
P H VS I CAT R EVE E% VOI UME 150, NUMBER 2 14 OCTO B ER 1966

Friedel Sum Rule for Anderson's Model of Localized
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The Friedel sum rule is derived for Anderson s model of localized impurity states in metals. The result is
valid even when all many-body correlations are taken into account.

I. INTRODUCTION

ECENTLY, Anderson's model' for localized im-

purity states in metals has been a subject of
considerable investigation. plein and Heeger' ' have
used Anderson's Hartree-Fock solution to interpret
their data on specific heat and susceptibility. In addi-

tion, they have shown that these data combined with
measurements of the residual resistivity can be inter-
preted in a manner consistent with the Friedel sum
rule. Even within the Hartree-Fock approximation,
however, the Friedel sum rule for Anderson's model
has been given only partial justification, ' and some
have expressed doubt as to its validity. Moreover,
recent theoretical investigations' ' suggest that the
Hartree-Fock approximation is not even qualitatively
correct for certain regions of interest. In the absence
of reliable solutions, one would like to have confidence
in the validity of as many exact sum rules as possible.

Here we show that the Friedel sum rule is an exact
consequence of Anderson's Hamiltonian for the case
where there is no local moment. Our proof is similar in

many ways to that given by Langer and Ambegaokar'
for potential scattering in an interacting Fermi liquid. "
In particular, our proof makes use of the properties of
the exact perturbation expansion5 of the Green's func-
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tion in terms of the d-d potential U. We do not regard
this as a serious drawback, however, since so long as
there is no local moment, one expects no instabilities
in the perturbation theory.

In Sec. II we derive the Low equation" for the T
matrix, and relate it to the d-electron Green's function.
From the unitarity condition we derive an exact in-
equality that the self-energy must satisfy. In Sec. III,
we use a Luttinger-Ward" identity to calculate the
number of electrons displaced by the impurity. This
relation is quite similar to the approximate (Hartree-
Fock) formula used by Klein and Heeger, ' and may be
useful for the interpretation of experimental results.
Finally, we combine this with the results of Sec. II,
and thus derive the Friedel sum rule.

II. THE LOW EQUATION

The Anderson Hamiltonian for a single d orbital is

H= P ekCkr Ckr+E Vk (Ckr Cdr+Cdr Ckr)

+Q (edged. +s Urtd tsd .). (1)

We wish to construct the S-matrix elements" for the
elastic scattering of an electron or hole off the localized
impurity. If I@k,+) represent the exact incoming and
outgoing states, the S matrix is

Sk'r';k (+rk'r' I +kr ) ~

First consider the case of electron scattering, so that
the single-particle energies corresponding to k and k'
are greater than the Fermi energy p. Then the in and
out states are simply

EP+ ek —H Asti

where r) is a positive infinitesimal. Here I+p) is the
ground state of the system without the extra electron
to be scattered, and satisfies H

I +p) =Ep
I 4p). We con-

sider only the case where there is no magnetic moment,

"Recently, a similar technique has been used by H. Suhl,
Phys. Rev. 138, A515 (1965) in a related problem."J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).

"For a discussion of the scattering theory involved here, see
W. Brenig and R. Haag, Fortschr. Physik 7, 183 (1959) LEnglish
transl. : in Quantum Scattering Theory, edited by Mark Ross
(Indiana University Press, Bloomington, Indiana, 1963)].
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so that ~+p) may be specified unambiguously, and so
that spin-Qip scattering cannot occur. Henceforth,
then, we suppress all spin indices.

The states ~%'k+) satisfy H~+k+)= (Ep+ok) ~+k~),
and are normalized for an infinite system if ~%'o) is.
They may be written as

Hence, the T matrix, defined on the energy shell by

SkIk= 5kk' 2zl z6(ok ok') Tk'k
&

is given by

2'k'= Vk(+k-~c~'~+o)

(6)

+o Cd Cd +o
Ep+ ck —H+ zzt

yv, (e,~c,',t[e,). (7)

Finally, because the spectrum of B, when acting on an
31-1 particle state, goes down only to Eo—p we may
write

0=
Zg

Ck )+O)
Ep—gkl —II Z'g

=c, I+o)—
Eo—Ek~ —B—Zg

so that (7) becomes

1
Tk'k= ~k'~k +p cd Cd 4"p

ok+i rt+ Eo II—
+(4' cJ

1
c~ @p . (9)

ok'+ z g Ep+ 'H—

A similar result may be derived for hole scattering when

okay.
The Low Eq. (9) takes on an extremely simple form

if we note that the quantity in curly brackets is just
the Green's function' for the d orbital,

dco A (co)
G(s) =

oo 2' S—GO

(10)

where the spectral weight function A(co) is de6ned in
the usual way by

A(cp) = dt e' '(epic&(t)cd(0)+cqt(0)c~(t) I+o) (»)
'4 Qur dednitions and notation for Green's functions and related

quantities parallel those of L. P. Kadanoff and G. Baym, Quantum
Statistical Mechamcs (W. A. Benjamin and Company, Inc., Net
York, 1962).

