS

(2.12)

Exciton and impurity states satisfy a generalized
impurity equation (see I, Sec. 2)

$Eo+ V'(r —R;))f(r—R;)=EP(r—R,), (3.1)

where Eo has full crystal symmetry and V' is an ap-
propriate impurity potential centered about R;.

By working in a representation based on the smooth
part of P (see I, Sec. 3), we found that (3.1) could be
rewritten as

)Eo,o+ V„'(r—R,))q (r—R;) =Eoo(r —R,), (3.2)

where E,' is the pseudopotential kinetic-energy opera-
tor for the perfect crystal and V„,' is the "impurity
pseudopotential. " The smooth function p is given by

(3.3)4' —&p 2&4&(4&f p)

in terms of the core functions pi. Because Uo,
' is small

in the cores, interband matrix elements are sharply
reduced, so that a one-band approximation for q is
possible. In terms of Wannier functions n„R derived

r/a

FxG. 2. Unscreened pseudopotential for excitons in Xe. The
solid curve was obtained from the Hartree potential by the pro-
jection technique of Cohen and Heine. p=ro/o measures an
average radius r0 of the excluded volume relative to the atomic
radius a. The value of r0 is de6ned by the requirement that the
average of the pseudopotential from 0 to ro be zero.

U,.'= Uo —P i y (yi f
Uo)

= Uo+ Va. (3.10)

A convenient prescription for including polarization
effects in the impurity potential was given in Sec. 2 in
terms of a bare potential Ub(r) and a dielectric constant
e(r). We construct a Hartree potential for Vb.

where
Ub(r) =u;. (r)—ub.„(r),

Zye
u;.„(r)= — +e' P'

(3.11)

Zoe'
lhasa r =

fr—r'f

are ionic and atomic potentials, neglecting exchange

'M. H. Cohen and V. Heine, Phys. Rev, 122, 1821 (1961).

are matrix elements of the crystal and impurity pseudo-
potentials in the o. representation. The model Wannier
equations (3.5) are the fundamental equations we wish to
solve. The method of solution consists of three steps:
(1) We construct a pseudopotential for each system,
(2) we compute the matrix elements (3.6), and (3) we
solve the secular equation

detff W(R—R') —ERaR +V(R,R')
f f
=0; (3.7)

the model amplitude functions F(R) are determined
from (3.5). Let us now turn to the calculation of the
pseudopotentials.

The impurity potential for a crystal containing a
positively charged ion at R, is

vo(r —R,)= v;.„(r—R,)—vb. ,„(r—R,), (3.8)

where V;,„ is the screened potential of the ion and
Vh„t, is the potential of a neutral host atom. The
analogous potential for exciton states was derived in
I. Because of the tight binding of rare-gas atoms we
neglect the motion of the hole; then the exciton po-
tential may also be written in the form (3.8). V„' is
given by the Cohen-Heine prescription':

V"'o = Voo —Zi4~(Pal Uof o) (39)
Because p is slowly varying in the core region we make
the local approximation
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R
—g—1/2 gk elk R+ (3.14)

where q „k, the smooth part of a Bloch function iP„k, is
an eigenfunction of E~,"

and polarization e6ects. Zo and Z~ denote the atomic
number of the host and impurity atoms, while g, &P& and
it, "i are the corresponding core orbitals taken from
free-atom calculations. ' One np orbital is deleted from
the sum in (3.12a) so that I;, r ' for large r. The
self-consistent potential Vp was derived from Eq. (2.12)
for each system, and pseudopotentials V„' were cal-
culated from (3.10). The unscreened pseudopotential
for excitions in Xe is shown in Fig. 2, along with the
hydrogenic potential

Vil'(r) = —e'/r. (3.13)

As we expected (cf. I) Vn,
' is greatly reduced in the

core region, and approaches the Coulomb law (3.13)
outside the cores (the addition of dielectric screening
modifies V„,' somewhat). Similar results were found
for the other systems.

