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Expectation values of » and of 72 have been computed for a range of effective quantum numbers up to 8.5
by use of Coulomb-approximation wave functions. The results show that the hydrogenic formulas for these
expectation values are accurate for noninteger quantum numbers » to better than 19, for all y—1>1.0, and
much greater accuracy is attained for larger ». The sum rule wherein the squares of the dipole radial transition
integrals sum to {#2) can therefore be used with the hydrogenic formula for the latter quantity as an excellent
approximation for all but small ». A number of radial dipole integrals for calculating transition probabilities
are obtained for Or, Or1, O, and O1v by use of the Hartree-Hartree-Swirles wave functions for the lower
state and Coulomb-approximation functions for the excited states. The results are compared with analytic
Hartree-Fock and Hartree-Fock-Slater values, and with the results of Stewart and Rotenberg. Some effects
of configuration interaction are noted in the case of Orr. Particular attention is paid to the contribution to
the dipole integrals from large distances which present calculations omit or evaluate inaccurately. To
demonstrate this problem, a few dipole integrals for O1, O1r, and N1 are computed more accurately.

1. INTRODUCTION

N a now very well-known paper, Bates and Dam-
gaard! tabulated, in effect, values of the radial
transition matrix element, or dipole integral,

1 0
-_— f R:Rdr,
=1y Jq

where /5 is the greater of the angular momenta be-
longing to the initial and final states with radial wave
functions R; and Ry, respectively. The asymptotic form
of bound-state Coulomb wave functions was employed
on the basis of the idea that, for large numbers or
classes of transitions of many atoms, the contribution
to the dipole integral from the region of space near the
origin, where this form is invalid, is small. They showed
that, for many states, the one-electron potential reaches
its asymptotic Coulombic form before the region is
reached which gives the dominant contribution to the
dipole integral. This approximation is particularly good
for nonequivalent electrons, and for excited states where
the tendency for the contribution to the dipole integral
to arise from large distances is enhanced.

The conjecture by Bates and Damgaard, wherein they
established a normalization for their Coulomb wave
functions, has been at least partially resolved by Foldy?
and by Seaton.® Foldy employed effective-range theory
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1 D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London
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(later extended by Norman* and by Moiseiwitsch®) to
derive the normalization correction for /=0 states, and
Seaton, using analyticity properties of the wave func-
tion as a function of the energy, gave the same result
without the restriction on angular momentum.

The considerations of Seaton and Foldy are still
limited to the assumption of separability and the
existence of a single-particle potential which is inde-
pendent of energy. If a one-electron potential is as-
sumed but allowed to depend on energy, then it can be
shown® that the normalization correction ¢(»)=1
+0u/dv given by Seaton and Foldy is modified to

become
do(er) | r) Lo

50)=50) / (1+ / RS

where v(e,7) is the one-electron potential and » is the
effective quantum number (C2/¢€)'/2, where € is the one-
electron energy parameter and C is the residual charge
on the ionic core. The quantum defect p is given by
n—yv where n is the appropriate integer. This type of
correction could be particularly important for equiva-
lent-electron states, which would involve considerable
rearrangement of the remaining equivalent electrons if
one of them is promoted to an inequivalent state. This
rearrangement, in turn, would lead effectively to an
energy-dependent potential. In any event, the correc-

4 G. E. Norman, Opt. i Spektroskopiya 12)%33 (1962) [Enghsh

transl Opt. Spectry. (USSR) 12, 183 (19
( 5B. L. Moiseiwitsch, Proc. Phys Soc. (London) 79, 1166
1962).

6 B. H. Armstrong, unpublished. See P. S. Kelly, J. Sokoloff, and
B. H. Armstrong, Air Force Weapons Laboratory (Klrtland Air
Force Base, New Mexico) report No. TR 64-172, Part III (1965)
(unpublished).
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tion to the hydrogenic normalization constant used by
Bates and Damgaard is small for high states, with
which we shall be primarily concerned in this paper.

2. MEAN POWERS OF r

In addition to being useful in determining transition
integrals, the Coulomb approximation (CA) can, of
course, be used to determine mean powers of the radius 7
defined as

0

In a footnote to their paper (p. 111 of Ref. 1), Bates and
Damgaard state that it is sufficient to employ the
effective quantum number » in the hydrogenic formula
for (%):

(a2 (2/2CH[ 52 +1-31(1+1)], 4)

where the subscript CA has been appended to denote
that this formula is expected to approximately repro-
duce the CA value. Although it was not explicitly stated
in their paper, one can surmise that this statement was
made in realization of the high degree of insensitivity of
{r®) to the details of the wave function. This is to be
expected since there is no cancellation in this integral as
there is in the transition integral, Eq. (1), and since (%)
is less dependent yet than (r) or the transition integral
on the contribution from the region of space near the
origin. This behavior is amply borne out in atomic
diamagnetic-susceptibility calculations, where one finds
that even screening-constant determinations of R(r)
yield rather good results.” The explicit motivation for
the Bates-Damgaard footnote was the fact that (#?) can
be used in approximate electron-collision cross section
determinations as might be needed, e.g., for line-
broadening estimates in astrophysical studies. This
quantity is still of interest in approximate line-broaden-
ing calculations based on the more modern Baranger®
results for the impact broadening width, since the sum
rule for the transition integrals given by Bethe and
Salpeter,?

