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Pseudoyotential Theory of Exciton and Impurity States*
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A formalism for studying central-cell corrections to the effective-mass equation is presented. A generalized
impurity equation for excitons and impurity states is derived, including the eBects of dielectric response and
large-k variation of the effective mass. Because of the presence of interband matrix elements of the im-
purity potential in the general case, this equation is not easily solved. By transforming to a representation
in which the core parts of Bloch functions are removed, a pseudo-wave-equation is developed. In this equa-
tion the eA'ective impurity potential is substantially cancelled within the central cell, so that interband
matrix elements are sharply reduced, and the usual one-band approximation is valid.

1. INTRODUCTION

~

PTICAL absorption spectra of nonmetallic crystals
generally contain, in addition to a background of

interband scattering structure, a number of well-de1'ined

peaks which can be associated with localized states.
These states fall into two categories: (1) impurity
states, ' in which an electron or hole is bound to an
impurity, and (2) exciton states, in which an electron
is bound to a hole in the valence charge distribution.
We introduce the binding energy as the energy differ-
ence between an appropriate interband threshold and
a peak centroid, so that we may further divide our
bound states into (a) "shallow" states, characterized
by binding energies small compared with a conduction
or valence bandwidth, and (b) "deep" states. We have
four classes altogether:

(1a) Shallow impurity states, as in n-type or p-type
semiconductors; e.g., P in Si, As in Ge, Pb in Ge;

(1b) deep impurity states, located around impurities
in insulating crystals; e.g., Xe in Ar, H in Ar;

(2a) shallow excitons, observed in pure semicon-
ductors; e.g., Ge or Si; and

(2b) deep excitons, occurring in fIlled shell insulators;
e.g., Xe, Kr, KBr.

We will show below that there is a generalized im-

purity equation which may be used to study all of these
classes, demonstrating the essential unity of our subject.
It has been customary to treat each class separately,
owing in part to the fact that the models developed
have not been useful for both strong-couphng and weak-
coupling problems.

The simplest bound-state model, the Wannier model, '
is appropriate to the semiconductors, where the im-

purity or exciton binding energies are small ( 0.01 eV)
and the bandwidth large ( 3 eV). Then because of the
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large dielectric constant, the Coulomb attraction of the
hole or impurity for the excited particle is substantially
screened by valence-shell polarization, and we have a
weak-coupling situation. If the wavelength of the
excited particle is large compared with the lattice
parameter, the microscopic variation of the crystal and
impurity potentials is "averaged out"; we can replace
the impurity potential by a hydrogenic potential em-
bedded in a uniform dielectric. In addition, because of
the large bandwidth, the crystal potential can be sub-
surn. ed into a renormalized mass, or effective mass"
for the band (or bands) of interest. Using this model,
also called the effective-mass approximation (EMA),
one can reduce the wave equations for excitons or
impurity states to a hydrogenic equation' for an
envelope function. From this result we expect a Ryd-
berg series of energy levels below the interband thresh-
old, with oscillator strengths varying as m '. The model
has been extended by Dresselhaus' for excitons and by
Kohn and Luttinger' for impurity states to include
degenerate extrema of the band structure. The EMA
has been widely used in the treatment of shallow bound
states, for both excitons' and impurity states. '

A second model, useful in strong-coupling problems,
was developed by Frenkel, ' who was interested in
alkali halide spectra. He proposed an interpretation of
excitonic states in terms of a Heitler-London model, in
which the zero-order charge density of the excited
electron is confined to the neighborhood of the lattice
site from which it was excited, forming in this manner a
state of essentially atomic character. Owing to the
translational symmetry of the lattice, this state is
degenerate with equivalent states on all other lattice
sites; ordinarily a resonance-transfer interaction mixes
these into a stationary packet belonging to a wave
vector of the Brillouin zone. Similarly, a Frenkel model
for a deep impurity state can be imagined, in which the
bound particle is con6ned to the neighborhood of the
impurity, so that the wave packet has a wide spread of

4 G. Dresselhaus, J. Phys. Chem. Solids 1, 14 (1956).
5 W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).
6 For a good review see T. P. Mc Lean, in I'rogress il Semi-

coriductors (John Wiley 8z Sons, Inc. , New York. , 1961) Vol. 5,
p. 55.' J. Frenkel, Phys. Rev. 37, 17 (1931);37, 1276 (1931).
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momenta, in accordance with the uncertainty principle.
Within the framework of Heitler-I. ondon theory, Knox'
corrected the Frenkel model for the nonorthogonality
of atomic functions centered on different sites by
Lowdin's technique of symmetric orthogonalization, '
to second order in overlap integrals. The poor con-
vergence of this method for excited states led Gold" to
propose that orthogonalization be treated exactly, by
the well-known Schmidt procedure. His calculations
for a substitutional Ar impurity in solid Ne,"and for a
hydrogenic impurity in solid Ar, " show that exact
satisfaction of the orthogonality requirement yields
improved agreement with experiment. " Overhauser"
further improved strong-coupling theory by incor-
porating nearest-neighbor charge-transfer states into
the wave function, thereby allowing greater electron-
hole separation than in the early Frenkel model.