Before we can solve (3.7) we must compute matrix
elements of V~,

' in the n representation. According to
I we have

System (0( U(0) (0( U (d) (d ( U(d) es—/sod

1. Xe in Ne

2. Xe inAr

3. Xe in Kr

4. Pure Xe

5. Pure Kr

—1.03
(—4.47)
—1.28

(—3.75)
—1.38

(—3.51)
—1.43

(—3.17)
—2.18

(—4.24)

—0.01
(—0.24)
—0.13

(—030)
—0.15

(—0.28)
—0.15

(—0.27)
—0.225

(—0.35)

—3.34
(—4.16)
—1.98

(—2.78)
—1.74

(—2.46)
—1.25

(—1.89)
—1.84

(—2.57)

—4.12

—2.31

—1.99

—1.47

—1.99

hydrogenic formula —e'/ep R for R su&ciently large that
V„' may be assumed constant over a unit cell.

There are three matrix elements for which the con-
tinuum approximation

(R!Vn '!R')= (—e'/ep~)&RR (3.19)

TABLE I. Matrix elements of the potential in eV between
Wannier functions either in the central cell, ~0&, or the nearest
neighbor, ~d&. The primary numbers refer to the pseudopoten-
tial, whereas the numbers in parentheses refer to the crystal
potential (Vg= 0). For comparison the magnitude of the screened
Coulomb potential at the nearest neighbor sites is shown in the
last column.

E..'p -k(r) =W-(k) p -k(r). is not suitable. These are:
Because the band structure W„(k) is approximately
given by a free-electron formula' we may approximate

p„& by a plane wave

y k ——V '~s exp(ik r). (3.16)

1 sinEp Kp cosEp)—
n R(r)=— )2z'0'" p3

(3.17)

where p=! r—R! and E is given by

—s'irE' = (2ir)'/0;

(3.17) is spherically symmetric about r= R.
Ke are now in a position to calculate the potential-

energy terms in the difference equa, tions. According to
Eq. (3.6) these are given by

V(R,R') = dr n»*(r) Vn, '(r)n» (r) . (3.18)

Because of the orthogonality of Wannier functions
centered about different sites, off-diagonal elements
of V(R,R') are small for large R, and will be neglected.
In addition, the diagonal elements must approach the

9 F. Herman and S. Skillman, Atomic Structure CalczduHons
(Prentice-Hall, Inc., Englewood Clips, New Jersey, 1963).

(This will not be true of ip„k, which must contain an
admixture of core functions. ) We calculate (3.14) by
approximating the first Brillouin zone by a sphere of
the same volume (Wigner-Seitz approximation). This
leads easily to the result

(1) The one-center term (0!Vp, '!0) (diagonal cen-
tral-cell correction);

(2) The two-center nearest-neighbor charge-transfer
term (0!Vp, 'Id); and

(3) The dipolar-nearest-neighbor term (d! Vn, '!d).

Values of these matrix elements are given in Table I
for V= V„'=Vs+ Vii. Also shown are values of these
quantities computed without orthogonality corrections
(V= Vp), along with values of e'/epd We no. te that all
matrix elements are substantially reduced by the in-
clusion of Vz in the impurity potential, and that the
reduction is grea, test when the size disparity between
impurity and host atoms is greatest (Xe in Ne). These
"excluded volume effects" will be shown below to play
a dominant role in interpreting the observed trends in
binding energies and oscillator strengths.

4. INTERBAND KINETIC ENERGY

The kinetic-energy terms W(R—R') of Eq. (3.5)
are, in terms of the band structure of the host lattice,

W(R—R') =cV ' Qk LW (k) —W„(k)fe'k'" "' (4.1)

where W„(k) and W (k) are band structures for the
electron and hole, respectively, Lwe set W (k) equal to
a constant for impurity states or trapped excitonsj
and the k-space sum is restricted to the first Brillouin
zone. In Fig. 3 we show the band structure of solid
Xe as inferred' from Baldini's optical data. The irn-

portant features are the Rat valence ba.nds, the wide
conduction band, and the large spin-orbit splitting in
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FIG. 3.Band struc-
ture of Xe, as in-
ferred from optical
data. The double-
group notation is
used for the valence
bands, the single-
group for the con-
duction bands.

r =(ooo) goo)*x

El, Eg (L) Sr,/——2—
=3k'/Smu' —Sg/2 (4.3)

where Ef (k) =k'k'/2m and Sr. is the nearly free electron
splitting of the Lq and L2 levels. In Xe Ef(L) is 2.9
eV, and Sl. determined spectroscopically is 1.4 eV, so
that EJ. is 2.2 eV. Spectroscopic data to determine S~
are not available for Ne, Ar, or Kr.

