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Optical Properties of an Ionic Crystal Slab*
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The theory of the optical properties of an ionic crystal slab is formulated to exhibit explicitly the relation
between the optical properties and the virtual modes of the slab. It is shown that the absorption spectrum
can be completely understood from the properties of the virtual modes. Expressions for the contribution of
a single virtual mode to absorption, reRection, and transmission are compared with exact calculations for
LiF. The total width of an absorption peak is shown to be expressible as the sum of a radiative width and a
width due to lat tice anharmonicities.

I. INTRODUCTION

&~ROM the point of view of Maxwell's equations, the
problem of the optical properties of an ionic crystal

slab is understood completely. Knowing the dielectric
constant «(to), which describes the response of the
material to a long-wave perturbing field, the calculation
of the optical properties is straightforward.

If, however, we wish to adopt the point of view that
the absorption of photons should be related to the
excitation of the normal modes of the slab, the situation
is much less clear. Using a weak-coupling approach,
we would regard phonons and photons as separate
entities coupled by an E P interaction; E is the electric
field of the photons and P is the polarization due to the
phonons. The phonons appropriate to this approach are
those obtained with the interaction with transverse
photons turned off, or, in other words, neglecting re-
tardation of the Coulomb forces. This calculation was
made by the authors' and gave phonon frequencies
os ——co (k,), where k, is the wave-vector component
parallel to the slab. If a photon with an angle of inci-
dence 0 is absorbed, creating a phonon, the energy her

and k, are conserved. The absorption frequencies would
therefore be determined by the intersection of the
phonon dispersion curves &a= co(k,) and the photon line
co=Ac or cc=k c/sine. The only intersections occur at
cop and col. for the sinusoidal modes and at two fre-
quencies between co& and col„ for the surface modes
(&or and coz are the usual transverse and longitudinal
optical frequencies in an infinite crystal).

This result is completely incorrect. Although it is
true that absorption peaks sometimes occur at co~

and coL„distinct peaks are not found between coz and
col..' Also, peaks which do occur below or~ are not
explained.

The error in the above approach is that the coupling
between phonons and photons is strong, not weak. , and
should be included from the beginning by taking account
of retardation of the Coulomb forces. The true normal

*Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 1879.

t Now at Department of Physics, University of Illinois, Urbana,
Illinois.' R. Fuchs and K. L. Kliewer, Phys. Rev. 140, A20t6 l1965l.' Peaks in this frequency range due to many-phonon processes
are unrelated to this discussion.
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modes involve mixed excitations, the polaritons, and
fall into two classes: nonradiative and radiative. '4
Since the nonradiative solutions and the optical proper-
ties are unrelated, the optical properties must be
described in terms of the radiative solutions, i.e., the
virtual modes. ' In this paper we show how such a
description can be made. We arrive at a point of view
in which it is meaningless to think of a process such as
the absorption of a photon accompanied by creation of
a phonon, since phonons and photons are bound
together into a single entity.

II. OPTICAL PROPERTIES OF A SLAB

Although the derivation of the transmission, reQec-
tion, and absorption coefficients of a slab is a standard
exercise in electromagnetic theory and appears in many
textbooks, ' a somewhat diferent derivation is pre-
sented here in order to emphasize the relation between
these properties and the virtual modes. There is an
important difference between the fields involved in an
optical experiment and the fields in the virtual modes:
Each component of the field in a virtual mode has either
even or odd parity about the center of the slab, where-
as in an optical experiment, in which light is incident
from one side of the slab only, there exists no definite
parity. Therefore, a description of the optical prop-
erties in terms of the virtual modes involves mixing
modes of diGerent parities. This leads to the possibility
of interference between modes of diferent parity and
has important consequences in the detailed interpreta-
tion of the optical properties.

