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The theory of the optical properties of an ionic crystal slab is formulated to exhibit explicitly the relation
between the optical properties and the virtual modes of the slab. It is shown that the absorption spectrum
can be completely understood from the properties of the virtual modes. Expressions for the contribution of
a single virtual mode to absorption, reflection, and transmission are compared with exact calculations for
LiF. The total width of an absorption peak is shown to be expressible as the sum of a radiative width and a

width due to lattice anharmonicities.

I. INTRODUCTION

ROM the point of view of Maxwell’s equations, the

problem of the optical properties of an ionic crystal

slab is understood completely. Knowing the dielectric

constant e(w), which describes the response of the

material to a long-wave perturbing field, the calculation
of the optical properties is straightforward.

If, however, we wish to adopt the point of view that
the absorption of photons should be related to the
excitation of the normal modes of the slab, the situation
is much less clear. Using a weak-coupling approach,
we would regard phonons and photons as separate
entities coupled by an E-P interaction; E is the electric
field of the photons and P is the polarization due to the
phonons. The phonons appropriate to this approach are
those obtained with the interaction with transverse
photons turned off, or, in other words, neglecting re-
tardation of the Coulomb forces. This calculation was
made by the authors! and gave phonon frequencies
w=w(k;), where k, is the wave-vector component
parallel to the slab. If a photon with an angle of inci-
dence 8 is absorbed, creating a phonon, the energy #w
and %, are conserved. The absorption frequencies would
therefore be determined by the intersection of the
phonon dispersion curves w=w(k,) and the photon line
w=kc or w=Fk,c/sinf. The only intersections occur at
wr and wz for the sinusoidal modes and at two fre-
quencies between wr and wy for the surface modes
(wr and wy, are the usual transverse and longitudinal
optical frequencies in an infinite crystal).

This result is completely incorrect. Although it is
true that absorption peaks sometimes occur at wr
and wz, distinct peaks are not found between wr and
wr.? Also, peaks which do occur below wr are not
explained.

The error in the above approach is that the coupling
between phonons and photons is strong, not weak, and
should be included from the beginning by taking account
of retardation of the Coulomb forces. The true normal

* Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 1879.
| T Now at Department of Physics, University of Illinois, Urbana,
Illinois.
1 R. Fuchs and K. L. Kliewer, Phys. Rev. 140, A2076 (1965).
2 Peaks in this frequency range due to many-phonon processes
are unrelated to this discussion.
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modes involve mixed excitations, the polaritons, and
fall into two classes: nonradiative and radiative.3*
Since the nonradiative solutions and the optical proper-
ties are unrelated, the optical properties must be
described in terms of the radiative solutions, i.e., the
virtual modes.* In this paper we show how such a
description can be made. We arrive at a point of view
in which it is meaningless to think of a process such as
the absorption of a photon accompanied by creation of
a phonon, since phonons and photons are bound
together into a single entity.

II. OPTICAL PROPERTIES OF A SLAB

Although the derivation of the transmission, reflec-
tion, and absorption coefficients of a slab is a standard
exercise in electromagnetic theory and appears in many
textbooks,® a somewhat different derivation is pre-
sented here in order to emphasize the relation between
these properties and the virtual modes. There is an
important difference between the fields involved in an
optical experiment and the fields in the virtual modes:
Each component of the field in a virtual mode has either
even or odd parity about the center of the slab, where-
as in an optical experiment, in which light is incident
from one side of the slab only, there exists no definite
parity. Therefore, a description of the optical prop-
erties in terms of the virtual modes involves mixing
modes of different parities. This leads to the possibility
of interference between modes of different parity and
has important consequences in the detailed interpreta-
tion of the optical properties.