E Ra™ P =S Rot =, ()

can be used to approximately evaluate the Baranger
formulas [Eqs. (113) and (128) of Ref. 8]. This ap-
proximate evaluation is useful for high states in line-
merging studies,’® but to our knowledge, the quanti-
tative accuracy of the hydrogenic expression for (r%)
[i.e., Eq. (4)] has not been established for nonhydro-

7 Compare, e.g., E. C. Baughan, Trans. Faraday Soc. 59, 2451
(1963).

8 M. Baranger, in Afomic and Molecular Processes, edited by
D. R. Bates (Academic Press Inc., New York, 1962).

9 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Academic Press Inc., New York, 1957).

10 B, H. Armstrong, J. Quant. Spectry. Radiative Transfer 4, 207
(1964).
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genic atoms. Although (7?) is probably the most useful
of the mean powers of 7, other powers are occasionally
of some importance. For example, () is sometimes used
in the critical evaluation of variationally determined
wave functions.! It is also of interest in approximate
Stark-effect calculations as in the line-merging theory of
Inglis and Teller.** If applied to other than hydrogen,
the Inglis-Teller relation implies the use of (r)=2n%a, for
nonintegral values of the quantum number n. It is
therefore of interest to determine the accuracy of this
approximation. In addition, () may be of value in
other contexts such as approximate evaluation of ex-
pectation values of power-series expansions of functions
of 7.

Besides (%) and {r), we have also calculated values of
the quasinormalization integral {#°) since this latter
quantity shows the “over-all”’ normalization of the CA
wave function as used by Bates and Damgaard (viz.,
without the Seaton-Foldy correction) and since it may
be of value in further studies of the normalization of CA
wave functions. The definitions and method of compu-
tation of these quantities follow.

3. COULOMB-APPROXIMATION
CALCULATION OF (r*)

The radial wave function in the Coulomb approxima-
tion is given by*

R(T) = K(V,l)i’”/,,’ l+1/2(2C7’/V) , (6)

where »=C/4/¢ is the effective quantum number, C is
the residual ionic charge, / is the orbital angular mo-
mentum, and e is the one-electron energy parameter,
taken to be the ionization potential for inequivalent
electrons. The normalization factor K (»,0) is taken as in
the original work of Bates and Damgaard to be for all »
the hydrogenic formula, which is

C1/2
(A (I DT (=D ) 2

K(vi)= Q)

For noninteger », a correction is necessary as previously
discussed ; however, such a correction is not included
here. For the computation of W,,1,1/2(p), we have used
the asymptotic representation

bt(V,l)

t

2 v to
W,,l+l,2<p>=(”) e—w[1+>: rol, ®
t=1

v °

where

b= G/2)00+ ) — =) —t+ 1) b, (9)

and o= 1. We have used this asymptotic form of W for

all values of p since even the correct behavior of W has

11 C, L. Pekeris, Phys. Rev. 115, 1216 (1959).
2D, R. Inglis and E. Teller, Astrophys. J. 90, 439 (1939).
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no significance for small p.?® The formula

wor-son () 1221

then defines our CA wave function. We truncate the
series in Eq. (10) at the minimum term (for each value
of p). This will cause a small difference between our
results and results obtained by strict use of the Bates-
Damgaard formulas. The use of this asymptotic ex-
pansion for W rather than the true Whittaker function
may also have a significant effect on the normalization,
particularly where the CA has only marginal validity,
1.e., where the non-Coulombic part of the potential has a
long tail. In the original work of Bates and Damgaard,
Eq. (10) was used to compute analytically a doubly
infinite series for the dipole integral o. This double
series for ¢ was then truncated at a judiciously chosen
term (independent of 7), rather than the series for the
wave function itself, as we have done here.

Our calculations were programmed in Fortran II
and carried out on an IBM 7090 digital computer. The
computations were organized to maintain an accuracy
of somewhat better than 1 part in 10° in the asymptotic
representation of the Whittaker function (and the
gamma functions involved). For small effective quantum
number our results for the Whittaker function can be
readily compared with the results tabulated by Curtis.*
For radii 7 of two and four Bohr radii, effective quantum
number »=1.58114, residual charge C=2 (x=Cr=4
and 8), =1, the results compare as follows for the
Whittaker function W, 32(2Cr/v):

Program, Curtis,
r asymptotic series exact function
2.0 1.30852 1.30851
4.0 0.275944 0.275943

The integrations yielding the mean second power of 7,
and the mean first power for large », were adjusted to
maintain an accuracy of just better than 1 part in 10°
(in view of the accuracy of the Whittaker function).
Thus, the total error from this and the squared Whittaker
function should not exceed 2 to 3 parts in 105, and the
tabular entries, which have been rounded to four figures,
should be accurate to all figures with perhaps an
occasional error of one unit in the last place. In the case
of (r*) for small », and for the quantity (»°), this accuracy
was difficult to maintain without excessive computation.
Since it is unlikely that CA results for the small » values
of these quantities are of sufficient physical significance
to warrant this effort, the accuracy was lowered here.

13 For the standard CA to be meaningful, the results must
ultlmately become independent, or nearly independent, of the
behavior of the wave function for small values of the radial
variable. Therefore, the precise prescription for the wave function
at small p is arbitrary.

1 A. R. Curtis, Coulomb Wave Functions (Royal Society Mathe-
matical Tables) (Cambridge University Press, Cambridge, Eng-
land, 1964), Vol. 2.
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TasBLE 1. Representative values of the Coulomb-approximation
pseudonormalization integral (), defined by Eq. (11) of the text,
for various values of orbital angular momentum / and effective
quantum number ».