P Polarization

We imagine an optical experiment performed by
letting light be incident on both sides of the slab,
choosing the phases so that the fields have definite
parity. Using the coordinate system shown in Fig. 1
of II,4 we write E(r, t) = E(s)e""*' "'i and let
p = (&o'/c' —k ')'" Then the component E,(s) outside

3 K. L. Kliewer and R. Fuchs, Phys. Rev. 144, 495 (1966).
'K. L. Kliewer and R. Fuchs, preceding paper, Phys. Rev.

150, 573 (1966), to be referred to subsequently as II.' J. A. Stratton, E/ectromagnetic Theory (McGraw-Hill Book
Company, Inc. , New York, 1941), Chap. 9.
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the slab is of the form

E,"'(s)= e 'P'*+Pie'P'* s) a
—eippz+ p e

—ippz

The value of g just outside the surface, where e = 1, is

())(s) P e iPPa— P eiPPa

gs=
E,"'(z) k, e 'P"+Pie'P"

for even parity [E,(s) =E,(—s)], and

E (2) (s) e
—ippz+P2eippz s) a

(eippz+P e ipp—z) z( a
(2)

or
(Po/k*) g

—i
P1 ~

—2i Ppa

(po/k*)+ g i
(10)

E,(s) = 2e PP*+ (Pi+Po)e'«*
= (Pi—Po)e—*Po' sg —a) (3)

for odd parity [E,(s) = —E,(—s)]. The first terms in
Eqs. (1) and (2) represent waves incident on the slab,
and the factors P'~ and P2 are complex numbers which
permit an arbitrary choice of the amplitude and phase
of the waves leaving the slab. Adding (1) and (2), we
find

The subscript 1 always designates the case in which E,
has even parity. Starting with the odd-parity case (2),
we find exa,ctly the same relation (10) between Pp
and g2 ~

The fields inside the slab are of the form

P O) (z) eaz+e —az .

L' &') (z) = —(n/ik. )(e- e—*)

which describes the asymmetric optical experiment;
waves incident on the slab from the +s direction only.
Since we are assuming P polarization (E in the plane of
incidence, the x-s plane), E„=H=H, = 0 and

for even parity, or

(2) (Z) eaz e
—az

E "'(s)= —(n/ik, )(e '+e *) (12)

1 dE, (s)
E.(z) =—

zI'k, dS

= (Po/k ) [2e 'P" (Pi+—Pp)e'Poz] s) a

= (Po/k )[P'i Po]e '«*,—z( ——a,

H„(s)= —(io/k, c)E,(s), z& a and s( —a.

Using the expression 5, pp Re(E,*H„)for the s cornpo-
nent of the Poynting vector above the slab,

for odd parity, where n= (k,o—o)oo/c')')'. gi and g& can
be expressed in terms of these fields just inside the
surface:

gi ——E,i') (a)/oE, o) (a) = (in/k. o) tanhna
= —( ip/,k.) tanpa (i3)

and

go
——E.")(a)/oE, i') (a) = (i /kn, )coothna

= (zP/k, o) cotPa, (14)

where n=iP If we .use (13) and (14) in (10), we find

s,
which is the sum of contributions from the incident and
rejected waves, and below the slab, where

Pi [(1+iui)/(1 —iu——i)]e "»a

Po= [(1+iu2)/(1 —iu2)]e "P', (15)

Sz —
~

Pi—Pp~', s(—a (6') ui ——(p/pop) tanpa,

uo ———(p/pop) cotpa .
(16)

for the transmitted wave. Therefore the transmission,
reflection and absorption coefficients are The factors e "P" in Eq. (15) can be dropped because

they cancel when calculating R, T, or A with (7). If we
write

R= z (Pi+Pp(',
zf = i—T—R=-,'(1—tP, [

)+-,'(1—[P,[o).
and

Li 1 iui 1—(—iP/Pop) ta——nPa

Lp= 1—duo = 1+(iP/Pop) cotPa,
These expressions show that 7 and R involve inter-
ference between modes of opposite parity, since P'~

and P2 are added before being squared. The absorption
2, on the other hand, contains no such interference since
P~ and P2 are squared before being added.