P Polarization

We imagine an optical experiment performed by
letting light be incident on both sides of the slab,
choosing the phases so that the fields have definite
parity. Using the coordinate system shown in Fig. 1
of IL* we write E(r,)=E(g)ei%=t and let
Bo= (w?/*—k,2)!2, Then the component E.(z) outside

3 K. L. Kliewer and R. Fuchs, Phys. Rev. 144, 495 (1966).

4 K. L. Kliewer and R. Fuchs, preceding paper, Phys. Rev.
150, 573 (1966), to be referred to subsequently as II.

5J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941), Chap. 9.
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the slab is of the form

B0 (s)=e ot Prei®r, z>a (1)
=eiforf-Preifor, z3<—a
for even parity [ E.(z) = E.(—2)], and
E,® () ==t} Pociter, 2
—— (PP 0), 5<—a

for odd parity [E,(z)=—E.(—2)]. The first terms in
Egs. (1) and (2) represent waves incident on the slab,
and the factors Py and P, are complex numbers which
permit an arbitrary choice of the amplitude and phase
of the waves leaving the slab. Adding (1) and (2), we
find

E,(3) =20z (P1+ Pp)etfoz, z>a

= (P1— Py)e %oz z<—a, ®)

which describes the asymmetric optical experiment;
waves incident on the slab from the 4z direction only.
Since we are assuming P polarization (E in the plane of
incidence, the x-z plane), E,=H,=H,=0 and

= (Bo/k,,)[Ze_w“— (P1+P2)eiﬂoz]’ z2>a
= (Bo/ks)LP1— Pyle 7, z<—a,
H,(3)=— (w/ks0)E.(3),

Using the expression S, « Re(E,*H,) for the z compo-
nent of the Poynting vector above the slab,

S, —4+|P1+P2|2,

)

z>a and z<—a.

2>a 5)

which is the sum of contributions from the incident and
reflected waves, and below the slab,

Sy — | P1—Ps|?, 3<—a (6

for the transmitted wave. Therefore the transmission,
reflection, and absorption coefficients are

T=%|Pi—Ps|?,
R=%|P1+P,?,
A=1—T—R=3}(1— | P )+3(1— | Pa]). (D

These expressions show that 7" and R involve inter-
ference between modes of opposite parity, since Pi
and P, are added before being squared. The absorption
A, on the other hand, contains no such interference since
Py and P, are squared before being added.

The boundary conditions at the surface of the
slab are taken into account by introducing the ratio
g=FE.(3)/eE.(3), which is continuous across the
surface. From Eq. (1) for E.,®(z), we find, using
E,(3)=— (ik,)"dE.(3)/d3,

E,® (2)= (Bo/ k)70t Pre™?], 5>a. ®)

ITIEWER, AND PARDEE

150

The value of g just outside the surface, where e=1, is

E,;(l) (Z) 60 e—iﬂoa_ Pleiﬂoa

= = 9)
&1 E,W(5)  ky e-iBraf P gifoa
or
Pi= T sipaa, (10)
(,Bo/km)+g1

The subscript 1 always designates the case in which £,
has even parity. Starting with the odd-parity case (2),
we find exactly the same relation (10) between P,
and g,.

The fields inside the slab are of the form

Ez(l) (Z) — eaz_l_ ez ,

E,®(2)=— (a/iks) (e**—e*?) (11)
for even parity, or

E,® (3)=ex— ¢,

()= (aike) (e ) (12

for odd parity, where a= (k.2— w?e/c?)!/% g1 and g» can
be expressed in terms of these fields just inside the
surface:

61=E,V(a)/eE,V (a)= (ia/k.e)tanhaa
= — (i8/kze)tanBa  (13)
and
22=FE,®(a)/eE.® (a)= (ia/ke)cothaa
= (iB/kz€)cotpa,
where a=14. If we use (13) and (14) in (10), we find

Py= [(I_I'_'”'tl)/(l~ iul)]g—2iﬂoa ,
Po=[ (141us)/ (1—iusy) Je2oa

(14)

(15)
where

u1= (B/Boe)tanga,
uy=— (B/Boe)cotBa.
The factors e~2%0e in Eq. (15) can be dropped because

they cancel when calculating R, T, or 4 with (7). If we
write

(16)

Li=1—1u1=1— (48/Boe)tanBa
and
Ly=1—1uy=14 (i8/Boe)cotBa,,

Eq. (15) becomes
Pi=02—Ly)/Ly,

Py=(2—L,)/L,. (an

With the appearance of L; and Ls, Egs. (7) and (17)
exhibit explicitly the relation between the optical
properties and the virtual-mode equations. When the
frequency is real, (7) and (17) determine the optical
properties. If we allow the frequency to become com-
plex, the equations L;=0 and L:=0 are precisely the
virtual-mode equations (2.6) and (2.8) in II.
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We can now examine the contribution of the indi-
vidual virtual modes to the optical absorption. Consider
the absorption 4; due to modes of even parity:

A1=5(1—|P1|»
= (L1+L1*—2)/[L1[2.