To determine Sl. in these crystals we make use of
the chemical trends in s-p splittings which are mani-

fested in several ways. In the alkali metals" the s-p

splitting at k=N decreases from I.i to Cs, reversing

sign between Na and K. Also low-energy electron
scattering from rare-gas atoms is characterized" by

TABLE II. Microscopic parameters used to determine chemical
shifts in conduction-band models for the family of rare-gas
solids.

Element fo (a.u.) S~ (eV) Zl, (eV) (y~/m)' (p/m)b

the valence bands. In order to simplify the calculation
of W(R—R') we employ an interpolation model for
the band structure:

P'„(k)—W„(k)=Eg+-', Er,[3—cos (-,'ak, ) cos (-', ak„)
—cos(2ak, ) cos(-', ak,)—cos(-,'uk„) cos(-', uk. )J, (4.2)

where a is the lattice parameter, Eg the energy gap,
and EI, the bandwidth at L.

According to Phillips' nearly free electron model for.

the conduction bands, "

the lengths fo shown in Table II. Again a sign reversal
occurs, and in the atoms adjacent to those for which
the alkali s-p splitting reverses sign. Thus we assume
that SL, vanishes for Ne and interpolate linearly be-
tween Ne and Xe to obtain the Ar and Kr values also
shown in Table II. Note that although (4.2) has the
form of a tight-binding expansion, the parameter Er,
is determined primarily by Ef(L), as can be seen in
Table II, and not by interatomic overlap integrals.

The tight-binding form assumed for (4.2) reduces
near k=0 to const+~Er, (ka)' or const+ —,(Ak)'p with

y/m listed in Table II. These values of p/m disagree
significantly with the continuum values of p*/m de-
duced by Baldini from a hydrogenic model of the
n= 2, 3 levels. "It is evident that our single parameter
Er, cannot reproduce both the bandwidth and (y*) ',
the curvature near k=0, correctly. A correction is
made for this deficiency in the calculations discussed
later.

5. REDUCTION OF WANNIER EQUATIONS

It is convenient to transform to a representation
based on symmetrized linear combinations of the o. R.
Any two of the transformed basis functions have vanish-
ing matrix elements coupling them unless both func-
tions have the same symmetry under an appropriate
subgroup of the point group of the crystal; thus the
secular equation may be factorized into sets of equa-
tions having lower dimensionalities. The correct sym-
metry group may be determined from inspection of the
Wannier equations (3.5). Each interband edge may
generate bound states; if the interband edge is degen-
erate (as in many-valley semiconductors), supermulti-
plets will be formed which will exhibit a so-called
valley-orbit splitting consistent with that subgroup of
the full point group which interchanges the band edges.

Fortunately, in rare-gas solids by neglecting the
valence bandwidth we can deal with a nondegenerate
interband edge at k=I'=0 for both excitons and im-

purities. We are interested only in s exciton states
because the transition F~5

—+ F~ is dipole allowed.
Similarly for the impurity states we calculate only s
states and assume that es and n p states of the impurity
are degenerate, so that 1s —+ ep excitation energies
can be obtained from a knowledge of the positions of
the s levels alone.

The s states are the totally symmetric linear com-
binations yg of the Wannier functions nR ..

He
Ne
Ar
Kr
Xe

1.19
0.24—1.70—3.7—6.5

~ ~ ~

0
0.4
0.8
1.4

~ ~ ~

5.6
3.8
3.1
2.2

~ ~ ~

0.46
0.41
0.31

~ ~ ~

0.40
0 43
0.46
0.54

Vs(r)=&s "'Zs, aa, (r), (5.1)

where the sum is over lattice vector belonging to the
Sth "star" containing X8 members, and we have

a Deduced by Baldini from Rydberg series for n)2.
b From curvature of our model W'(0) near A =0. p(r —R,)=Ps G,y, (r—R;), (5.2)

"J.C. Phillips, Phys. Rev. 136, A1705 (1964).
"N. Ashcroft, Phys. Rev. 140, A935 (1965).
"T.F. O' Malley, Phys. Rev. 130, 1020 (1963).

where Gs cVs'~'F(~Rs~). It ——is easy to show that the

"G. Baldini, Phys. Rev. 128, 1562 (1962).
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transformation (5.1) is unitary. Equations (3.5) are
replaced by

Qs ~ssGs =~Gs,

where Hss = Was +Vss with the definitions

(5.3)

WBs =(1VslVs)-'' P W(Rs —Rs,), (5.4a)
RBRg'