For many years since the pioneering work of Frenkel
and Wannier it was expected that if the shallow bound
states were describable by the EMA, then the deep
states should be considered from the point of view of
the Frenkel model. However, the optical experiments
of Baldini" on the solid rare gases disclosed the un-
expected result that the deep 1s excitons in Kr and Xe
have energies not far from the EMA predictions ob-
tained by extrapolating the Rydberg series of the
shallow excitons for these materials. According to the
usual criteria' for the validity of the EMA, that inter-
band matrix elements of the impurity potential be
negligible, we have the requirement

C= (F-'o/F'-r) (~o/~)&»

Here Eg and I~;~ are the values of the energy gap and
the binding energy, respectively, while up/a is the effec-
tive Bohr radius relative to the atomic radius a. In
general

up
——(6'/me') ep(m*/re) '

where eo is the macroscopic dielectric constant and m*
is an appropriate effective mass. q is a macroscopic
"quality" parameter, being independent of microscopic
variations in the crystal or impurity potentials. We
define a relative hydrogenic defect d as the central cell
correction EI—Eo relative to Eo, the binding energy in
the EMA, that is,

d= (Er Ep)/Ep—
One expects to find small defects for shallow states
(large q) and substantial defects for deep states (small
q), according to (1.1).Table I lists corresponding q and
d values for (A) deep excitons in Kr and Xe, and (B)

' R. S. Knox, J. Phys. Chem. Solids 9, 238 (1959);9, 265 (1959).' P. O. Lowdin, Advan. Phys. 5, 1 (1956)."A. Gold, Phys. Rev. 124, 1740 (1961)."T. Keil and A. Gold, Phys. Rev. 136, A252 (1964)."O. Schnepp and K. Dressier, J. Chem. Phys. 33, 49 (1960);
G. Baldini, Phys. Rev. 136, A248 (1964).

'P A. W. Overhanser, Phys. Rev. 101, 1702 (1956).
'4 G. Saldini, Phys. Rev. 128, 1562 (1962).

YAsx.z I. Relative hydrogenic defects compared with Kohn's
macroscopic quality parameter.

Kr
Xe
Ge
Si

1.2
1.7

16
7.4

8
18

3200
1000

—0.13
0.07.
0.24"
0.62b

a Exciton Rydberg series; see Ref. 14.
b Averaged over P, As, and Sb donor impurities; see Ref. 1.

shallow impurity states in e-type Ge and Si. Sur-
prisingly, the EMA is more successful for the strong-
coupling situation (A) than it is for the weak-coupling
case (B) for which it was developed, although the
quality differs by factors of order 100.

The failure of the macroscopic criterion (1.1) led us
to explore the validity of the EMA from a microscopic
viewpoint, taking into account the short-wavelength
variations of the periodic and impurity potentials in
the analysis. In this paper we report the methods and
results of this study. We begin, in Sec. 2, with the
formulation of a wave equation appropriate for both
excitions and impurity states, and valid in both strong-
coupling and weak-coupoing problems. This equation is
transformed into a more convenient form in Sec. 3; in
this representation interband matrix elements will be
shown to be negligible. Within this approximation, the
separate contributions to the hydrogenic defect are
isolated and identified in Sec. 4. Section 5 contains a
discussion of bound-state anomalies, based on the
microscopic theory. We conclude that although the
Wannier theory works well in case (1a) and badly in
(1b), for a wide class of insulators it should work well
in both (2a) and (2b), when microscopic corrections are
included in the theory.

4'(r —R') =2 f (k) &p ~ (r—R*) . (2 2)

2. "IMPURITY" EQUATION FOR EXCITONS

The calculation of impurity states is usually based
on a one-electron equation

)FIp+U(r —R,)]it'(r —R;) =Ep(r R;), (2.1)—
in terms of an unperturbed Hamiltonian

H p = —(6'/2m) 'P+ Vp (r)

and a screened impurity potential

U= V'+ V".