%
= 0 1 2

v—I

1.2 0.995 0.969 0.982
14 0.989 0.975 1.024
1.6 0.989 0.997 1.057
1.8 0.995 1.010 1.045
2.2 0.999 0.989 0.984
6.5 0.9962 0.9964 0.995

The reason for the problem is as follows: Near =0, the
series on the right-hand side of Eq. (10), which modu-
lates the otherwise smoothly varying exponential be-
havior of the W function, does not contribute, viz., it is
unity. At some relatively small value of 7, it discon-
tinuously begins to contribute (on account of our
truncation procedure) with a rather large value, and
then rapidly settles down to a slowly varying behavior.
It is this discontinuous effect at small » that makes an
accurate calculation of (%) and (!) for small » difficult
and not too meaningful.

The asymptotic formula for R(r), given by Egs. (9)
and (10) reduces to the expression for the hydrogen
eigenfunctions when the quantum number » is an
integer. Hence, all values of (#")ca/{*")nya are unity for
integral ». Since this affords a convenient check on most
of the calculational procedures, a number of such {r”)
values were computed. The errors in the ratios to
hydrogenic values were typically one to two digits in the
seventh figure.

The effects of truncating the asymptotic series for the
Whittaker function as previously described should be
borne in mind. For small p, the value for W, ;12
obtained by this procedure will be quite different from
that of the true Whittaker function. The singularity at
p=0 present in the true Whittaker function (for non-
integer ») is effectively removed by this truncation
procedure, so that the truncated function is similar to
a real physical wave function, behaving properly at the
origin even though its values for small 7 are not mean-
ingful. The results of Table I indicate that it is even
rather well normalized in the “over-all” sense, viz.,
when the spurious inner region is included. The inaccu-
rate behavior of the truncated wave function a short
distance away from the origin shows up somewhat in the
quasinormalization integral

<r°)=K2(v,l)f W, 1ey22(2Cr/v)ridr
0

since there is no power of 7 to decrease the integrand at
small 7 and increase it at large 7 in the fashion required
for the validity of what is usually meant by the “Cou-
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TaBLE II. Representative values of the mean first power of 7 in
the Coulomb approximation for various values of orbital angular
momentum / and effective quantum number .

= .<r.1> vt o e eeaon 4o 0 e 2.
= 0 1 2

v—I

0.8 1.0027 1.0061 1.049
1.2 1.0003 0.9959 0.991
14 1.0004 0.9958 0.997
1.6 1.0001 0.9980 1.004
1.8 1.0000 1.0000 1. 0045
6.5 0.9999 0.9999 0.9998

lomb approximation.” The values of the mean first
power of » when applied to a specific atomic state should
have a similar validity to the usual CA for dipole
transition integrals although. improved somewhat due
to lack of cancellation. The mean second power in the
CA as implied previously should have much greater
accuracy, both on account of the lack of cancellation
and on account of the additional power of 7. Explicitly,
the quantities calculated are

(rea KX D) S5 r LW,y Pridr

, (1
(r")nya (r")nya
where (#")nyq is given by
pya=1,
(Mnya=3[3*—10+1)], (12)

*nya= %V2[5V2+l— 30+1)].

Explicit tabulations of these quantities have been
carried out up to » equal to 8.5. The results are con-
tained in an unpublished report'® (which may be
obtained upon request from the author), and we merely
summarize them here, since the value of the numbers
presented lies not so much in their usefulness per se, but
in the fact that they provide direct numerical evidence
of the accuracy of the hydrogenic formulas. Table I
gives a few values for (/%) for /=0, 1, 2 which are
sufficient to indicate the order-of-magnitude of the
departures from unity. Between the omitted »—/ values
of 2.2 and 6.5, and beyond 6.5, the results converge
toward unity with slow oscillations. Table II contains
representative values of (1) ; as might be expected, these
are much closer to unity. This quantity also shows slow
oscillations as » increases, but with much reduced
amplitude. Finally, Table III shows the behavior of
(r*; this quantity is, of course, much closer yet to unity.
For /=0 and 1, all values beyond those shown (viz.,
v—1>1.8) are unity to four figures. For I=2, (%
becomes equal to unity (to 4 figures) at »—7=2.8 and
remains so thereafter.

16 These may be obtained from the author, B. H. Armstrong,
IBM Scientific Center (Palo Alto, California) Technical Report,
(1966) (unpublished).
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The close agreement between the “hydrogenic values”
of (r) and (r?) as given by Eq. (12), and the CA values,
which our results demonstrate, indicates that for most
practical purposes it will be quite adequate to utilize
(for these and any higher powers of ) the hydrogenic
formulas with noninteger values of v for excited states
of atoms other than hydrogen. (In spite of the accuracy
of the hydrogenic formulas towards surprisingly low
values of », the results will not be useful unless the
normalization correction {=1+49u/d» is unimportant.
This may not be the case for low-lying states.) Our
calculations then provide a measure of the error in-
volved over a range of » values that should cover most
cases of practical interest. It is evident that the sum rule
given in Eq. (5), valid for any atom having a single
transition electron,® can now be extended to

2 (Ru "“‘)2—2(13 )

n’

2[5+ 1—310+1)]  (13)

with a high degree of accuracy for states # for which the
CA is valid.

4. DIPOLE TRANSITION INTEGRALS
FOR OXYGENJIONS

As noted above, the CA has proved to be an effective
and reliable method for the calculation of dipole radial
integrals [as defined by Eq. (1)] for certain classes of
transitions.' However, for transitions involving equiv-
alent electrons in low-lying or ground terms there is an
ambiguity in the choice of energy parameter and also a
substantial correction to the normalization becomes
necessary.® Although one can argue that the proper
energy parameter should be the ionization potential to
the appropriate parent term,® such an argument is not
of much practical value. The reason is that it turns out
that such transitions substantially involve the spatial
region where the potential is non-Coulombic and there-
fore the conditions necessary for the validity of the CA
are not met. At least this is the case for the 2p¢ states
of oxygen and nitrogen and it may be true in general.
Also, the normalization correction for the ground or

TasLE III. Representative values of the mean second power of
7 in the Coulomb-approximation for various values of orbital
angular momentum / and effective quantum number ».