Uss =(&8Xs) '" P V(Rs, Rs).
RgRg'

(5.4b)

it is easy to show that

WSS' Z ~S" 2 'Rg~ ~,Ra—Ra~1
Slr RgRg'Rg»

(5 5)

where A8 is defined in the expansion

W„(k)—W„(k)=ps As(Ss —'i'Qa, e'"" ). (5.6)

The expansion (5.6) is always possible because of the
continuity and cubic symmetry of (W„—W ). ln our
tight-binding model there are only two nonvanishing
coeKcients Az representing the energy gap and the
bandwidth. Equation (5.5) for the kinetic-energy terms
is convenient because it contains no k-space integration
[see Eq. (4.1)).As before, the energy gap appears only
along the diagonal (S=S') and may be set equal to
zero; then Wss is linear in E~ [the lattice sums in

(5.5) depend only upon crystal symmetry). Since Ez,
decreases with increasing atomic number, the density
of states at the interband edge increases with Z, which
in turn has the effect of enhancing binding energies for
large Z. This trend, however, is reversed by the Z-
dependence of eo, which increases"" from 1.1 for Ne
to 2.23 for Xe.

6. EXCITONS IN Xe AND Kr

We are now in a position to solve the Wannier
difference equations (3.5) using both a realistic band
structure and an interaction which include three cor-
rections to the hydrogenic problem: (1) Breakdown of
macroscopic dielectric screening in the central cell or
spatial dispersion (DB), (2) nonparabolic energy bands

(KE), and (3) repulsive terms in the central cell (R).
Corrections (1) and (2) were previously considered by
Kohn and Luttinger"; when m*/m&(1 both corrections
produce negative shifts of the 1s energies below their

' G. Baldini, Phys. Rev. 137, A508 (1965).
"W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).

In this "y representation" we have one basis function
for each distinct star of lattice vectors, and the dimen-
sionality of the secular equation is reduced by a factor
of about 20. An expansion of p out to 30 or 40 shells
is now possible, so that this formalism is appropriate
to the study of "intermediate" excitons (e.g. , in alkali
halides and rare-gas solids). Recalling the identity

~-i+ 'ik (R—R')

hydrogenic values. Correction (3) arises from the orthog-
onality terms discussed in the preceding paper.

Before solving the difference equations carefully we
wish to illustrate the relative magnitude of these three
terms by solving a model differential equation, treating
these effects by first-order perturbation theory. We
know that for the exciton states the hydrogenic model
works very well. Our unperturbed wave function is
therefore the hydrogenic 1s state described by Baldini":

~~i =&~+V~'

I'he kinetic-energy operator

1t' m m
X-~ &+~'

2m 2&@(r) p(r)

(6.2)

(6.3)

contains the eGects of large-k variation of p*, p(r) is
a radially-dependent effective mass described below.
Corrections due to spatial dispersion and repulsive
terms in the central cell are contained in a model
potential

V~'= [—e'/e(r) r][1—8(r—ro)]. (6.4)

Except for the radial dependence of the dielectric con-
s tant, V~' is a hydrogenic potential for r)ro ', we
assume that cancellation between V' and Vg' is exact
for r~ro the radius of the "excluded volume. "

Interpolation formulas were constructed for the
radial dependences of p(r) and e(r). The formulas
give correct limiting behavior for r —+~ and r —& 0,
with exponential interpolation between the limits,
characterized by decay factors which scale with the
lattice constant. Variation of the dielectric constant
was chosen to be of the form

1/'(r) = 1/'0+[(~o —1)/'oj exp( —Qr) (6 5)

where Q=Kp is the Fermi wave number. Note that
e(r) approaches 1 for small r and eo for large r, and
that Q

' plays the role of a characteristic "breakdown"
length for an insulator. Qualitatively the variation of
effective mass (in real space) can be described in terms
of p, *, the macroscopic (k-+0) effective mass, by

m/p(r) ™/p*—(m/p' —1) exp( —r/a) (6 6)

For small r, p(r) tends to the free-electron value m,
whereas p(r) ~ p* as r ~".Note that r=a is associ-
ated with wave number k= 2m. /a, so that a ' is a char-
acteristic decay factor for the effective mass. The
pertinent microscopic quantities Q and a ' are given

"W. Kohn, Solid State Phys. 5, 257 (1957).