Here Vo is the periodic crystal potential, V is the
"bare" or unscreened impurity potential, and V" is
the polarization potential describing the many-electron
response to V'. While Vo possesses full crystal sym-
metry, the perturbation U is generally of atomic
symmetry, so that lt (r—R~), the wave function for the
impurity state, is a mixture of Bloch states for the
conduction bands
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The p„i, are chosen to satisfy The space part of an excitonic state is usually rep-
resented as a superposition of electron-hole scattered
pairs, bound by the residual Coulomb attraction into
a localized packet with energy less than that of the
uncorrelated pairs. Following Slater and Shockley, "
we introduce an "exciton representation" for the wave
packet; each basis function is an eigenfunction of crystal
momentum constructed from a single pair of bands.
For an electron in band e and a hole in band m we have

&«-k(r) = e-(k) ~-k(r) .
Because U is a localized potential it is formally con-
venient to expand P in terms of Wannier functions;

g R(r) g—»2 Q ~ik ~ Rp k(r) (2 3)

where lY is the number of primitive cells in the crystal,
and the k-space sum is restricted to the first Brillouin
zone. It is known" that a„R is localized around lattice
site R with an average radius approximately equal to
a lattice parameter. In terms of the a„R,

x„„(K,y) =x-»' P s-'k &a.„(k,k+ K), (2.6)

lb(r —R,) =P f„(R)a„rr(r—R,).
where g is a, lattice vector and 8 „ is a Slater deter-
minant of Bloch functions given by

(2.4)
nR

According to (2.3) we have

(R) =1v»s P g„(k)e'k R

In the Wannier representation, we have, instead of
(2.1),

Q [W„(R—R')8„„.+U„„(R,R') jf„.(R')

8 „(k, k+K) =2 f q k, (rr) (p k„(rsr)

X[q k(rk) v k+K(r.)])
3 is the antisymmetrization operator; r, and r& refer to
electron and hole coordinates, respectively; 8 „ is an
(1V+2)-particle wave function for a full valence band
augmented by a Bloch electron-hole pair of momentum
K. In terms of Wannier functions, (2.6) can be written
as

x (K g)=Ã '~'P e'"'"W „(R R+g) (2.7)

where
=Ef (R), (2.5)

w (R—R')=E 'Q e'k lR—R—'e (k)
using (2.3), where W is the wave function for a full
valence band to which has been added a Wannier
electron-hole pair of separation g:

U„„(R,R') = dr rr„R*(r)Uu„. rr (r) .

In this equation the periodic potential is assimilated
into a "kinetic-energy term" 8'„, while U„„, the
"potential-energy term, " contains the effect of the
impurity potential. In strong-coupling problems the
impurity state may be so localized that many con-
duction bands will contribute to the wave packet. Then
the expansions (2.2) and (2.4) may not be convenient;
in this case an expansion in terms of Heitler-London
atomic orbitals is more appropriate. This is generally
true of the deep impurity states in molecular crystals.

Here we show that excitonic states satisfy an equa-
tion like (2.1); this will be useful in the general dis-
cussion below. We begin with a brief review of exciton
theory, ' keeping the discussion general so as to include
both strong- and weak-coupling limits. The discussion
is restricted to "direct" formation of excitons, i.e.,
optical transitions unaccompanied by phonon absorp-
tion or emission. Then the center-of-mass momentum
of the exciton must be equal to the photon momentum,
which is negligibly small compared to characteristic
electron momenta. In addition, since electric dipole
transitions are allowed for all cases of interest, we need
consider only singlet spin states (5=0).

"J. C. Sister, Phys. Rev. 76, 1592 (1949); 87, 807 (1952);
G. F. Koster, ibid 89, 67 (1953); W. Kohn. , ibid 115, 809 (1959). .

Exciton eigenvalues E„K are determined along with the
eigenvectors F „(g) by solving the Schrodinger
equation

+@vK P @vK (2 9)

where H is the E-particle Hamiltonian

h2 2

H=Q — V"+Us(r, ) +s Q —; (2.10)
7'=1 281 '"i r'2

the first term is the total-kinetic-energy operator, Uo is
the ionic potential, and the last term is the Coulomb

"J.C. Sister and W. Shoclrley, Phys. Rev. 50, 705 (1936).

Expressions (2.6) and. (2.7) illustrate the formal
equivalence of real-space and momentum-space pictures
of the exciton; each basis function P has associated with
it a crystal momentum K for the center-of-mass motion
and a lattice vect, or (3 for the electron-hole separation.
In the exciton representation one expands the excitonic
state in terms of these functions; i.e., for the vth exciton
of momentum K,

(2.8)
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interaction. On substituting (2.8) into (2.9), we get

(mnKg I
II

I
m'n'Kg)F ~ "*(g')

mpnppp

for an arbitrary funci, ion P(r), and an exchange inter-
action v„given by

=E„KF„„R(Il), (2.11) v,p(r) = 2 p
R

a set of coupled algebraic equations for the F „,where

dr'a„R*(r')g'(r —r') TR&(r') a„o(r)

TRQ(r) =p(r —R) .
(mnKy[e[m'n'Ky') = dv x.„*(Ky)aX., „,(Ky'); In addition, we introduce an auxiliary one-electron

function
(2.16)4'(r) =2 G (5)a (r)

the (%+2)-particle wave function for an excitonic

(2 12) state of the crystal. We will show that p satisfies a
one-electron Schrodinger equation

E II- (55')F- (5') =FF-(Il),

the integration extends over the coordinates of (X+2)
particles. For most cases of interest we may neglect
matrix elements between the more localized hole bands which should be compared with
although interband mixing of delocalized electron states
is often essential in this representation. Suppressing
m=m', K(IC=O), and v, and subtracting the ground-
state energy from the diagonal, we have

where

II- (55')=& '2 exp[vk (5—5)3

X[e„(k)—e„(k)]8„„.