)
N 0 1 2

v—I

0.8 0.9931 0.9994 1.0064
12 . 0.9999 0.9999 0.9981
1.4 0.9999 0.9998 0.9987
1.6 1.0000 0.9998 0.9998
1.8 1.0000 1.0000

1.0003. .

16 See, e.g., M. D. Kunisz, Acta Phys. Polon. 22, 99 (1962).
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TABLEIV. Ru.r (r)/Rca(r), the ratio of H-F and CA wave functions for /=1. The species and state are designated at the head of each
column as is the effective quantum number » determined from the H-F orbital energy. The CA wave functions have been computed from

Eq. (10) and in addition the normalization correction factor ¢ () = (v—1) (v4-2)/»(v+1) has been used.

Or® Or® Or* . O Orr®

: Orr® (0)iL Nie N1t Nie O
200GP)  2pACP)  294(RS) 2p2(4S) 200(4S)  2p3(2P) 28(2P)  2p%(4S) 203(8S)  2p*(P)  2p*CP)
\v\= 0.8898 0.8897 0.9490 1.228 1.228 1.296 1.296 0.9424 0.9387 1.031 1.483
r
0.2 1.18 1.100 1.32 1.054 0.9847 1.186 1.185 0.971 0.9670 1.17 0.4569
0.4 0.299 0.2988 0.293 0.3731 0.3731 0.3782 0.3783 0.236 0.2372 0.236 0.4733
0.6 0.551 0.5501 0.520 0.6043 0.6044 0.5968 0.5970 0.453 0.4555 0.427 0.6630
0.8 0.742 0.7418 0.692 0.7627 0.7631 0.7322 0.7319 0.641 0.6451 0.593 0.7809
1.0 0.880 0.8811 0.812 0.8709 0.8712 0.8161 0.8158 0.793 0.7980 0.719 0.8536
1.2 0.984 0.9856 0.895 0.9469 0.9465 0.8698 0.8702 0.914 0.9203 0.812 0.9006
1.4 1.06 1.066 0.949 1.000 0.9994 0.8976 0.9051 1.01 0.9768 0.879 0.930
1.6 1.12 1.115 0.989 1.039 1.038 0.9277 0.9287 1.08 1.088 0.926 0.9564
1.8 1.16 1.155 1.02 1.068 1.068 0.9450 0.9452 1.14 1.144 0.960 0.9742
2.0 1.19 1.187 1.04 1.090 1.091 0.9582 0.9572 1.19 1.190 0.987 0.9879
2.2 1.21 1.213 1.05 1.107 1.110 0.9685 0.9659 1.22 1.227 1.01 0.9986
2.4 1.23 1.234 1.06 1.121 1.124 0.9764 09728 1.25 1.258 1.02 1.007
2.6 1.25 1.252 1.07 1.132 1.135 0.9821 0.9785 1.27 1.285 1.03 1.012
2.8 1.26 1.266 1.08 1.141 1.143 0.9855 0.9825 1.29 1.307 1.04 1.015
3.0 1.27 1.277 1.09 1.148 1.147 0.9867 0.9860 1.31 1.326 1.05 1.017
3.2 1.28 1.284 1.09 1.15 1.148 0.9856 0.9888 1.32 1.341 1.05 1.016
3.4 1.29 1.288 1.09 1.16 1.146 0.9823 0.991 1.34 1.353 1.06 1.013
3.6 1.29 1.288 1.10 1.16 1.142 0.9769 0.992 1.35 1.362 1.06 1.009
38 1.3 1.285 1.1 1.17 1.135 0.9696 0.995 1.36 1.367 1.07 1.002
4.0 1.3 1.278 1.1 1.17 1.125 0.9605 0.997 1.36 1.370 1.07 0.9954
4.5 1.3 1.246 1.1 1.18 1.092 0.9303 0.996 1.4 1.362 1.1 0.9705
5.0 1.3 1.199 1.1 1.2 1.048 0.8924 0.999 1.4 1.338 1.1 0.9400
5.5 1.3 1.138 1.1 1.2 0.9982 0.8487 1.0 1.4 1.299 1.1 0.9087
6.0 1.3 1.069 1.1 1.2 0.9422 0.8009 1.0 14 1.249 1.0 0.8623
6.5 1 0.9949 1 1.3 0.8791 0.7510 1.0 14 1.191 1.0 0.8132
7.0 1 0.9183 1 1.3 0.8354 0.6978 1 1.5 1.127 1.0 0.8042

s H-F function from Ref. 24.
b H-F
¢ H-F function from Ref. 25.

low-lying terms is difficult to obtain accurately from
experimental data due to the large extrapolation in
energy that is required. There are, of course, other ways
of calculating dipole integrals between these low-lying
terms and higher states. More and more Hartree-Fock
(H-F) and analytic or approximate H-F results are
becoming available for excited states,™° and other
semiempirical methods have been developed® which can
account more accurately for the core region than can the
customary CA. However, these methods tend to follow
the general rule that more accuracy requires more labor,
and the increase in labor can be quite severe. In order to
account for such transitions without an undue increase
in labor over the usual CA, it is proposed herein to use
the CA only for the excited state in the dipole integral,
and to use a H-F function or other more accurate
function for the ground state (or low-lying term).
Hartree-Fock or analytic Hartree-Fock (AHF) ground
state wave functions are now available for all light atoms