A. (r) = (~/ao)'"~ "'", (6.1)

where ao ——(fi'/me') [eo/(p*/m) j is the first Bohr radius
according to the effective-mass approximation" (EMA).
We construct a model Hamiltonian which contains, in
a qualitative way, the effects due to DB, KE, and R:
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FIG. 4. Conver-
gence of exciton ener-
gies for Xe. E, is the
cutoff radius de6ned
in the text. The ob-
served energies of
the 1s and 2s states
are given by the
dashed lines A and
B. For E, —+~ a
Ryd berg series for
n&2 is expected.

Crystal

Kr
Xe

(Vns) (Vzz) (VR) AEKL aZ aR, ,
—0.06 —0.55 +0.92 —0.61 +0.31 +0.13—0.07 —0.51 +0.53 —0.58 —0.05 —0.07

whereas according to the theory of the preceding paper,

AE= (VDB)+(VKE)+(VB). (6.10)

TABLE IV. Energy shifts of 1s excitons in Kr and Xe Lin units
of ~Err(1s) I

=ls*e'/2so'A'j as computed from simplified model.
The terms (Uns), (Vx@), and (VR) are dehned in the text. The
sum of the erst two gives an estimate ARK', of the hydrogenic
defect according to the Kohn-Luttinger methods (Ref. 16). The
sum of all three terms gives AE. The relative hydrogenic defects
observed experimentally are given in column 6.

in Table III. Also shown is a third parameter y=re/A,
the equivalent radius of the excluded volume according
to first-order perturbation theory, relative to the
atomic radius A Lsee Eq. (6.4)].

With the above interpolation formulas the model
Hamiltonian (6.2) can be written as

&EMA+&cc (6.7)

VDB= —L(eo—1)/eo](e /r)L1 —0(r—rs)]
Xexp( —Qr) (6.8a)

represents spatial dispersion for r) ro and vanishes for
r(ro, corrections for the nonparabolic nature of the
energy bands are contained in the term

ass fm
rKH= —

I

—1)2m' f
*

exp (—r/a) V'+ P exp (—r/a)

(X (6.8b)
2

alld

where HEMA= —(fi'/2tu*) V' —e'/ear is the macroscopic
Hamiltonian, "and

&cc= VDB+ VKE+ VR

contains the central cell corrections. Here

The calculated shifts (VDB), (VKE), and (VE) are given
in Table IV, along with AEKL and the total shift AE,
for is excitons in Kr and Xe. The experimental shifts
are presented in the same table. We see that the posi-
tive contribution (VR) is large, and that in spite of
considerable cancellation the predicted shifts agree in
sign with the rather small hydrogenic defects for both
crystals. Thus, the unexpected success of the KMA for
excitons in Kr and Xe is due to the substantial cancella-
tion between central cell corrections.

%e expect generally that the hydrogenic theory will
be useful for deep exciton states in other filled-shell
insulators such as alkali halides. For deep impurity
states (e.g. Xe in Ar) the above cancellation may not
be so complete because the potential of the impurity
ion differs significantly from that of an ionized atom of
the host crystal. Thus, because the Xe ion is larger
than an Ar atom the excluded volume correction (VR)
outweighs the negative corrections (VKE) and (VDB),
which are only slightly changed by the replacement of
an Ar ion by a Xe ion, and the hydrogenic defect is
large and positive. "'~ In semiconductors, on the other
hand, the valence shell is only half-6lled and the ex-
cluded volume associated with the core is small. Thus
(cf. I) the 1s donor binding energies are larger than
the EMA result.

VR ——(e'/e, r)0 (r—r,) (6.8c)

is the effective (local) repulsive potential.
We are now in position to calculate the first-order

corrections to the hydrogenic theory. According to the
Kohn-Luttinger model the energy shift is"

iJ
X

-IOl

CG

70~
6.0 —

g

~.0 ~'

5.0
2.0

-"—- (H) Hydrogenic Model

Theory

~@EL (VDB)+ (VKE) (6.9) 1.0
0.0

I.O

Crystal

Kr
Xe

g (Ds)
0.6
0.5

u-1 (KE)

0.094
0.086

y-rp/A (R)

0.80
0.86

TABLE III. Microscopic parameters for Kr and Xe (atomic units)
in simpliied quasi-hydrogenic model.