(ho+v)f= eiP, (2.17)

provided we choose G„=F„and a=E, the exciton
energy relative to the ground state. Here

hp= Bp—8",
+Q [2(nymR[go[ m0 'nRyy')

where Hp is the one-electron Hamiltonian for the

—(nymR I
go

[
niR+ yrm0)g (2 13) Perfect crystal:

IIoy g= e„(k)p„g,
Here e„and (—e ) are Hartree-Fock energies for a as before, and W is an operator defined by"conduction" electron and a "valence" hole, respec-
tively. Thus W&p„k ———e (k)(p g.

(u„(k)=e (k) —e (k) Then we have, using (2.3),

X[e.(k) —e (k)38 ~ . (2.18)

is the energy of an electron-hole pair before correlation
due to their Coulomb attraction is added. The cor- &n5[ "0[n'0')=+ & exl [vk'(5
relation terms are given by the lattice sum in (2.13), in
which

and
g'= e'/I r,—r~ I,

(nymph'I g, [n'y"my'")

(2 14) Taking matrix elements of vD and v„we have also

(ny [ v [n'y') =P [2(nymR [g'Im0n'Ry y')

—(ngmR
I
g'I n'R+ y'm0)

drgrgu„p*(r, )a p *(rI„)g'a„p (r,)u„p "(rg).

The first term in the square brackets in (2.13) is an
exchange interaction between the electron and hole,
while the direct Coulomb interaction is given in the
second term. Terms for RWO are often called excitation
transfer matrix elements and are negligibly small unless
the valence bandwidth is large. Ke introduce a one-
electron potential derived from the interaction terms
of (2.13); i.e.,

Substituting (2.16) into (2.17) we have

[(nL3[/gp[n y )+'(ny[ v[n y )pig (y )= eG (y)

From (2.18), (2.19), and (2.12), we see that this set of
equations is identically satis6. ed if G„=F„and c=E;
with these choices, P satisfies (2.17) and has the exciton
eigenvalue E. The wave function + for the exciton state
can also be determined from the solution of (2.17), for

v(r) =»(r)+v-(r) (2.15)

in terms of a direct Coulomb interaction e~, given by
F„(y)= dr u.p'(r)y(r).

vnP(r) = —P
R

dr'u~R*(r')g'(r —r') u„v (r') TRQ(r) Thus, we have replaced the (%+2)-particle problem
with a one-electron impurity problem, Eq. (2.17), for
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(kp+N)It =Ef. (2.20)

3. IMPURITY CANCELLATION THEORY

Let us consider Eqs. (2.1) and (2.20) to be special
cases of a generalized impurity equation

$Ep+ V (r R )$$(r—R ) =EP(r R') (3.1)

in which the positive charge is centered at R„,

Ep ———(6'/2m) V'+ V'(r)

has full crystal symmetry, and V'(r —R~) is the "im-
purity" potential. In general, this equation is extremely
dificult to solve because of the crossed symmetries of
V' and V'. However, if U' is strong enough to confine P
to the vicinity of the central cell, it may be possible to
treat V' as a perturbation from nearest neighbors
(Heitler-London model). On the other hand the im-

purity potential may be so weak that a characteristic
wavelength of f is large compared with an atomic
radius, so that the microscopic details of V and V' are
unimportant and the EMAis valid Lsee Eq. (1.1)j.In the
general case neither approach is valid, and expansions

hp(r) has the full lattice symmetry and is known if the
band structure is known, while v is a symmetry-breaking
interaction, localized about R=O. For electron-hole
separations large compared to an atomic radius, we

expect v to be hydrogenic; the exchange terms are
negligible in this case, while Gauss theorem applied to
the Coulomb integral gives vD(r) ~ ~rj '. In any case,
Eq. (2.17) is conceptually simpler than (2.12) and the
same form as (2.1), so that both excitons and impurity
states may be studied from the same viewpoint, which
is the result we sought to derive.