The total absorption is 4 =4+ A4,, where 4, due to
modes of odd parity, can be expressed similarly in
terms of Ly. At a fixed value of § we consider L; and
u1 to be functions of the normalized complex frequency

°=w’/wy and the damping constant v.® The contribu-
tion of an individual mode to 4, is found by making an
expansion of Li(Q¢y) or #,(Q¢y) about this mode. Let
n=n’+1in" designate the complex frequency of a solu-
tion of the virtual-mode equation ZL;=0 with no
damping in the dielectric constant (y=0), and let
p=p’+ip” designate the frequency of the corresponding
solution with damping (y5<0). That is,

L1(n,0)=1—1u1(n,0)=0

(18)

(19)
(20)

and
Li(p,y)=1—1u1(p,v)=0.

If Q¢ is near the virtual-mode frequency p, then #; can
be represented by the linear expansion

a3 (Q07) = b1+ bQbyy. (1)

From (16) we note that #; is real if y=0 and the fre-
quency is real; this implies that ; and b are real. Then,
using Egs. (19) and (20) to determine by, bs, and b;
in terms of 7 and p, we can rewrite (21) as

== @—p) i =" (@)

With the relation Zi=1—1su; and Eq. (22), Eq. (18)
becomes

A1=20"A"/((Q—p" )+ (")), (23)
where AQ"'=p’’—9"’ is the shift in the imaginary part of
the virtual-mode frequency when the damping factor
7 is included in the dielectric constant. The absorption
due to an individual mode is therefore a Breit-Wigner
resonance peak’ centered at p’ with half-width |p”].
The relation p’’=7""+AQ" shows that the total width
can be written as the sum of |7”|, the radiative width
due to the flow of energy out of the slab, and | AQ”|, the
change in width due to the presence of damping in the
dielectric constant. As pointed out in Sec. 3 of II, the
change in width AQ” is not a direct measure of 7v;
rather, —AQ"=3f"(Q,0)y, where f'(Q,0) is, in general,
different from 1.

¢ When the frequency is allowed to move into the complex plane,
we add the superscript ¢; thus, »°® is a complex frequency and
Q°=w/wr is the corresponding dimensionless complex frequency.
The expressions for 4, T, and R have a physical meaning, how-
ever, only for real frequency. Therefore, when we wish to restrict
the frequency in these expressions to be real, as in Egs. (23) and
(24), we write it without the superscript, as w or Q=w/wr.

7J. M. Blatt and V. F. Weisskopf, Thkeoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952), Chap. 8.
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Equation (23) is not exact, because of the approxi-
mations inherent in (21). If v is not small, terms in
Eq. (21) of higher order in v would be needed. Since
the expansion (21) about the complex frequency p is
used to represent L; along the real frequency axis, this
procedure becomes inaccurate if p is far from the real
axis (le., if |p”]| is large). For this reason we expect
(23) to be less accurate for wide absorption peaks than
for narrow ones. Finally, it was assumed that modes of
the same parity are far enough apart that an expansion
of L1(9°) about a single root is sufficient. One can replace
(21) by a polynomial in ©° so that the approximation for
L1(2°) becomes zero at any desired number of roots.
This would lead to an expression for the absorption
which can reproduce the corresponding number of
peaks. However, we shall not carry out this refinement,
since we already have an exact expression for the
absorption. Particular examples of absorption peaks
and their interpretation through Eq. (23) will be
discussed later.

Structure in the transmission and reflection coeffi-
clents 7" and R, given by Eq. (7), cannot be associated
with the virtual modes as readily as in the case of
absorption, because of the interference between P,
and Py. If we use Egs. (15), (16), and (7), the reflection
with no damping (y=0) can be written

R #-1) 28)

(£—1)*+£(cotBa+tanga)?’

where £=080¢/8. R=0 when £=1, a condition that does
not depend on thickness. £=1 in two situations: (1)
at the frequency w=2.998wy (for LiF) at which e=1
and B=4; (2) when w<wr or w>wz, and the angle of

" incidence equals Brewster’s angle. If, for fixed angle of

incidence, the frequency is chosen so that Ba=3nr
either tanBa or cotBa= o, and R=0. Since the normal
virtual modes occur approximately at frequencies
where Ba=%nw, one would be tempted to conclude that
reflectivity minima are associated with virtual modes.
Such an identification is incomplete, since we shall see
that reflection maxima can also occur.