7 P. S. Kelly, Astrophys. J. 140, 1247 (1964).
(1;‘ P). S. Kelly, J. Quant. Spectry. Radiative Transfer 4, 117
64).
19 C. Froese, Phys. Rev. 137, A1644 (1965).
(12" ]é) C. Stewart and M. Rotenberg, Phys. Rev. 140, A1508
965).

function from Ref. 22 (the number of figures given does not imply a corresponding accuracy).

and a number of heavy ones.2~% Thus, the only calcula-
tions involved in our proposal are those of the CA wave
functions and of the numerical integration. Both of
these are straightforward, particularly with the availa-
bility of a digital computer. The results obtained in this
way still depend on a contribution from the core region
more substantially than do the “proper” CA dipole
integrals. However, the error arising from this contri-
bution is significantly reduced by use of the more
correct ground-state function. Also, as one proceeds
towards final states of higher excitation, the core con-
tribution should diminish as the upper wave functions
become more diffuse. Thus, our approximation improves
for such states. Those transitions for which the CA was
already marginal, e.g., may then be accounted for
rather accurately. Table IV (taken from Ref. 6) lends
some support to this view; it shows ratios of H-F to CA
wave functions for some of the 2p? low-lying ground
terms of O and N. In interpreting this table it should be

2L A list of such calculations up to- 1947 has been given by
Hartree: Rept. Progr. Phys. 11, 113 (1948). See also D. R. Hartree,
The Calculation of Atomic Structures (John Wiley & Sons, Inc.,
New York, 1957).

22 C.C.J.Roothaan and P. S. Kelly, Phys. Rev. 131,1177 (1963).

2 E. Clementi, IBM J. Res. Develop. 9, 2 (1965).
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TasLE V. Comparison of H-F and H-F Coulomb-approximation dipole-integral contributions by spatial regions: p-s and p-d transi-
tions of 01, O11, and N1. The CA function for the lower (2p) state has been asymptotically normalized to the corresponding HF function
in each case. The lower state for the Or transition is 2p*(3P), and for the N1 and O1r transitions it is 2p3(45).

Or Transition

Ni Transition Or1 Transition

Upperstate —  2p3(4S)3d(D) 20%(45)35(38) 242(:P)3d (4P) 242(P)3d(*P)
Regnk Ao (H-F) Ao (HFCA) Ac (H-F)  Ac (HFCA) Ao (H-F) Ac (HFCA)  Ac (HF) A (HFCA)
r=0-1.2 000074  0.00196 —0.03053 —0.1163 00010  0.0069 0.0085  0.0280
r=12-4.0 003056  0.03185 0.25192 0.2440 0.0432 0.0645 0.1035 0.1200
r=4.0-9.0 002209  0.02211 0.09991 0.1000 0.0377 0.0360 00130 00128
r=0—o 005339  0.05592 0.32130 0.2280 0.0819 0.1074 01250  0.1608

borne in mind that the asymptotic behavior of some of
the analytic H-F functions is poorly determined (this
appears to be especially true of 2p functions). Four
figures have been given in these cases since the authors
did not specify the number of figures to correspond to
the accuracy of the functions, as was done in the
numerical H-F calculations we have referenced. The
H-F orbital energy parameter has been used to de-
termine the effective quantum numbers for the Coulomb
approximations to the H-F functions. The absolute
values of the ratios given in Table IV are of no accurate
significance; the relative variation is the quantity of
significance. For these computations the approximate
normalization correction {¢(»)= (v—1)(»+2)/v(»+1)
suggested by Seaton® was employed to avoid the diver-
gence of the hydrogenic normalization function [given
in Eq. (7)] at v=1. It should be pointed out that the
Or1 2p function of Table IV, column 7, is the Hartree-
Hartree-Swirles function without configuration inter-
action. This same ratio has also been computed for some
3s and 3d state analytic Hartree-Fock functions.'
These ratios have been given elsewhere®!® and will not
be repeated here except to note that the asymptotic
ratios in these latter cases are considerably closer to
unity than for the 2p functions shown in Table IV. In
fact, for all the 3s states for which these ratios were
computed, the ratios were within 6% of unity and for all
the 3d states computed, the ratios were within 19 of
unity. Table V gives the contributions to the radial
dipole integral ¢ from three spatial regions, r=0-1.2,
1.2-4.0, and 4.0 to 9.0, for H-F wave functions and for
CA wave functions. Again, the H-F orbital energy
parameter has been used to determine the effective
quantum numbers for the Coulomb approximations to
the H-F functions. For these calculations of Table V
the CA functions for the lower (2p) states have been
normalized to agree asymptotically with the corre-
sponding H-F functions. This result is accordingly
labeled HFCA. The HF dipole integrals utilize Har-
tree®? ground-state functions with Kelly’s?” AHF
upper state functions. By such direct comparisons of
Hartree-Fock and CA wave functions we see that the

% D. R. Hartree, W. Hartree, and B. Swirles, Phil. Trans. Roy.
Soc. London 238, 229 (1939).

2% D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A193, 299 (1948).

CA wave functions are systematically too large in
absolute value in the inner “core’ region (probably due
to a component of the irregular solution present in the
true Whittaker function which is not completely re-
moved by our truncation procedure). Thus, we should
be able to improve the value of ¢ by improving the 2p-
function, even if the upper function is not improved.
Also, it is the 2p? states that have the large (and
uncertain) normalization correction. The higher states
have a much smaller normalization correction which for
approximate purposes can usually be disregarded (and
we do here).