Before we treat the general problem we point out a
serious defect of the exciton representation (2.8) for
low-lying excited states of the crystal. The restriction
to two-particle excitations is not exact, inasmuch as the
valence charge density is strongly perturbed by the
multipole field of the pair. Thus, the charge distribution
in the neighborhood of the electron-hole pair will be
polarized, setting up an electrostatic potential which

opposes the multipole field of the pair and reduces the
electron-hole interaction. In order to calculate better
eigenstates of this system we ought to include multiple-
exciton states, compute matrix elements between them,
and diagonalize this much larger matrix. The treatment
of this problem belongs to many-body theory, and will

be summarized in Sec. 4. Here it is sufficient to represent
the polarization effects by a self-consistent potential
for the electron-hole coupling,

u=v+p(u).

Thus the bare electron-hole interaction v is screened

by a polarization potential p, which represents the self-

consistent response of the valence charge distribution
to the excited pair. Then Eq. (2.17) is replaced by

where
=EP.(R), (3.2)

W„(R—R')=X 'P e' 'i ''e„(k)
k

V„„'(RR')= dr a„a*(r)V'a„a. (r) .

If V' were slowly varying compared to the lattice
parameter, the orthogonality properties of the %annier
functions would imply

where
V„„.'(RR') = 5,„.6aa V.'(R),

V.'(R) = V„„'(RR).

(3.3)

Blount has shown" that if (3.3) holds, then (3.2) can
be transformed into a differential equation

I p„(—iV)+U '(r)jf (r)=Ef„(r),
where ~„satisfies

It pgnx= pn(k) &p~k

(3.4)

V„'(r)=Q dk V„'(R)e"&'— '.

f„ is a continuous function in real space, related to F„
by

f„(R)=P„(R).

Equation (3.4) is especially useful for large-radius
states, for then only a small volume of k-space con-
tributes to the wave packet f, and p„(k) for this region

may be approximated by a quadratic form. Ke point
out that small-radius states may be studied conven-
iently with the algebraic equations (3.2), provided that
p„(k) is known and (3.3) holds. For these states only
a small set of Kannier functions will be important, and
the energy may be determined by solving the secular
equation

d«~ W„(R—R')+[V„'(R)—Ej~» I
=0. (3.3)

Thus impurity states in any category are amenable to
calcula, tion, using either (3.4) or (3.5), only if interband
matrix elements V .' may be ignored as in (3.3).

For a screened hydrogenic potential V„'(r) ~ r ' and
for parabolic conduction bands, (3.3) will not be valid
when ap/a&2 or 3 because of the strength of U' at
small r (central atomic cell). Because we are interested
in deep states as well as shallow states we must find a
way of removing the strong "core part" of V from the
general problem (3.1).Let us recall how this was done
for another problem.

"F.. I. Blount, Solid State Phys. 13, 305 (1962).

(2.2) and (2.4) are not rapidly convergent. In the
Wannier representation we have

Q DU„(R—R')8„„+V„„.'(RR')]P„(R')
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In determining the Bloch functions P» it is con-
venient to expand each state in plane waves. However,
because the one-electron potential Vp is strong and
rapidly varying in the core regions, a Fourier expansion
converges slowly. Herring" showed that rapid con-
vergence could be obtained by orthogonalizing the
plane waves to core orbitals. Mixing of orthogonalized
plane-wave basis states is greatly reduced because of
the substantial cancellations between matrix elements
of the core potential and core orthogonality terms. The
latter are rigorously equivalent to a nonlocal energy-
dependent potential, but Phillips and Kleinman"
argued that for many practical purposes they could be
replaced by an ordinary repulsive potential Vz(r). The
cancellation between Vp and V~ in the core region was
then manifest, and one obtained a wave equation for
the "smooth" part g» of iP» given by

(2'+ Vo+ Vox)g»= EP», (3.6)

in which Vpg opposes Vp in the core region and T is the
kinetic-energy operator. The form of Vp~ depends on
the specification of p» in terms of the true wave function

@=A—E 9 l4»)4i, (3.7)

where the g~ are core functions. Cohen and Heine chose
the smoothest (smallest interband mixing) compatible
with (3.6) and (3.7) and obtained the relation

Vozy»= —P Qil Vole»)y~, (3.8)

which explicitly exhibits V& as a projection of Vp on
core states. For large cores cancellation of Vp by' Vpg
is nearly exact within the core region, as long as p» has
predominantly s or P character. Then the residual
pseudopotential

Vp.= Vo+ Voii (3.9)

is smooth and slowly varying, so that p» may be repre-
sented by a minimal number of plane waves.

Although cancellation theory has previously been
considered for periodic structures, it is easy to extend
the formalism to include the impurity problem (3.1).
We show that transformation to a smooth represen-
tation yields an impurity pseudopotential that is weak
in the core regions, with the important result that
interband matrix elements of the central cell potential
are substantially reduced. We will find, as before, that
there is a pseudopotential associated with the perfect
crystal as well. Because of the manifest cancellation
of the impurity potential one can now justify (rather
than assume ad hoc) the validity of a one-band model
for deep as well as shallow exciton states.