Suppose, for example, that @ is near the real part of
the complex frequency of a particular virtual mode of
type 1, so that L; is small. In the normal situation
where virtual modes of types 1 and 2 alternate, if Q
is near a virtual mode of type 1, it is about midway
between two virtual-mode frequencies of type 2, so
that L, is large. Then Py~—1 and Eq. (7) becomes

R~1| Pi—1]2 (25)
o (A (a2
@) ()

where Eq. (22) has been used i going from (25) to
(26). R has a minimum at Q=p’, and if y=0 (or
AQ”"=0), R=0 at the minimum. This result is not quite

or

) (26)



592 FUCHS,

KLIEWER, AND PARDEE

150

o T | I

ABSORPTION
W=100
P POLARIZATION

¥Y=02, 8=30°

u
p—2p —
Dt !

o7 |- ==~

[#GTH] I x
2{CH

P2TH

Fi1c. 1. Absorption as a function
of frequency for P polarization,
thickness W =10.0, and angle of
incidence §=230°. There are scale
changes in the frequency at 2=0.6
and 1.0.

correct because when y=0, R=0 at a frequency such
that Ba=2%nm, not at the virtual-mode frequency 7’.
This discrepancy appears because Le depends on € and
it is therefore somewhat inaccurate to set P equal to
the constant —1.

There is another interesting case in which, for ex-
ample, |#;|<<1 for @ near the real part of the fre-
quency of a virtual mode of type 1. Equation (15) then
becomes Py~1, and Egs. (7) and (22) give

Re2| P12
(n")?
R
Q@—0")+(o")?

for the reflection due to a virtual mode of type 1.
Equation (28) represents a reflection maximum of

@7

or

(28)
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y=02, §=30°
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Q

Fi1c. 2. Absorption as a function of frequency for P polarization,
thickness W=1.0, and angle of incidence §=230°. There are scale
changes in the frequency at 2=0.6 and 1.0. The thickness W =1.0
corresponds to an actual thickness L=>5.19X10"* cm.
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width 2|p”| centered at p’, and if y=0, R=1 at the
maximum.

We therefore conclude that a given virtual mode may
be associated with either a reflection maximum or
minimum, depending on the nature of the interference
with modes of opposite parity. From Eq. (7) we see
that the expression for 7" in one case is identical to that
for R in the other. Thus, a virtual mode associated with
a maximum in R will, in general, give a minimum in 7,
and vice versa.

S Polarization

The preceding treatment is essentially unchanged for
light polarized perpendicular to the plane of incidence.
We now have E,, H,, and H, different from zero and
E,=E,=H,=0. The Poynting vector is S,x—Re
(E,*H,), and the field ratio which is continuous across
the surface of slab is g=FE,/H, instead of E,/eE..
We find, as before, T=21|Pi—Ps|%, R=3}|Pi+P:|%,
A=5(1—|P1|)+5(1—|Ps|?), where Pi=(1+1du1)/
(1—4uy) and Py= (1-+14u2)/(1—ius). The subscripts 1
and 2 refer, respectively, to fields E, of even and odd
parity. The essential change is that instead of Eq. (16),
we have

uy= (B/Bo)tanfa,
= — (8/Bo)cotBa. (29)

We can again write P1= (2—L1)/Ly and Py= (2—Ls)/Ls,
in which L;=0 and L,=0, for complex frequency, are
the virtual-mode equations (2.10) and (2.11) of II:

Li=1—14(8/Bo)tanBa=0,
Lo=1+14(8/Bo)cotBa=0.

Therefore, the optical properties for .S polarization
can again be associated with the virtual modes. The
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differences in optical properties for the two directions
of polarization arise from differences in the virtual
modes, which are due to the missing e in the combi-
nation &=g8/B¢ for S polarization, as compared with
£=B/Boe for P polarization. This means that there is
no Brewster’s angle for .S polarization, and effects which
were associated with this angle disappear. For example,
referring to Eq. (24), where &=/, appears instead of
£, the condition =1 for which R=0 with no damping
can no longer occur at various frequencies at the
Brewster’s angle, but occurs only at w=2.998wr (for
LiF).