The boundary conditions at the surface of the
slab are taken into account by introducing the ratio
g =E,(z)/oE, (s), which is continuous across the
surface. From Eq. (1) for E,&')(s), we find, using
E,(s) = —(ik,)

—'dE, (s)/ds,

E o)(s)= (Po/k, )[e ""*+Pie'P'*] s&a. (8)

Eq. (15) becomes
Pi= (2—Li)/Li,
Po (2—L )/L o. p——(17)

With the appearance of Li and L2, Eqs. (7) and (17)
exhibit explicitly the relation between the optical
properties and the virtual-mode equations. When the
frequency is real, (7) and (17) determine the optical
properties. If we allow the frequency to become com-
plex, the equations L&——0 and L&

=0 are precisely the
virtual-mode equa, tions (2.6) and (2.8) in II.
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ur(Q', v) =br+bsQ'+b, v. (21)

From (16) we note that ur is real if q =0 and the fre-
quency is real; this implies that bj and b2 are real. Then,
using Eqs. (19) and (20) to determine bi, bs, and bs

in terms of r) and p, we can rewrite (21) as

ui= (Q' p')/n "—+i(p"—n")/n"—(22)

With the relation Li=1—iui and Eq. (22), Eq. (18)
becomes

(23)A =2'�"AQ"/((Q —p')s+ (p")s),

where AQ"= p"—p" is the shift in the imaginary part of
the virtual-mode frequency when the damping factor
y is included in the dielectric constant. The absorption
due to an individual mode is therefore a Breit-Wigner
resonance peak' centered a,t p' with half-width Ip" I.
The relation p"=ri"+hQ" shows that the total width
can be written as the sum of

I
ri" I, the radiative width

due to the flow of energy out of the slab, and
I
AQ" I, the

change in width due to the presence of damping in the
dielectric constant. As pointed out in Sec. 3 of II, the
change in width d,Q" is not a direct measure of 7;
rather, —EQ"=—,'f'(Q, g)q, where f'(Q, e) is, in general,
different from j..

' When the frequency is allowed to move into the complex plane,
we add the superscript c; thus, co' is a complex frequency and
0'=~'/rar is the corresponding dimensionless complex frequency.
The expressions for A, T, and 8 have a physical meaning, how-
ever, only for real frequency. Therefore, when we wish to restrict
the frequency in these expressions to be real, as in Kqs. (23) and
(24), we write it without the superscript, as &v or 0=a&/a&r.' J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley Bz Sons, Inc., New York, 1952), Chap. 8.

We can now examine the contribution of the indi-
vidual virtual modes to the optical absorption. Consider
the absorption A~ due to modes of even parity:

Ar=s(1 —I&tI')
= (L,+L,'—2)/I I., I'. (»)

The total absorption is A=At+As, where As, due to
modes of odd parity, can be expressed similarly in
terms of 1.2. At a fixed value of 0 we consider Li and
N~ to be functions of the normalized complex frequency
Q'=oi'/oiz and the damping constant q. s The contribu-
tion of an individual mode to A i is found by making an
expansion of Lr(Q', y) or ut(Q', y) about this mode. I.et
il=ri'+it)" designate the complex frequency of a solu-
tion of the virtual-mode equation L~=0 with no
damping in the dielectric constant (q=0), and let
p= p'+i p" designate the frequency of the corresponding
solution with damping (q&0). That is,

Li(ri, 0) = 1 iur—(ri,0) = 0 (19)

Lr(p, p) =1—iui(p, q') =0. (2o)

If 0' is near the virtual-mode frequency p, then N~ can
be represented by the linear expansion

or
R=-,'

I r,—1I'

(Q—p')'+ (aQ")s
R~

(Q—p')'+ (p")'

(25)

(26)

where Eq. (22) has been used iq going from (25) to
(26). R has a minimum at Q=p', and if q =0 (or
DQ"=0), R=O at the minimum. This result is not quite