Following Phillips and Kleinman, we represent
f(r—R;) as the sum of a smooth function and its

' C. Herring, Phys. Rev, 57, 1169 (1940)."J.C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

Schmidt corrections

P(r—R;) =p(r —R,)—P Q Ip)p, (3.10)

E denotes the energy of the mth core level. Following
Cohen and Heine" we exploit the fact that variations
in p of the type

produce no change in P. We seek n that will minimize
the potential energy of p,

E(e)= 9 I v'+v'+v~l@&/&el')

Since the 0, are independent constants

&0-I v'+v'+v I4)=

x &pl v'+ v'+ v. ly&. (3.13)

According to (3.12) we have

8-I v
I
y&= (E—E„)8-ly& (3.14)

Neglecting normalization corrections to p and using
(3.13) and (3.14), we find the important result

(3.15)

We decompose Vg into a term Vg' arising solely from
the periodic potential and a term V~' arising from the
impurity potential alone:

(3.16)
where

v 'y= —pQ IV'ly&y .

From the rigorous analysis of Austin, Heine, and Sham"
it is easy to see that Eq. (3.16) is exact in that (3.11)
then has the same eigenvalues as (3.1).We can see also

"M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961)."3.J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276
(1962).

where the p are core functions in the presence of the
impurity, and are diferent functions in different cells,
in general. For strong coupling problems the calcu-
lation of the g may be itself a dificult problem. We
substitute (3.10) into (3.1) to get

I T+ V'(r)+ V'(r —R;)+Vii]g(r —R;)
=Eg(r R,),—(3.11)

an effective wave equation for p, where

(3.12)
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n (r)=1V "'P e '~'"rp (r)

that this choice yields a p which is "almost" the where n R is the smooth part of a„n, i.e.,
smoothest possible for our problem. To see how smooth

p may be, we calculate the impurity pseudopotential

(V'+ Vi~') g
V,.'8)—= dr'V'(r') [b(r—r')

—P p *(r')p (r)$p(r')p '(r), (3.17)

while for the crystal potential

(V'+ Vz')4
V.'9)= dr' V'(r') [5(r—r')

—2 ~.*(")~.(r)j~(")~-'()

These equations exhibit the cancellation we expected;
both U' and U' are cancelled as eRectively as possible
by a linear combination of core states. Thus both
potentials are substantially cancelled in the core regions,
but are virtually undiminished in the region between
cores. The pseudowave equation is, of course,

[T+Vp, '(r)+ V„'(r—R,)jg(r—R,)
=Ey(r —R,) . (3.18)

We show in the Appendix that V~, has only small
terms that break the crystal symmetry; these terms
may be absorbed into V„'(r—R~) .

We must now consider under what circumstances
the model impurity wave functions d (r—R~) can be
represented as a wave packet of model states g~(r)
derived from Bloch states P~„near a specific band edge
k=k . In many insulators the state at the bottom of
the conduction band is at k=0 and has I'i symmetry.
Because the model wave function ps(r) for I'i is almost
constant, we may then use a one-band approximation
for p(r —R,), even though an expansion of It (r—R;) in
terms of Bloch states near F may contain states from
higher bands. Then the eRective Hamiltonian approach
is tractable: the solutions of the periodic potential
problem

[T+Vp, '(r) ]q „g(r) = e„(k)q „„(r)

Except in extreme strong-coupling situations, when
U„„.WO for eWn' and (3.18) must be used, (3.19) are
the fundamental equations for calculating excitons and
impurity states.

The extent to which the foregoing arguments are
applicable when the band edge does not have F& sym-
metry requires a separate investigation for each case.
We may note, however, that the nearly complete
cancellation of core and repulsive potentials implies a
nearly free electron band structure, with conduction
band minimum at F&. Conversely, if the minimum is not
at F~, then cancellation cannot be so complete, and large
central cell corrections to the hydrogenic model are
expected.

4. SCREENED IMPURITY POTENTIAL

In the presence of a localized positive charge the
valence charge distribution is polarized to screen the
impurity potential. If the Fourier transform of the bare
potential is represented by V'(k), the screened potential
neglecting local field corrections is given by""

V,'(r —R;)= dk e' '' "'iV'(k) . (41)
e(k, K=O)

This choice of the screened potential has the convenient
asymptotic feature that V,'~ (es~r —R, ~)

' as
~r—R,

~

~ ~, where es is the macroscopic dielectric
constant. This is the correct result, as one can show from
macroscopic considerations. '4 Within the central cell
(4.1) provides a convenient prescription for treating
polarization effects. The customary approximation 5

made in (4.1) of neglecting local fields retains only the
E=O component, because outside the central cell the
KWO terms appear to be small. "Then from (4.1) we
can write

V, '(r —R,) =e'/e(r —R,) ~

r —R;~, (4.2)

where the position-dependent screening factor is defined

are used to cast (3.18) into the form
e-'(r) = 4s.r dk e'"'/)Pe(k, O) . (4.3)

Here

P [W (R—R')+U„„(RR')jf(R')=Ef(R). (3.19) In practice (4.3) should be regarded as a convenient
interpolation formula between the limits e= es (r —+ ~)
and e=1 (r —& 0).