III. COMPARISON WITH EXACT CALCULATION

The foregoing results will now be illustrated by
exact calculations of 4, T, and R for a LiF slab of
various thicknesses. As in the virtual-mode calculations
of Paper II, we have used a frequency-independent
damping constant y=0.02. Figures 1, 2, and 3 show the
absorption 4 for P polarization as a function of the
normalized frequency @ for thicknesses W=10.0, 1.0,
and 0.1, at a fixed angle of incidence, 6=30°. In Fig. 4
the thickness is W=1.0 and the angle is §=88°. The
central point to be noted in these figures is that the

T T I T T T 1 1 1 ] l I
09 | ABSORPTION _
W=l
P POLARIZATION
08 {— y=02, 6=88° —
o7 |- _
X A 06— _
F1c. 4. Absorption as a
function of frequency for P
polarization, thickness W =1.0, 05— -
and angle of incidence 6=288°.
There are scale changes in the e
frequency at 2=0.6 and 1.0. O# = O;.H -1
03 |~ .
02— .
ol - El?g_
ol 1 ! ! ! ! J_,//\
0020406 O 08 09 10 14 18 22 26 30 34 38 42 48
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F1c. 5. Reflection as a func-
tion of frequency for P polari-
zation, thickness W =10.0, and
angle of incidence 6=30°.
There are scale changes in the
frequency at ©=0.6 and 1.0,
andlaovertical scale change at
2=1.0.

02 04

absorption peaks can be associated with the virtual
modes as calculated in II. Thus, each peak is labeled
by the number of the mode with which it is associated
(e.g., 2TL, 3CL, - - ). The double bar above each peak
illustrates the center frequency p’ of the virtual mode,
its radiative width |27”| calculated with y=0, and its
total width |2p"’| calculated with y=0.02.

The absorption peaks shown for W=10.0in Fig. 1 are
resolved only for frequencies 2<1. The total width
| 20”| of the first peaks is almost entirely radiative [i.e.,
the function f/(2,6) discussed in II is small at low
frequencies]. As Q increases, the radiative width
decreases, but the total width does not become smaller

38

than 2(y/2)=0.02. Thus when 0.9<Q<1.0, the spacing
between modes is smaller than their width, and the
absorption peaks merge. The large peak starting at
about 2=2.3 and extending to higher frequencies is
derived from all the high-frequency modes. Since the
widths of these modes are greater than the separation,
they are unresolved. The mode 07'H, which is re-
sponsible for the maximum at ©=2.330, is at a fre-
quency somewhat higher than 9;,=2.197, the usual
longitudinal optical (LO) frequency, because §40. The
absorption due to this mode disappears at normal
incidence because n”” — 0 as 6 — 0 [see Eq. (23)].

In a slab of intermediate thickness W=1 (Fig. 2),

Lo T T T T T T T I I
\ R ///
09 H / a9 -
\\T 'I T
o8| | es 7 AN .
! | / AN
| Ry N
o7} | I erlf =
\\ ; F16. 6. Transmission and re-
06l | I _%F - flection as a function of frequency
\ | TRANSMISSION for P polarization, thickness
\ | AND REFLECTION W=1.0, and angle of incidence
x 05— | ,l W=l — 6=30°. There are scale changes
5 \ P POLARIZATION in the frequency at ©=0.6 and
- \ 1.0, and a vertical scale change at
04 |— \ y=02, 8=30° — Q=28
\_ =2.8.
R
03—
|
I
02— 'l
1
|
ol T 1
W
' v
j 4= 1\
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10 T T T T

Fic. 7. Transmission and re-
flection as a function of frequency
for P polarization, thickness
W=0.1, and angle of incidence
6=30°. There is a scale change in
the frequency at Q=1.4.
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most of the low-frequency modes have moved close to
the transverse optical (TO) frequency, and only the
first three peaks are clearly resolved. All except two of
the high-frequency modes are off the scale at the right,
the 2TH mode occurring at 2=3.430. The widths of the
0T H and 1CH modes have increased, and the relatively
narrow 0TH peak is superimposed on the very broad
1CH peak. The 0TH peak is now at 2=2.268, some-
what closer to the LO frequency 2.197 than in the case
of the thicker slab.