Equation (23) is not exact, because of the approxi-
mations inherent in (21). If y is not small, terms in

Eq. (21) of higher order in q would be needecL Since
the expansion (21) about the complex frequency p is
used to represent I.& along the real frequency axis, this
procedure becomes inaccurate if p is far from the real
axis (i.e., if Ip"

I
is large). For this reason we expect

(23) to be less accurate for wide absorption peaks than
for narrow ones. Finally, it was assumed that modes of
the same parity are far enough apart that an expansion
of Lt(Q') about a single root is sufFicient. One can replace
(21) by a polynomial in Q' so that the approximation for
Li(Q') becomes zero at any desired number of roots.
This would lead to an expression for the absorption
which can reproduce the corresponding number of
peaks. However, we shall not carry out this refinement,
since we already have an exact expression for the
absorption. Particular examples of absorption peaks
and their interpretation through Eq. (23) will be
discussed later.

Structure in the transmission and reQection coeK-
cients 2" and R, given by Eq. (7), cannot be associated
with the virtual modes as readily as in the case of
absorption, because of the interference between I'i
and I' s. If we use Eqs. (15), (16), and (7), the reflection
with no damping (q = 0) can be written

(r'-1)'
R=

(P—1)'+P (cotPu+ tanPa)'

where $=pse/p. R=0 when /=1, a condition that does
not depend on thickness. )=1 in two situations: (1)
at the frequency oi=2.998oir (for LiF) at which e=1
and P=Ps ', (2) when oi(nil or ro)oir, and the angle of
incidence equals Brewster's angle. If, for Axed angle of
incidence, the frequency is chosen so that pa=-', ux
either tanpu or cotpa= ~, and R=O. Since the normal
virtual modes occur approximately at frequencies
where pa= ,'u7r, one would be tem-pted to conclude that
reQectivity minima are associated with virtual modes.
Such an identification is incomplete, since we shall see
that reQection maxima can also occur.

Suppose, for example, that 0 is near the real part of
the complex frequency of a particular virtual mode of
type I, so that l.~ is small. In the normal situation
where virtual modes of types 1 and 2 alternate, if 0
is near a virtual mode of type 1, it is about midway
between two virtual-mode frequencies of type 2, so
that L& is large. Then Ps=1 and Eq. (7) becomes
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FIG. 1. Absorption as a function
of frequency for I' polarization,
thickness 5'=10.0, and angle of
incidence 8=30'. There are scale
changes in the frequency at 0=0.6
and 1.0.
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a a requency suchcorrect because when y=0 R=O t
at pa=-,'m-, not at the virtual-mode frequency g'.

This discrepancy appears because I 2 depends on 0 and
it is therefore somewhat inaccurate to set E2 equal to
the constant —I.

am le I
There is another interesting case in whi h fw ic, or ex-

amp e, ~N2~&&1 for 0 near the real part of the fre-

quency of a virtual mode of type 1. Equation (15) then
becomes P2 1, and Eqs. (7) and (22) give

or
R=',

I
Pg+1('

R~=
(fl—p')'+ (p")'

(28)
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changes in the frequency at 0=0.6 and 1.0. The thickness 8'= 1.0
corresponds to an actual thickness I.=5.19&(10 ' crn

for the reQection due to a virtual mode of t e j..
q

'
~ ~ represents a reQection maximum of

o ype

width 2Ip"
I

centered at p', and if y=O 8=1 a
maxlI11um.

p, an i y=, =I at the

Ke therefore conclude that a given virtual mode may
e associated with either a reRection maximum or

with modes of opposite parity. From E 7
t at t e expression for T in one case is identical to that
for R in the othother, Thus, a virtual mode associated with
a maximum in E wi'", in general, give a minimum in 7'

and vice versa.
7

8 Polarization

The preceding treatment is essentially unchanged for
light polarized perpendicular to the plane of in 'dence.

e now have E JIh „,„andB, difIerent from zero and
E,=E =B =,=B„=0. The Poynting vector is 5, ~ —Re

th
E„*II,, and the 6eld ratio which is continon inuous across

e surface of slab is g=E„/H, instead of E /eE, .
We And, as before T=~ I' —I' ' E=—' I'

= —,(1—[Pg[')+2 (1—
I
Eg ') where I'g (1+imp)/——

and 2 refer, respectively, to fields E„ofeven and odd
parity. The essential change is that instead of E . 16
we have

o q.