In the preceding section we showed that, if we choose
U„„.(RR') = (rrR ) Vp,

'
i
rr'R'), to work in a representation where the one-band approxi-

and f is the envelope function for p(r —R~) in the
Wannier representation, given by

e(r) =2 f(R) -.(r),

~' M. Azuma, J. Phys. Soc. Japan 18, 194 (1963),
~' N. Wiser, Phys. Rev. 129, 62 (1963).
~4 W. Kohn, Phys. Rev. 110, 857 (1958).
~' M. H. Cohen, Phil. Mag. 3, 762 (1958).
s' M. A. Biondi and J. A. Rayne, Phys. Rev. 115, 1522 {1959)."H. Nara, J. Phys. Soc. Japan 20, 778 {1965).
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mation is valid, then polarization of large valence cores
has a drastic effect on V'(r —R;) in the central cell.
Because of central-cell polarization this is not the Bloch
representation, but a modified model representation in
which the smooth basis states p have been orthogonal-
ized to polarized core states. In this representation, the
effect of central-cell polarization appears as a repulsive
potential. Like the polarization potential outside the
central cell, the repulsive potential also acts to reduce
Vf

The origin of the two screening effects is, however,
formally different. The conventional dielectric screening
described by (4.3) represents the effect of valence
polarization on the interaction between two test charges,
with the positions of the latter averaged over an atomic
cell Lonly the K=O component is retained in (4.1)].
The repulsive potential is in a sense fictitious, because
it arises through a special choice of representation
suited to minimizing the effects of interband matrix
elements of the potential, thus enabling us to make the
one-band approximation. (Compare this situation with
Schrodinger or Heisenberg representations, the latter
being adopted to remove part of the potential from the
wave equation. ) From another viewpoint, however, the
repulsive terms also represent a polarization response
to the presence of the positive charge, because they
arise from changes in core levels induced by the addi-
tional charge.

The unphysical character of the repulsive polari-
zation potential becomes apparent if we assume perfect
cancellation betw'een V' and Vg' in the core region
r&r„and represent the effect of V&' by a screening
factor ez(r). This factor then has the property that for
r &r„g(er) ~ ~, rather than 1, as is the case for (4.3).
This surprising behavior is implicit in the one-band
approximation itself.

S. EXCITON AND IMPURITY STATES

The procedure that has been developed in the pre-
ceding sections for constructing local pseudopotentials
is applied in the following paper to the calculation of
hydrogenic defects of deep exciton and impurity levels
in rare-gas crystals. The great success of the Wannier
model, which as we saw in Sec. 1 is quite surprising in
terms of the macroscopic quantities contained in Eq.
(1.1), is seen to follow from the cancellation effects
inherent in the pseudopotential approach.

Application of the pseudopotential method to rare-
gas crystals is facilitated by the fact that the valence
states form closed shells so that the repulsive potential
is isotropic in the central cell. Also the situation in the
conduction band is favorable because p(I'i) is almost
constant over the atomic cell. By contrast, in semi-
conductors such as Ge the valence shells are only half-
filled; and as a consequence, the repulsive potential is
concentrated along bonding directions. (The angular
variation of the repulsive potential closely resembles

that of the valence charge density, which is strongly
anisotropic, being large along bonding directions and
falling almost to zero along the antibonding direc-
tions. ss") Moreover, P(L&) in Ge varies rapidly over
the unit cell, so that different regions of the central cell
must be given unequal weights in calculating the ex-
pectation values of the 1s donor energies. In spite of
these essentially geometric complexities we expect that
by including cancellation effects in a local pseudo-
potential representation one should be able to account
semiquantitatively for the trends of hydrogenic defects
of group-V donor impurity states in Ge and in Si.

In summa, ry, the new feature which distinguishes the
present approach from previous ones'' is emphasis on
the difference between the microscopic shell structures
of the a,tom occupying the central cell and the atoms
composing the host lattice. We retain the Wannier
picture based on macroscopic screening of the attractive
potential and a one-band kinetic energy outside the
central cell. We also retain interpolation within the
central cell to include the effects of breakdown of di-
electric screening. ' But we find that to understand even
qualitatively the observed varia, tions of hydrogenic
defects it is necessary to include the effects of ortho-
gonalization of conduction states to valence shells,
especially in the central cell. In the sense discussed in
Sec. 4 our model still retains a degree of semiclassical
simplicity, but one is now able to understand the large
variations of hydrogenic defects which had previously
appeared to undermine the utility of the Wannier
picture iteself.