(a) Numerical Procedures

The upper-state wave functions were computed ac-
cording to Eq. (10) by the method described previously.
The integration of ¢ was carried out by Simpson’s rule
on the interval grid of the Hartree-Hartree-Swirles?
(HHS) functions. The error due to this integration
procedure was estimated to be substantially less than
the error which arises from the uncertainty in the HHS
functions. The accuracy of these latter functions drops
off rapidly with increasing 7, while the contribution to
the dipole integral remains significant. On this account,
an attempt was made to reduce this error by fitting the
HHS functions asymptotically to CA wave functions.
By this procedure, some of the roundoff error in the
HHS functions can be smoothed out, and values ob-
tained for radial distances beyond the HHS tabulation.
This fitting was first attempted by using the effective
quantum number determined by the Hartree-Fock
orbital energy parameter (e), given by HHS,* for the
CA fit to the HHS functions. For Or 3P, O %P, and
O1v 2P this immediately yielded a constant asymptotic
ratio of the two functions within the accuracy available
(for the Or and O ratios see columns 1 and 7 of
Table IV). For the other functions, the ratios were not
effectively constant at large », and because of this, a
strictly ad hoc adjustment was made in the effective
quantum number until an adequate fit was achieved.
Interestingly enough, for the Orr 2P HHS function with
configuration interaction (and »=1.284) this procedure
led back to 1.296, the same » value as for the function
without configuration interaction. This is demonstrated
in Fig. 1 where the ratios of Ru.¢(r)/Rca(7) are given as
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a function of 7 for the 2P function with configuration
interaction for the original » value of 1.284 (circles) and
the adjusted » value of 1.296 (squares). The ratios of
the 2P function without configuration interaction are
repeated from Table IV for convenience, as triangles,
and with higher accuracy (than is literally warranted).
Unfortunately, the stated accuracy of the HHS func-
tions at large 7 is not sufficient to enable one to draw
definite conclusions from this phenomenon. It may be
accidental since it requires believing the HHS functions
to about one digit more than they gave. On the other
hand, it is systematic over several values which lessens
the probability that it is accidental. Perhaps the effect
of the configuration superposition is to introduce a
higher energy component into the wave function which
dies out at large r. There appears to be no comparable
explanation for the O 4S and Ouix 3P states for which
the adjusted » values obtained were 1.245 and 1.500,
respectively. In the O 4S state ratios for ="7.0 to 9.0
(not given in Table IV) there was much more scatter in
values (from 0.95 to 2.5) than for the other states. In the
case of the N1 45 state (columns 8 and 9 of Table IV)
there appears an excessive departure from constancy in
the asymptotic region. In this case there is probably a
systematic error in the Hartree-Hartree function, as is
also indicated by the large discrepancy between the
Hartree effective quantum number and the analytic
H-F effective quantum number—the latter should be
accurate to 3 or 4 figures.

It should be pointed out that the numerical accuracy
(the accuracy of the models employed is, of course, not
known in general) of our results depends on the amount
of cancellation present between the positive and nega-
tive contributions to the integrand. The separate posi-

TastE V1. Radial dipole integrals from the 2p*(3P) ground state
of Or1 to the indicated upper states. The comparison values are:
AHF-analytic Hartree-Fock®; HFS-Hartree-Fock-Slater.® The
effective quantum numbers » are from experimental term values
exce{at for the two, as indicated, which are from Hartree-Fock
e values.

Upper-state parameters

v Term o? (this calc.) ¢® (comparison)
1.849 (HF-¢) (45)3s(3S) 0.0785 0.0974 (AHF)
1.8224 3s 0.0965 0.152 (HFS)
2.8394 4s 0.0161 0.0171 (HFS)
3.8444 5s 6.9X1073 421073 (HFS)
4.8466 6s 4.0X1078 1.6X107 (HFS)
5.8480 s 1.6X1073 7.6X10~* (HFS)
6.8487 8s 2.9X10™* 4.3X10™* (HFS)
7.8538 9s 5.2X107¢
8.8516 10s 2X10-¢
2.999 (HF-e) (4S)3d(*D) 293X1073)  f2.59X1073 (AHF)
29811 3d 5.01X1073f 15.54X10-3 (HFS)
3.9798 44 218107 3.71X107* (HFS)
49781 Sd 9.6X10™ 2.46X10~% (HFS)
59778 6d 4.3X10™* 1.52X10~2 (HFS)
6.9775 7d 1.7X10* 9.8X10~* (HFS)
79873 8d 6.5X1078 6.7X10™* (HFS)
8.9864 9d 1.5X107*
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Fic. 1. Ratio of Hartree-Fock to Coulomb-approximation radial
wave functions for the 2P state of Ot with configuration interac-
tion (circles and squares) and without configuration interaction
(triangles).

tive and negative contributions can be easily monitored
in the numerical procedures; however, since this has
already been done by Kelly'"!® for most of the states
given here it was not felt worthwhile to repeat the effort.
The difference between the positive/negative area ratios
for Kelly’s calculations and for those presented here
should not be significant.

5. DIPOLE INTEGRAL RESULTS

Our results for O1 and O1v are shown in Tables VI and
VII and comparisons are indicated with the results of
some other investigators. The most extensive available
comparison data are those of Kelly® For the n=3
states he has given analytic Hartree-Fock results which
should be close to true H-F values. For most of the
other states he has given the less accurate Hartree-
Fock-Slater values; we list these for comparison. The
results of Stewart and Rotenberg® can also be compared
in the case of O1v. (For the lower stages of ionization,
Stewart and Rotenberg have averaged over the different
terms of the configuration involved.) The experimental
effective quantum numbers for the upper states have

TasLE VII. Radial dipole integrals from the 2p(2P) ground
state of O1v to the indicated upper states. The comparison values
are: AHF-Analytic Hartree Fock®; HFS-Hartree-Fock-Slater?;
SR and BD-Stewart and Rotenberg, and Bates-Damgaard values.®
The effective quantum numbers » are obtained from Hartree-Fock
e values, from experimental term values, or are estimated.