Ig
——(p/po) tanpa,

Q2 = —(p/po) co tpG . (2&)

We can again write P~ ——(2—L~)/L~ and I'~ (2—L2)/Eg, ——
in which L~=O ann 2=0, for complex frequency, are
the virtual-mode equations (2.10) and (2.11) of II:

Lq= 1—Z(P/Po) tanPa=0,

L2 1+i(P/P p) cotPa= 0——

Therefore, the optical properties for 8 polarization
can again be associated with the virtual modes. The
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differences in optical properties for the two directions
of polarization arise froln diGerences in the virtual
modes, which are due to the missing e in the combi-
nation f'= p/po for 5 polarization, as compared with
$=p/poe for I' polarization. This means that there is
no Brewster's angle for S polarization, and effects which
were associated with this angle disappear. For example,
referring to Eq. (24), where $'=P/Po appears instead of

j, the condition $'= 1 for which R=o with no damping
can no longer occur at various frequencies at the
Brewster's angle, but occurs only at M=2.998++ (for
LiF).

The foregoing results will now be illustrated by
exact calculations of 3, T, and E. for a LiF slab of
various thicknesses. As in the virtual-mode calculations
of Paper II, we have used a frequency-independent
damping constant y=0.02. Figures 1, 2, and 3 show the
absorption A for I' polarization as a function of the
normalized frequency 0 for thicknesses S'=10.0, 1.0,
and O.I, at a fixed angle of incidence, 0=30'. In Fig. 4
the thickness is W= I.O and the angle is 0=88'. The
central point to be noted in these figures is that the
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FIG. 4. Absorption as a
function of frequency for P
polarization, thickness t V = 1.0,
and angle of incidence 8=88'.
There are scale changes in the
frequency at 0=0.6 and 1.0,
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Fro. 7. Transmission and re-
Qection as a function of frequency
for P polarization, thickness
8'=0.1, and angle of incidence
0 =30'. There is a scale change in
the frequency at 0=1.4. 04
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most of the low-frequency modes have moved close to
the transverse optical (TO) frequency, and only the
first three peaks are clearly resolved. All except two of
the high-frequency modes are off the scale at the right,
the 2TH mode occurring at 0=3.430. The widths of the
OTH and 1CH modes have increased, and the relatively
narrow OTH peak is superimposed on the very broad
1CB peak. The OTH peak is now at 0=2.268, some-
what closer to the I.O frequency 2.197 than in the case
of the thicker slab.

In Fig. 3, for 8'=0.1, only three modes 1CH, 21"L,
and OTH are shown. The sharp peak just below 0=1
is due primarily to the 2TL mode; the higher modes
3CL, 4TL, , which are not shown, contribute only
slightly to this peak and lie very close to 0=1. The
sharp peak is superimposed on a broad peak due to the
1CB mode. It has already been noted in II that this
mode behaves in a very strange manner. As the thick-
ness of the slab becomes less than 8'= 1, the 1CH mode
in Fig. 2 becomes even broader and starts to move
below the LO frequency. For 8'& 0.3 it moves below
the TO frequency and its width starts to decrease. The
OTH peak in Fig. 3, which broadened as 8" changed
from 10 to 1, has started to become narrow again, and
has moved to 0=2.199, very close to Qr, ——2.197.