Since both p& and pz are eigenfunctions of crystal mo-
mentum Lsee (3.7)], we may apply the Bloch theorem
in the form

y, (r) =e'~ "u,~, (r),
y, (r) =e'"'u„|,(r),

(A3)

where c denotes a "core band" and e is a conduction-
band index. The I's have full lattice symmetry, Then

(A4)
where

(A5)

"K. H. Sennemann, Phys. Rev. 133, A1045 (1964).
s9 L. Kleinman and J. C. Phillips, Phys. Rev. 116, 880 (1959l;

117, 460 (1960); 118, 1153 (1960).

APPENDIX: PSEUDOPOTENTIAL SYMMETRIES

In the pure crystal only V& can break. the lattice
symmetry in the pseudowave equation

(A1)

But, by (3.8)
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Inserting (A4) into (A2) we get

N, s(r)
Vte' ———Q V,„'(k),' N„s(r)

which has the symmetry of the lattice.
In the impurity problem (3.18) the core states P~ are

not eigenfunctions of crystal momentum a,nd (A6) does
not hold. On the other hand, it is easy to see that the

P& differ from the pure-crystal functions (A3) only in
the neighborhood of V'. Thus, terms in V~ which do
not have full symmetry are localized around the im-

purity and may be absorbed into the definition of V~,',
so that V~, is once more a periodic potential. In fact
V~,' is then identical to the pseudopotential of the pure
crystal, so that the kinetic-energy term in the effective-
Hamiltonian approach (3.19) is associated with the
band structure in the usual way.
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The formalism of the preceding paper is applied to a calculation of the erst excited states of (1) pure
crystals of Kr and Xe; and {2) rare-gas solids containing a substitutional Xe impurity. A Hartree potential
for the bare electron-hole interaction is constructed for each system, and is screened within the random-phase
approximation. Matrix elements of the corresponding pseudopotentials, projected according to the Cohen-
Heine prescription, are derived in the Wannier representation. Band structures inferred from optical data
are fitted to simple interpolation formulas. By transformation to a symmetric representation for the envelope
function, the Wannier difference equations are reduced to manageable form and solved by a matrix tech-
nique. Although the calculations contain no disposable parameters, obtained binding energies and oscillator
strengths are found to be in excellent agreement with experiment.

1. INTRODUCTION

'N the preceding paper' the wave-packet theory of
~ - exciton and impurity states developed by Wannier
and other workers was reviewed. It was asserted that
the wave-packet approach, which has been supposed
to be valid only for shallow states, in fact could be
made to yield satisfactory results for deep states as
well, providing that certain microscopic modifications
of the customary macroscopic theory were introduced.
The purpose of this paper is to examine this statement
in detail for the simplest systems containing deep
exciton and impurity states, viz. , the solid rare gases.
For these systems the calculations turn out to be un-
expectedly easy, and the results in excellent agreement
with experiment. The extension of the methods to
other crystals appears to be straightforward.

We begin our presentation in Sec. 2 with an ap-
proximate treatment of dielectric screening of the
electron-hole interaction in solid rare gases. In Sec. 3

*Supported in part by OfBce of Naval Research, the National
Science Foundation, the National Aeronautics and Space Admin-
istration, and a general grant to Institute for the study of Metals
by Advanced Research Projects Agency.

t Submitted in partial fulfillment of the requirements for the
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150, 652 (1966), hereafter referred to as I.

2. DIELECTRIC MODEL FOR
ISOTROPIC INSULATORS

In Sec. 4 of I we noted that the Fourier components
U, (q) of the self-consistent potential acting between
external charges are given by

V, (q) = V, (0)/e(Y, It =0), (2.1)

where Vs(q) is the Fourier transform of the bare
potential. The dielectric function neglecting local 6eld
effects is'

l(~ k+tlie*"l~k) I'
(2.2)

q mnw W'„(k+q) —W~(k)

4me'

e(q, E=O) =1+-

for insulating crystals, where 8"„and 8' are electron
and hole band energies, respectively, and

(rt k+tII e'&'lrrtk) = (I ' dr p.„s+,*(r)e'&'p (r) (2.3)

~ N. Wiser, Phys. Rev. 129, 62 {1963).

we describe the construction of complete pseudopo-
tentials for the systems studied. Kinetic-energy terms
arising from the periodic crystal potential are discussed
in Sec. 4, which is followed by a reduction of the
Wannier difference equations in Sec. 5. Sections 6 and
7 contain a discussion of the results and comparison
with experiment.