In Fig. 3, for W=0.1, only three modes 1CH, 2T°L,
and 0TH are shown. The sharp peak just below Q=1
is due primarily to the 27°L mode; the higher modes
3CL, 4TL, - - -, which are not shown, contribute only
slightly to this peak and lie very close to @=1. The
sharp peak is superimposed on a broad peak due to the
1CH mode. It has already been noted in II that this
mode behaves in a very strange manner. As the thick-
ness of the slab becomes less than W =1, the 1CH mode
in Fig. 2 becomes even broader and starts to move
below the LO frequency. For W 0.3 it moves below
the TO frequency and its width starts to decrease. The
OTH peak in Fig. 3, which broadened as W changed
from 10 to 1, has started to become narrow again, and
has moved to 2=2.199, very close to Q=2.197.

As the thickness becomes smaller than W=0.1, the
1CH and OTH peaks continue to become narrower and
the composite peak 27°L, 3CL, - - - disappears entirely.
For W=0.01, for example, the total width of the 1CH
mode is 2[p”|=0.0518 and for the O07'H mode,
2|p””| =0.0228. Although the width in the limit W — 0
is 2|p""| — v=0.02, one must go to a very thin crystal
in order that the radiative contribution to the width of
the 1CH mode be negligible compared to v. In a calcula-
tion by Vredevoe® of the third-order anharmonic con-

8 L. Vredevoe, Phys. Rev. 140, A930 (1965).

R
g
] 1 1 k *1 1 | 1
24

28 32

tribution to the width of the peak at the transverse
optical frequency in NaCl, a comparison was made
with the measured width of the absorption peak in a
film of thickness 0.17 x at normal incidence.? Using
parameters for NaCl in Eq. (2.33) of II, we find that
the radiative width of the 1CH mode is 2|7"’| =0.014,
which is not negligible compared to the measured total
width 2|p”|=0.081. The correct damping constant to
be compared with theory is, therefore, v=2|p"|
—2]|7"| =0.067. Although Vredevoe’s theoretical calcu-
lation of ¥ was not sufficiently accurate to make this
correction important, this example shows that one must
proceed with caution when inferring the value of v
from the measured width of an absorption peak.

The change in absorption when going from 6=230°
to 6=288° is seen by comparing Figs. 2 and 4. Each low-
frequency mode for 88° is approximately at the fre-
quency of the next higher mode for 30°, and the first
mode for 88°, 1CL, does not appear at all for 30°. The
first high-frequency mode, 07H, moves to Q=2.998
(e=1) and the 1CH mode moves to a still higher fre-
quency. Since the radiative width becomes zero at
6=90°, the modes at 88° are relatively narrow.

We can compare the exact calculation of the absorp-
tion with the approximation (23) for the absorption due
to a single mode. When several modes contribute to the
absorption at a given frequency, we shall simply add the
contributions from the various modes. Although this
procedure is not quite correct, since modes of the same
parity do not contribute additively, it does not lead
to serious errors in cases for which modes of the same
parity do not overlap too much (the high-frequency
absorption for W=10, for example, consists of over-
lapping modes and cannot be treated in this way). The
circled points in Fig. 2 show the result of such a calcula-

9 R. Barnes and M. Czerny, Z. Physik 72, 447 (1931).
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tion, using Eq. (23). In the range 0.5<2<0.95 we have
taken the sum of the absorption due to the three modes
2TL, 3CL, and 4TL, while the 0TH and 1CH modes
have been used for 1.4<Q2<2.6. The absorption found
in this way near the 27°Z mode does not agree well with
the exact curve; the actual peak lies on the high-
frequency side of the virtual-mode peak, and is larger.
The agreement is much better near the 3CL mode (the
inclusion of modes higher than 47°L would have raised
the points near 2=0.95). The contribution from the
0TH mode agrees well with the true absorption, while
the superimposed 1CH absorption does not agree so
well, as can be seen from the discrepancy at 2=1.4 to
2.0. We have pointed out in Sec. II that the disagree-
ment for the wide peaks is to be expected. Conversely,
narrow absorption peaks, especially isolated ones such
as the 0T'H peak for W=0.1,0=30° or W=1.0, §=88°
are represented very accurately by Eq. (23).