As the thickness becomes smaller than 8"=0.1, the
1CB and OTD peaks continue to become narrower and
the composite peak 2TL, 3CL, . - disappears entirely.
For S'=0.01, for example, the total width of the 1CH
mode is 2l p"

l
=0.0518 and for the OTH mode,

2l p"
~

=0.0228. Although the width in the limit 8'~ 0
is 2l p"

~

~ &=0.02, one must go to a very thin crystal
in order that the radiative contribution to the width of
the 1CB' mode be negligible compared to y. In a calcula-
tion by Vredevoe' of the third-order anharmonic con-

' L. Vredevoe, Phys. Rev. 140, A930 (1965).

tribution to the width of the peak at the transverse
optical frequency in Nacl, a comparison was made
with the measured width of the absorption peak in a
film of thickness 0.17 p, at normal incidence. ' Using
parameters for NaCl in Eq. (2.33) of II, we find that
the radiative width of the 1CH mode is 2j g"

~

=0.014,
which is not negligible compared to the measured total
width 2l p"

~

=0.081. The correct damping constant to
be compared with theory is, therefore, p = 2

~

p"
~—2

~

r)"
t

=0.067. Although Vredevoe's theoretical calcu-
lation of p was not sufficiently accurate to make this
correction important, this example shows that one must
proceed with caution when inferring the value of y
from the measured width of an absorption peak.

The change in absorption when going from 8=30'
to 0=88' is seen by comparing Figs. 2 and 4. Each low-

frequency mode for 88' is approximately at the fre-

quency of the next higher mode for 30', and the first
mode for 88', 1CI., does not appear at all for 30'. The
first high-frequency mode, OTH, moves to 0=2.998
(e=1) and the 1CH mode moves to a still higher fre-

quency. Since the radiative width becomes zero at
0=90', the modes at 88' are relatively narrow.

Ke can compare the exact calculation of the absorp-
tion with the approximation (23) for the absorption due
to a single mode. When several modes contribute to the
absorption at a given frequency, we shall simply add the
contributions from the various modes. Although this
procedure is not quite correct, since modes of the same

parity do not contribute additively, it does not lead
to serious errors in cases for which modes of the same
parity do not overlap too much (the high-frequency
absorption for 8"=10, for example, consists of over-

lapping modes and cannot be treated in this way). The
circled points in Fig. 2 show the result of such a calcula-

' R. Bsrnes and M. Cserny, Z. Physik 72, 447 (1931).
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tion, using Eq. (23). In the range 0.5(Q&0.95 we have
taken the sum of the absorption due to the three modes
2TL, 3CL, and 4TL, while the OTH and 1CH modes
have been used for 1.4&Q&2.6. The absorption found
in this way near the 2TL mode does not agree well with
the exact curve; the actual peak lies on the high-
frequency side of the virtual-mode peak, and is larger.
The agreement is much better near the 3CL mode (the
inclusion of modes higher than 4TL would have raised
the points near Q=0.95). The contribution from the
OTH mode agrees well with the true absorption, while
the superimposed 1CH absorption does not agree so
well, as can be seen from the discrepancy at Q= 1.4 to
2.0. We have pointed out in Sec. II that the disagree-
ment for the wide peaks is to be expected. Conversely,
narrow absorption peaks, especially isolated ones such
as the OTH peak for W =0.1, 0=30' or 8"=1.0, 0= 88'
are represented very accurately by Eq. (23).

It should be pointed out why the OCL mode is missing
in Figs. 1, 2, and 3. At 0=30', this mode has a fre-
quency with real part zero and negative imaginary part.
When p is added, the magnitude of the imaginary part
decreases instead of increases, as more normal modes
do. Therefore, AQ") 0, and since g"&0, the absorption
is negative, according to (23). This unique result
actually is necessary, as the negative absorption in
principle cancels the positive absorption due to the
other modes at Q=O, leading to the required result
A ~0 as Q~O. '0

Re8ection and Transmission

Figures 5, 6, and 7 show reflection and/or transmis-
sion coe%cients at 0=30' with I' polarization for three
thicknesses: 8'= 10.0, 1.0, and 0.1.We have shown that
R and T cannot readily be interpreted in terms of the
virtual modes because of the interference between
modes of opposite parity.