Upper-state parameters

v Term o2 (this calc.) ¢2 (comparison)
2.5845 (HF-¢) (15)3s(2S) 0.0335} 0.0372 (AHF)
2.,5654 (expt) 3s 0.0386 { 0.0462 (HFS)
0.031 (SR); 0.022 (BD)
3.5596 (expt) 4s 5.80 X103 5.59 X103 (HFS)
4.5442 (expt) 5s 2.26 X1073 1.64 X103 (HFS)
5.520 (est) 6s 1.61 X103 6.8 X104 (HFS)
2.947 (HF-¢) (18)34(2D) 0.0401} 0.0359 (AHF)
2.9276 (expt) 3d 0.0437 { 0.0396 (HFS)
0.033 (SR); 0.032 (BD)
3.9274 (expt) 4d 9.09 X103 7.17 X1073 (HFS)
4,9258 (expt) 5d 3.44 X1078 2.11 X10~3 (HFS)
5.9245 (expt) 6d 1.52 X108 8,8 X10™4 (HFS)
6.9235 (est) 7d 6.75 X104 4.7 X10~4 (HFS)

s Reference 17, b Reference 18,

» Reference 17, b Reference 18, ¢ Reference 20,
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TasLE VIII. Radial dipole integrals for various transitions of O
and N. ¢? (HF) indicates values obtained from the Hartree,
Hartree, and Swirles lower state functions and analytic Hartree-
Fock upper state functions plus a correction for »>9.0. ¢ (AHF)
indicates pure AHF results from Ref. 17.

Transition o2 (HF) o (AHF)
01244 (*P) — 2$%(5)35(3S) 0.103 0.0976
(2D)3s(®*D) 0.112 0.106
(2P)3s(3P) 0.113 0.108
(45)3d(3D) 0.00289 0.00259
(2D)3d(3D) 0.00326 0.00293
(2P)3d (D) 0.00319 0.00288
o1 22 (AS) — 2p2(3P)3s(*P) 0.0678 0.0665
3d(*P 0.0157 0.0153
24*(2P) — 2$%(3P)3s(2P) 0.0949 0.0928
N1 2p3(4S) — 2p2(3P)3s(*P) 0.142 0.131
3d(*P 0.00684 0.00599
203 (2P) — 242 (P)3s(P) 0.196 0.187
3d(2P) 0.0106 0.00963

been obtained from the data listed by Moore.?® (This
procedure was greatly facilitated by a computer code
kindly supplied by R. R. Johnston.) In addition to the
experimental » values used for the upper states, » values
obtained from H-F orbital energy parameters? were
used to compute an additional dipole-integral value for
the principal-quantum-number 3 states. This Coulomb
approximation to the Hartree-Fock function (after
Table 6 of Ref. 1) can provide a moderately direct test
of the extent of validity of the CA for these transitions.
The directness is obscured somewhat for our purposes
because of the deterioration of the 2p analytic HF
functions at large . This was noted in Ref. 17 and is
evident from Table IV. As a result, the AHF values
tend to be somewhat low.

To monitor this situation, we calculated a number of
dipole integrals between the HHS lower state functions
and Kelly’s AHF upper state functions. In addition, a
correction was applied for the region »>9.0 where the
Hartree, Hartree, and Swirles calculations stop, by
fitting a CA tail to the H-F integrand. (This only af-
fected the neutral 2p-3d transitions appreciably—4 to 5
units in the last figure.) These results should be very
close to true HF values, and they compare with Kelly’s
analytic Hartree-Fock results as shown in Table VIIL.
There is a significant improvement in some, but not all
cases.

The results indicate that our approximate results for
Or 2p-3d transitions (Table VI) should be quite good
since the result of 2.93)X 1073 in Table VI for the CA
upper state with the HF energy parameter compares
quite favorably with the HF result of 2.89X10~% from
Table VIIL. For the 2p-3s transitions our approximate
result with the HF energy parameter differs by about
339, from the true Hartree-Fock value, this difference
now being slightly greater than for the AHF ¢? value.

26 C. E. Moore, Atomic Energy Levels, Natl. Bur. Std. (U. S.),
Circ. No. 467 (1949).
¥ P, S. Kelly (private communication),
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We have also obtained dipole integrals for the analogous
transitions (up to #=6) in Orr and Omr which are not
included here.®® - . : '

A few general remarks can be made. For all the 2p-3s
transitions our results are intermediate between the
AHF and HFS values, or very close to the AHF result.
Thus, our method appears to be superior to the HFS
model, but not as good as the AHF since our values with
HY orbital energy parameters determining the upper
state are not in too good agreement with the HF or
AHF values. For the 2p-3d transitions our results are
systematically larger than the AHF. This is partly a
real effect due to the better behavior of our functions at
large 7. It is partly, of course, due to the fact that there
is no cancellation in these cases—with one exception—
and the 3d CA wave functions are too large in the core
region'® (the situation is reversed near the origin, but at
distances too close to contribute significantly to ¢). Such
cases could be improved by employing a cutoff in the
integral and thereby excluding an inner segment from
the integrand. Since the results are already reasonably
good and such an ad hoc procedure would destroy the
uniformity of the approximation, we choose not to
pursue it. The exception mentioned above, for which
cancellation occurs in a 2p-3d transition, appears be-
cause the effective quantum number » of the 3d state
is greater than 3, and occurs in the Om 2p*(*P) —
2p2(*\D)3d%S transition. (This cancellation produces a
lower value than the AHF result in this one case.) For
the 2p-nd transitions for which #>4, our results are
likely to be superior to both the HFS and AHF values,
owing to the decreasing influence of the core region.