IRlo
'

FIG. 5. Envelope function for 1s exciton in Kr. The hydrogenic
envelope function is given by the dashed line. The solid curves
are solutions of the difference equations for n=1. Curve A in-
cludes the effects of the repulsive potential while curve 8 does
not. The nearest-neighbor distance is d.

"G. Baldini and R. S. Knox, Phys. Rev. Letters 11, 127 (1963).
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TAsr, E V. Hydrogenic defects of 1s excitons in Kr and Xe
obtained from the Wannier equations relative to iE&(1s) . The
erst column contains results for VR=0, Results obtained with
the pseudopotential Vp'= Vp+VR are given in column 2, and
the experimental results are listed in column 3. I.O—

Experiment

Theory

A V*V +V0 R

B:VQV

Crystal

—0.80—1.76
+0.15—009

nE (V= Vs) nE (V= Vo+VR) nE (exp)

+0.13—0.07

CO

Ih

Q.O
EA

x
Ld

The model calculation has shown the relative mag-
nitude of DB, KE, and R corrections to the macro-
scopic theory, and has led to a qualitative understand-
ing of the success of the EMA. However, the use of a
differential equation to represent the Wannier equa-
tions is not valid" for (as/a)'&1; in the calculation of
deep states the finite spread of the Wannier function
must be taken into account. We saw in Sec. 3, for
example, tha, t certain two-center corrections are not
negligible, and that calculated matrix elements differ
significantly from —e'/esR for E&d, the nearest-
neighbor distance. Consequently we must solve the
Wannier equations (5.3); we do this by truncating and
solving the secular equation. In the remainder of this
section we present the results of calculations of 1s
excitons in Kr and Xe; calculations of deep impurity
states of Xe in Xe, Ar, and Kr will be summarized in
Sec. 7.

Before solving the difference equations we recall that
exciton states with m&2 will not be given correctly
by the solutions, because the curvature of our model
energy bands is given incorrectly near 4=0 (cf. Sec. 4).
Since the 1s state will be orthogonal to these higher
states, it is desirable to modify the equations in such
a way that they are given correctly. We do this by
renormalizing the macroscopic potential terms (3.19):
we replace es by es' ——

(p~ p*)'"es (=1.3es for Kr andxe);
for R&d large-k behavior of the energy bands is
important, and we retain the matrix elements of V~,

'

listed in Table I. The calculations show that the effec-
tive Bohr radius for 1s states is less than d, so that the

5.0

4.0

5.0
X

Ct
2.0

I.O

- I.O—

Xe

LO 2.0

IE„os)l

e NeXe

5.0

FIG. 7. Relative hydrogenic defects of the 1s state of a Xe
impurity in various host lattices. The abscissa is iErr(1s) i, the
hydrogenic binding energy, which is a measure of the strength
of the electron-hole coupling neglecting central cell corrections.
Experimental defects are joined by the dashed line; theoretical
curve A passes close to the experimental shifts. Curve B indicates
the results obtained without the repulsive potential VR. The
agreement between theory and experiment is qualitatively poor
for curve B, which predicts that the hydrogenic defect is always
negative.

replacement 60 ~ 60 results only in slight modifications
of the "tail" of the wave function.

Calculated hydrogenic defects for 1s excitons in Kr
and Xe are listed in Table V. For comparison we list
the defects obtained by neglecting the repulsive term
V~ in the same table. The agreement between calcu-
lated and observed defects is excellent for the pseudo-
potential theory (V= Vp+ Va); the agreement is poor
for V= Vo. Again, the occurrence of small defects is
seen to be a consequence of the orthogonality require-
ment; the Schmidt terms in the impurity function
P(r —R,) correspond to a large, positive kinetic energy
which cancels the negative corrections (DB and KE).

The convergence of these results with respect to the
number of basis functions is indicated in Fig. 4 for Xe.
R, is the cutoff radius for the expansion of the model
wave function p in terms of Wannier functions. We
note that the 1s energy has converged at R,=3d,
while the larger 2s state must be expanded out to
R,=6d (40 shells) before convergence is indicated; the
2s energy appears to converge toward the experimental
value of —0.23 eV.

Calculated 1s envelope functions are shown in Figs.
5 and 6, along with the EMA function (6.1).Once again
the repulsive term VR plays a fundamental role in the

TABLE VI. Oscillator strength ratio r= f&,/f2, for excitons in
Kr and Xe. The erst column contains the hydrogenic value, and
columns 2 and 3 contain results obtained from the Wannier
difference equation for V= Vo and V= V0+VR, respectively. The
last column lists values of r deduced by Baldini.