These figures show the two thickness-independent
reflection minima at Q=2.998 for which &=1, and at
Q=2.373 (marked Qii on the figures) for which the
Brewster's angle condition at 0=30' is satisfied. For
K=10.0 and 1.0 there are the "normal" reflection
minima at frequencies satisfying Pa=-, ri7r. These can
be associated approximately with virtual modes, accord-
ing to Eq. (26). For W= 0.1, on the other hand, there is
no longer a minimum, but a broad reflection maximum
at Q~1 associated with the 1CH mode, and another
maximum at Q~2.197, with the OTH mode. Thus,
(28) is the appropriate expression for the reflection in
this case. The small drop in reQection near the top of
the broad peak at Q 1 is a "normal" effect due to the
remaining virtual modes clustered just below Q=1.

' The complete cancellation does not actually take place if
(23) is used for the absorption due to each mode and the contribu-
tions from the different modes are added. This is due to the
approximations in (23) and the fact that the assumption of addi-
tivity is somewhat inaccurate.

As the thickness of the slab becomes still smaller th3n
%=0.1, the radiative width of the reQection maximum
near coz due to the 1'' mode continues to decrease
while its frequency approaches co&, and the effect of the
other modes near cor disappears. The sizes and widths
of the reAection maxima (or transmission minima) a, t
coz and coz, , which are the dominant features of the
optical properties of a very thin slab, are therefore
explained completely in terms of the 1CB and OTH
modes.

There is a qualitative explanation in terms of virtual
modes for the fact that I is large in the range 1(Q&2.2
for a thicker slab (W= 10.0 or 1.0) and is small, at least
in the higher part of this range, for the thin slab
(W=0.1). It can be shown that in a thick slab, ui us,
and, therefore, from (5) and (7), Pi I's or R 1. In
a thin slab, however,

I
+i

I
&(1 and

I
+s

I
»1, giving ~r

I'2 —1, or R 0. The equality of u~ and u2 for a thick
slab, in terms of the virtual-mode distribution, is a
result of the alternation of nearby modes of opposite
parity for both Q&1 and Q)2,2. The two kinds of
modes therefore collectively make about the same con-
tribution to u& and u2, respectively, - in the region
1(Q&2.2. In a thin crystal, the contributions to u&

in this region from the tangent modes just below Q=1
and the OTH mode at Q=2.2 are of opposite sign and
must almost cancel, making ~Nr~ small. No similar
cancellation occurs for the cotangent modes because the
1CH mode, which was paired with the OTH mode in a
thick crystal, moved to a low frequency as 8"decreased
from 0.7 to 0.3. Therefore, in a thin slab the 1CHand
other low-frequency cotangent modes near Q=1 con-
tribute additively to us, making

~
us~ )1. We conclude

that the transition from large R to small E. for 1&Q(2.2
as W decreases is associated with the passage of the
1CII mode through this region.

Crystal Slab om a Conducting Substrate

Expressions for the optical properties of an ionic
crystal slab of thickness ~W on a perfectly conducting
substrate can be derived by noting that the boundary
conditions E,=E„=0 at the conductor are satisfied at
the center of a slab of thickness S' in free space by
virtual modes of odd parity in 8, or 8„.For I' polariza-
tion the fields of odd parity in E, are of even parity in
Z„asin Eq. (1).Therefore from Eq. (1) we immediately
find R= ~PiI' and 2=1—~Pi~s. Therefore since only
a single parity is involved, neither E. nor A contains
interference between mades of opposite parity. Simi-
1«ly w«nd &=[2's~' and ~=1—l&s~'
polarization.

ACKNOWI EDGMENT

T'he authors wish to acknowledge stimulating dis-
cussion with and helpful comments from Professor
David I.ynch.