In the case of Orr, we have obtained some further
results which give quantitative evidence of the effects of

TasLE IX. Radial dipole integrals from the 23(2P) term of Out
to the indicated upper states. The effective quantum numbers »
are from experimental term values, and the analytic Hartree-Fock
comparison values of ¢% are from Kelly.»

o2 (this calc.) o2 (AHF)
Upper-state parameters With Without Without
v Term config. int.  config. int.  config. int.

21559  (3P)3s2P 0.0853 0.0891 0.0928
2.9634 3d2P 0.0223 0.0230 0.0206
2.9925 3d*D 0.0166 0.0172 0.0146
3.1951 4s2P 0.0110 0.0113

3.9423 4d*P 9.091073  9.31X1073

3.9897 4d*D 6.55X107%  6.73X107®

4.1974 5s2P 446%107  4.55X1073

4.9946 5d*D 3.02X103  3.10X1073

2.1323  (1D)3s*D 0.0989 0.103 0.0924
2.9492 3d*D 0.0255 0.0262 0.0190
2.9712 3d*p 0.0211 0.0218 0.0159
3.0274 3d2S 0.0104 0.0108 0.0157
3.1503 452D 0.0133 0.0136

3.9180 4d2D 99210~ 0.0101

3.9662 4d2P 7.83X107%  8.03X1073

3.9939 4425 - 6.31X107% 6491073

4.1592 5s2D 476103 4.83X107®

20996  (15)3s2S 0.119 0.124 0.0935
2.9489 3a*D 0.0256 0.0263 0.0165

& Reference 17,
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configuration interaction in transitions of the 2p-ns and
2p-nd type. This effect is not large, as was already noted
by Hartree, Hartree, and Swirles,* but quantitative
measures for transition probabilities may prove useful.
These results are shown in Table IX, which presents
dipole integrals from the 2p°(2P) term of O to various
upper states for the Hartree-Hartree-Swirles 2P wave
functions with configuration interaction and without
configuration interaction, respectively. The available
AHF values!'” are included in the table for direct com-
parison. These latter results do not, of course, include
any of the effects of superposition of configurations.
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Hyperfine Structure ?D;;, and *F,,, States of Ag'’” and Ag'®®

ARTHUR G. Braceman,* DoNALD A. LANDMAN,f AND ALLEN LURIO
IBM Watson Laboratory, Columbia University, New York, New York
(Received 6 April 1966)

The hfs of the (44°5s%) 2D52 and (4d°555p) *Fo/2 metastable electronic states in Agl%7 and Agl®® have been
measured by the atomic-beam magnetic-resonance method. The results, including the hfs dipole interaction
constants which have been corrected for second-order interactions with neighboring fine-structure levels,
are as follows:

Av(Ag®; 2Dg/s; F=3 <> F=2)= 435.4750(15) Mc/sec,
Av(Agl¥7;2Dsp; F=3 <> F=2)= 378.8453(3) Mc/sec,
Ay (Ag®; 4Fq)s; F=5 <> F=4)=1841.1564(9) Mc/sec,
Av(Agl7;4Fg; F=35 & F=4)=1596.7506(6) Mc/sec,
A (2Dgj2)1® = —145.1584(5) Mc/sec, A (2D32)1%"=—126.2818(1) Mc/sec,
A (*Fgs2)% = —368.214(9) Mc/sec, A (*Fg2)1%7"=—319.339(5) Mc/sec.
The hfs anomaly for each of the two states is
07A109(2D;/0) =0.00012(1) and 17A®(4Fy,) = —0.00298(3).

By comparing the anomaly in the 2Dg; state with that in the ground 25y, state, we have obtained the
amount of s-state mixing into the 2Dg/; state. The contribution to the hfs of the Fgy. level from each of the
individual valence electrons has been estimated. The observed anomaly in the 4Fy), state is in good agreement
with the estimated s-electron contribution to the state.

I. INTRODUCTION

HIS is the first in a series of papers devoted to

the study of the hfs of several excited metastable
electronic levels of the naturally occurring isotopes of
the group I elements, Cu®:65, Aglo"1® and Au*’.! The
hfs measurements were made by the atomic-beam mag-
netic-resonance method. Each of the three elements has
an [#d'"®,(n+1)s2Sy/2 ground state and each possesses
at least one metastable level arising from its [nd’,
(n+1)s?] configuration and a metastable *Fy;» level

* Present location: IBM Research Center, Yorktown Heights,
New York.

T Present location: New York University, University Heights,
Bronx, New York.

1A. G. Blachman and A. Lurio, Bull. Am. Phys. Soc. 8, 9
(1963); 8, 351 (1963); D. A. Landman, A. G. Blachman, and
A. Lurio, Brookhaven Conference on Molecular and Atomic Reso-
nance, Uppsala, Sweden, 1964 (unpublished).

arising from its [#d®, (n+1)s,(n=+1)p] configuration. In
this paper, we report on the measurements of the hfs
separations of the (4d°5s%)2Ds/2 and (4d°5s5p)*Fy,s levels
in Agl%” and Ag!®.

Precision hfs measurements on several levels of an
atom are of interest because they frequently provide a
good check on the consistency of the interpretations
of the results on the individual states. These checks
are facilitated by analyzing the various hfs measure-
ments into the contributions from the individual valence
electrons. This is the procedure we have followed and,
as will be seen below, the results are entirely satisfactory.

II. APPARATUS

The apparatus used in this experiment was essen-
tially the same as that described in detail by Luria®

2 A. Lurio, Phys. Rev. 126, 1768 (1962).