~

ok+) = ck'
~
ep)+ Vkcg'

~
ep), (4)

Eo+ ok —H+zrt
so that

)
ok+) —

) ek—
)= 2zrz7—i(Eo+ok B)V—kcg'

~
+o). (5)

r—'(k) = —2 ImTkk ——
~

Vk ('A (ok) . (15)

This agrees with a result first derived in another way
by Zuck. ermann, "and used by Klein and Heeger. ' On
the other hand, the transition rate due to elastic scat-
tering is

r. '(k)=2~ gk I2"k kl'~(&k —ck)
=

( Vg)' A(ck)L2~+k ( Vk )9(ok—ok)/
r(„)3. (16)

Since r '& r, ' by unitarity, a comparison of (15) and
(16) shows that

1(.)&2 Z' I V'I'~("-"). (17)

In general, the final state can consist of an electron
plus any number of electron-hole pairs, so that (17)
does not help us much. However, as ~k approaches the
Fermi level, the phase space for all but elastic scattering
vanishes, so that we may expect that

~(.)=2-Z'
I
V. I ~(.-")

III. THE FRIEDEL SUM RULE

Here we prove that the sum of the phase shifts is
equal to m times the number of electrons displaced by
the impurity. In the case of a single d orbital, of course,
we expect only one phase shift for each spin direction.
We begin by calculating the number of displaced elec-
trons, among which are included not only the d elec-
trons, but also some of the conduction electrons. Thus
we need the conduction-electron Green's function Gk.
It follows immediately from the equations of motion
thatl6

Gk(s) = + G(s).
s—ok (s—ck)'

(19)

It will be convenient to divide the self-energy Z(s)
(associated with G, not Gk) into two parts:

Z(s) =Z..(s)+Z,.(s),
&"(s)=2k I Vkl'/(s —ok). (20)

'5 M. J. Zuckermann, Phys. Rev. 140, A899 {1965).
~6 See Ref. 1. Note that the derivation depends in no vray om

the use of the Hartree-Fock approximation.

Thus Eq. (9) becomes (for ok ——ok)

Tk k= Vk. VkG(ck+irt). (12)

For subsequent analysis, we define the self-energy Z(si)
according to

G-'(s) = s—od —Z (s),
and its imaginary part

I'(cp) = —2 ImZ (co+ irt) = 2 ImZ (co i—zt) . (14)

According to the optical theorem, the total transition
rate for an electron of momentum k above the Fermi
surface to all other energy-conserving final states is
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Then the number of displaced electrons (of both spins)
may be written simply as Lusing (19) and the second
line of (20)]

2
g= ——Im (21)

To proceed further we must use some specific properties
of the self-energy. As pointed out by Schrieffer and
Mattis, ' the expansion of Zea in terms of U and G(s')
is formally identical to the expansion of the total self-

energy of an electron in an interacting Fermi liquid,
except that there are no momentum sums. This means
that various identities proved for the Fermi liquid"
must hold here as well. In particular, we have

~( )=(~/2)&, (27)

which is the desired result.
Next we mention that there is no difFiculty in extend-

ing the above results to the more realistic case of Ave d
orbitals. Then, there is an s-d mixing potential Vk„ for
each orbital rs, and the d Green's function 6 is a 5)&5
matrix. However, it follows from group-theoretical
considerations' that the orbitals may be chosen so that
G is diagonal, and so that

P V,. V,„.=~„„,P ~
V„„~z

k
(28)

We pick the branch of the logarithm as before, so that
0&8&sr. Comparison of (24) and (26) gives

ImZaa (tt~ist) =0,

in agreement with (18), and also

o+'~ BZ«(s)
Im dz G(s) =0.

(22)

(23) (29)
n-1

Use of (28) allows one to diagonalize the 5 matrix as
before. There are now 5 phase shifts (for a given energy
and spin direction), and (27) is replaced by

P b. (tt) =-', m.X.

Combining (23) and (21) gives

2
37=—Irn

p+ &rt

ds—lnG(s)
Bs

2
=—PIm lnG(tt+ ist) —sr), (24)

2g(„)=in(& —r(t )G(t+ig) j
=»t.G( +i~)G-'(t —i~» (26)

"See, for example, A. A. Abrikosov, L. P. Gorkov, and I. E.
Dzyaloshinski, hlethods of Qgantttrn Field Theory in Statistical
I'hysics (Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963),
pp. 169ff.

where we have chosen the cut along the positive real
axis with rgaG(~+i )=rt2w. Notice that (24) is for-
mally identical to the approximate Hartree-Fock ex-

pression used by Klein and Heeger. One can in addition
use the techniques of Fermi-liquid theory to calculate
the speci6c heat. '~ Unfortunately, the specific heat
contains an additional unknown parameter, the wave-
function renormalization constant L1—(ct/canto)Zeeg„

We now go back and compute the phase shifts from
Eqs. (6) and (12). Because the T matrix is factorizable
when on the energy shell, the S matrix is trivially
diagonalizable. S—1 has but a single nonzero eigenvalue

exp2ib(et, ) 1= 2—sri Pt,—~
Vt, .~'tt'(et, —et, )

XG(e„+irt). (25)

The eigenvector (angular function) associated with

(25) is just Vt, evaluated on the energy shell. Therefore,

we find, using (13), (14), (20), a,nd (22) that

Some of the 8 will of course be degenerate, as required
by crystalline symmetry.

We conclude by mentioning that if there is a local
moment, our result still holds if the perturbation ex-
pansion in U remains valid. In this case Eq. (22) im-
plies by unitarity that spin-fIip scattering does not
occur. Thus we still have a one-channel problem, and
the proof goes through as before. That spin-fIip scat-
tering cannot occur can be seen more simply from the
following argument. Under local moment conditions,
the Hamiltonian (1) contains an effective antiferro-
magnetic s-d interaction. "Hence, the local moment is
smaller than the moment of a free electron, so that
spin-fhp scattering is ruled out by a conservation law. "
We should point out however, that the existence of a
Friedel sum rule at zero temperature could be of little
use in practice in the case where there is a local moment.
It is well known that an antiferromagnetic s-d coupling
causes the scattering cross section to be a rapidly
varying function of energy near the Fermi energy. '
Hence, the resistivity at a small but hnite temperature
will be considerably diferent from that at zero
temperature.
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