I.O
1Rlo-'

l.5

Crystal r (EMA) r (V= V0) r (V= V0+VIt,) r (exp)
FIG. 6. Envelope function for 1s exciton in Xe.

The notation is the same as Fig. 5.

'8 Z. N. Adams, Phys. Rev. 85, 41 (1952).

Kr
Xe

10.7
11.0

8.0
90

40
9.0
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40
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result; comparison of wave functions A (V= Vp+ Ua)
and 8 (U= Up) illustrates the reduction of amplitude
in the central cell brought about by the repulsive term
VR. In addition to diminishing the binding energy, this
effect lowers the oscillator strength":

f-- IF-(o) I' (6.11)

In Table VI we list the ratio r = f~,(fp, calculated from

(5.3) and (6.11) (R,=6d) and compare with the hydro-

genic prediction and experiment. "Because VR reduces
Fp, (0) as well as F', (0) the calculated ratio of oscillator
strengths is nearly given by the EMA result. Agree-

ment of the calculated ratio and experiment is excellent
for Xe but not for Kr; in the latter case the experi-
mental ratio is less certain because of greater lifetime

broadening.

7. DEEP IMPURITY STATES

The availability of optical data" ' on the first ex-

cited states of a substitutional Xe impurity in crystals
of Ne, Ar, and Kr makes it possible to study the de-

pendence of exciton binding on the macroscopic pa-
rameters eo and p*. For e)2 this dependence is given

by the hydrogenic formula because the effective Bohr
radii for these states are large compared with the
atomic radius. For n=1, on the other hand, there is

only a weak dependence of binding energy on eo and

p*, indicating that the wave function is confined to
the neighborhood of the Xe impurity. Thus it is im-

portant that these deep states be calculated from the
microscopic theory developed above; in this section
we present the results of this calculation.

Hydrogenic defects of the erst excited state (1s) of
Xe were calculated for the systems (I) Xe in Ne, (II)
XeinAr, (III) XeinKr, and (IV) pureXe (cf. Sec. 6).
The results shown in Fig. 7 are plotted against the

"R.J. Elliott, Phys. Rev. 108, 1384 (1957).

I 1 I

d d d d
I 2 IKIR

IRI

FIG. 8. Envelope function for the 1s state of a Xe impurity in
various rare-gas host lattices. Orthogonality corrections to the
impurity potential were neglected (V= V0) in these calculations.
The dashed line is the hydrogenic envelope function for the is
exciton in Xe and dg is the nearest-neighbor distance in the Jth
system.

EMA binding energy
~
E&(1s)

~
and are normalized by

the same factor. Comparison of curves A (V= Vp+Va)
and 8 (V=Up) shows once again the crucial role
played by the repulsive terms in the central cell. The
agreement between the pseudopotential theory (curve
A) and experiment is excellent over the entire
range of interaction strength, from pure Xe, where
~E"(1s) )

=0.86 eV, to Xe in Ne, where ~E~(1s) )
=2.59

eV.
As expected (cf. Sec. 6), the repulsive term outweighs

the negative corrections to the KMA in I, II, and III,
and large positive defects are observed; in IV the
cancellation between central cell corrections is nearly
exact.

The inhuence of the repulsive terms can be more
clearly seen in the envelope functions. Solutions of the
difference equations for the 1s states are given in Figs.
8 and 9. In both figures, the amplitude at the nearest
neighbor site indicated by d& increases relative to the
amplitude at the origin as pp decreases (i.e., as the
interaction strength outside the central cell increases).
In Fig. 8 (V=Vp), all systems except I show en-
hanced amplitude at R=o relative to the hydrogenic
value, because of DB and KE (negative) corrections
to the binding energy. Figure 9 includes the effects of
the repulsive term VR in addition to the above correc-
tions; F&,(0) is depressed compared to the hydrogenic
value in all cases. Because of the latter reduction we
expect the oscillator strength ratio r= f~,/f p, to be less
than the hydrogenic value (8:1) and that this ratio
will increase with the atomic number of the host
Li.e., as F~, (0) increases]. Values of r computed from
Eq. (6.12) using solutions of the Wannier equations for
R,=6d are given in Fig. 10, together with values of
this quantity estimated from the optical data by com-
paring the area under the absorption peaks for v=1
and e=2. Agreement between our pseudopotential
theory and experiment is excellent for all cases. As
expected, the reduction of r from the hydrogenic result
is greatest for case I (Xe in Ne) where the ratio of