It should be pointed out why the 0CL mode is missing
in Figs. 1, 2, and 3. At §=30°, this mode has a fre-
quency with real part zero and negative imaginary part.
When v is added, the magnitude of the imaginary part
decreases instead of increases, as more normal modes
do. Therefore, AQ”">0, and since 7’ <0, the absorption
is negative, according to (23). This unique result
actually is necessary, as the negative absorption in
principle cancels the positive absorption due to the
other modes at =0, leading to the required result
4—0asQ—0.10

Reflection and Transmission

Figures 5, 6, and 7 show reflection and/or transmis-
sion coefficients at §=230° with P polarization for three
thicknesses: W=10.0, 1.0, and 0.1. We have shown that
R and T cannot readily be interpreted in terms of the
virtual modes because of the interference between
modes of opposite parity.

These figures show the two thickness-independent
reflection minima at 2=2.998 for which e=1, and at
2=2.373 (marked Qp on the figures) for which the
Brewster’s angle condition at §=30° is satisfied. For
W=10.0 and 1.0 there are the “normal” reflection
minima at frequencies satisfying Sa=3%nm. These can
be associated approximately with virtual modes, accord-
ing to Eq. (26). For W=0.1, on the other hand, there is
no longer a minimum, but a broad reflection maximum
at Q1 associated with the 1CH mode, and another
maximum at Q~2.197, with the 07TH mode. Thus,
(28) is the appropriate expression for the reflection in
this case. The small drop in reflection near the top of
the broad peak at Q~1 is a “normal” effect due to the
remaining virtual modes clustered just below Q=1.

10 The complete cancellation does not actually take place if
(23) is used for the absorption due to each mode and the contribu-
tions from the different modes are added. This is due to the
approximations in (23) and the fact that the assumption of addi-
tivity is somewhat inaccurate.
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As the thickness of the slab becomes still smaller than
W=0.1, the radiative width of the reflection maximum
near wr due to the 1CH mode continues to decrease
while its frequency approaches wr, and the effect of the
other modes near wr disappears. The sizes and widths
of the reflection maxima (or transmission minima) at
wp and wz, which are the dominant features of the
optical properties of a very thin slab, are therefore
explained completely in terms of the 1CH and 0TH
modes.

There is a qualitative explanation in terms of virtual
modes for the fact that R is large in the range 1 <Q<2.2
for a thicker slab (#W=10.0 or 1.0) and is small, at least
in the higher part of this range, for the thin slab
(W=0.1). It can be shown that in a thick slab, #;>~u,,
and, therefore, from (5) and (7), Py=~P» or R~1. In
a thin slab, however, |#1|<<1 and | #s|3>1, giving P11,
Po~—1, or R~0. The equality of #; and u, for a thick
slab, in terms of the virtual-mode distribution, is a
result of the alternation of nearby modes of opposite
parity for both <1 and ©>2.2. The two kinds of
modes therefore collectively make about the same con-
tribution to #; and u,, respectively, in the region
1<Q<2.2. In a thin crystal, the contributions to #;
in this region from the tangent modes just below Q=1
and the 07H mode at @=2.2 are of opposite sign and
must almost cancel, making |#:| small. No similar
cancellation occurs for the cotangent modes because the
1CH mode, which was paired with the 07H mode in a
thick crystal, moved to a low frequency as W decreased
from 0.7 to 0.3. Therefore, in a thin slab the 1CH and
other low-frequency cotangent modes near Q=1 con-
tribute additively to u#2, making |u#2| > 1. We conclude
that the transition from large R to small R for 1<Q<2.2
as W decreases is assoclated with the passage of the
1CH mode through this region.

Crystal Slab on a Conducting Substrate

Expressions for the optical properties of an ionic
crystal slab of thickness W on a perfectly conducting
substrate can be derived by noting that the boundary
conditions E,= E,=0 at the conductor are satisfied at
the center of a slab of thickness W in free space by
virtual modes of odd parity in E, or E,. For P polariza-
tion the fields of odd parity in E, are of even parity in
E,, asin Eq. (1). Therefore from Eq. (1) we immediately
find R=|P1|? and 4=1—|P1|% Therefore since only
a single parity is involved, neither R nor 4 contains
interference between modes of opposite parity. Simi-
larly we find R=|P3|? and A=1—|Ps|?> for S
polarization.
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