5.0—

4.0 R

K
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-'es
CO

2.0

——Hydrogenic Model
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I.O

I

d d d d

IRI

FIG. 9. Envelope function for the |s state of Xe in various host
lattices, calculated with the pseudopotential V= Vp = Vo+VH, .
Note that the central cell amplitude is reduced from Fig. 8, due
to the repulsive term VH, .
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FIG. 10. Oscillator strength ratio for a Xe impurity in several
rare-gas environments. r = (f&,/f&, ) is given by the ratio of central
cell amplitudes for n =1 and m=2. According to the hydrogenic
theory r has the constant value 8.0 independent of environment.
Curve A was obtained by solving the Wannier equations with
V= Up, '=Vo+V~, and the experimental results are given by
the dashed line. The disagreement between theory and experi-
ment for Xe in Ar and Xe in Kr is thought to be due primarily
to uncertainties in the band structures assumed for these crystals.

We have applied the pseudopotential theory of
exciton and impurity states developed in I to a cal-
culation of (1) 1s excitons in Kr and Xe, and (2) 1s
states of a Xe impurity in Ne, Ar, and Kr. Three
corrections to the hydrogenic theory were considered:
(a) spatial dispersion, (b) large-k variation of the
effective mass, and (c) repulsive terms in the central
cell, representing core parts of the impurity function.
To determine the relative magnitude of each effect a
model Hamiltonian based on simple interpolation
formulas was constructed. First-order corrections to
the hydrogenic theory were calculated; the total energy
shifts agreed in sign with the experimental shifts. Be-
cause each contribution (a)—(c) could be evaluated
separately it was possible to obtain a qualitative under-
standing of the remarkable success of the effective
mass approximation for excitons in Kr and Xe. Spe-
ciically, it was shown that the positive correction due
to the-eRective repulsive potential cancels the negative
contributions (a) and (b) to a large extent, with the
result that the hydrogenic defect is small.

In order to verify the results of the model calculation
the Wannier difference equations were solved by a
matrix technique. The calculated binding energies and
oscillator strengths were in excellent agreement with
experiment in all cases. To our knowledge this is the

impurity "volume" to the atomic volume of the host
is largest.

8. DISCUSSION

6rst time that the tA'annier wave-packet approach has
been shown to yield good results for deep states in
insulating crystals. From our results one may conclude
that the neglect of exchange- and local-field corrections
to the electron-hole interaction is justified, and non-
local terms in the exciton Hamiltonian may be neg-
lected. Finally, the representation of the energy bands
by our simple interpolation formula does not produce
serious errors (W. ith additional computational effort
and at the expense of simplicity it would be possible
to improve further the treatment of the kinetic-energy
terms. ) Thus, if we were to choose a smaller bandwidth
for Ar or Kr [as Mattheiss's augmented plane wave
(APW) calculations" have suggested) the enhanced
density of states at the interband threshold would lead
to stronger binding and, consequently, better agree-
ment with experiment. Ke note that our calculations
for Xe and Ne, for which the band structure is more
certain (cf. Sec. 4), are in essentially exact agreement
with experiment —even the anomalous oscillator-strength
ratio for Ne: Xe (2:1 rather than 8:1) is given correctly.

The success of our calculations for parabolic excitons
indicates that the electron-hole potential we con-
structed is good over the entire range of r. Thus we
are in a position to calculate excitons derived from
higher conduction bands"" as well as scattering reso-
nances associated with critical points in the interband
density of states that lie above the fundamental edge.
Phillips" has suggested that peak structure observed
in the insulators above threshold may often be inter-
preted in terms of such resonances. Calculations based
on this suggestion are being carried out by the author.

Extension of the methods of this paper to the alkali
halides is straightforward. The conduction bands of the
two systems are similar, so that the treatment of
kinetic-energy terms needs only slight modification
(viz. , inclusion of a width for the halide valence bands).
From the results of this paper one would anticipate
that exciton states in the alkali halides should follow
a hydrogenic pattern, especially in those crystals, such
as KBr, RbBr, KI, and RbI, whose bands closely
resemble those of the solid rare gases. "
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