
P H YSI CAL REVIEW VOLUM E 150, NUM HER 2 14 OCTOH ER 1966

Ion-Neutralization Spectroscopy of Solids and Solid Surfaces
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A new method of spectroscopy of solids is presented. By means of it, information concerning the state
densities in solids is extracted from measured kinetic-energy distributions of electrons ejected from the
solid by slow noble-gas ions. The basic electronic process involved is the radiationless, two-electron, Auger-
type transition which neutralizes the ion to its ground state at the atomically clean solid surface and simulta-
neously excites another electron in the solid. The method starts with measured energy distributions and,
making a minimum of assumptions, works its way back to what may be called the transition density function.
This function, which specifies the relative probability that an electron at a given band energy will be involved
in the neutralization process, depends on state densities in initial and final states of the process, transition
probability, final-state interaction, and other factors. The information obtained is of the same general kind
as that obtained by soft—x-ray spectroscopy and photoelectron spectroscopy. When the surface is atomically
clean the transition density involves bulk-state densities and transition probabilities which depend on the
surface. For surfaces with monolayers involving foreign atoms, the transition density is modified by the
state-density and wave-function changes resulting from the presence of the two-dimensional surface crystal.
The method, feasibility, and characteristics of the ion-neutralization spectroscopy are discussed using
experimental data for copper and nickel as illustrative examples. Experimental apparatus and operating
conditions are discussed only briefly.

I. INTRODUCTION

A NEW method of electronic spectroscopy of solids
and solid surfaces is presented in this paper. Like

any spectroscopy of an atomic system it is based on an
electronic transition process and its results involve not
only the distribution in energy of allowed quantum
states of the system but factors which depend on the
characteristics of the basic transition process. For a
condensed system such as the crystalline solid of
interest here we expect an electronic spectroscopy to
involve the densities of 6lled and unfilled valence states,
the transition probability of the electronic process, as
well as final-state interactions including possible many-
body effects.

The experimental results of any spectroscopy of
solids are expressible in terms of a function of band
energy which we shall call the transition density. This is
a function which gives the relative probability that an
electron at the specified band energy will be involved in
the transition process and it includes all the possible
factors listed above. Having the transition density we
are faced with the problem of trying to evaluate its
components in order to draw conclusions concerning the
density of electronic states in the solid. Thus it is
evident that the development of several electronic
spectroscopies of solids is important. Each will have its
peculiar transition probability and final-state-inter-
action factors, so that intercomparison of results should
prove fruitful.

The ion-neutralization spectroscopy (ENS) discussed
in this paper is based on the two-electron, Auger-type
process which occurs when a slow ion of large neutraliza-
tion energy (ionization energy of the parent atom) is
neutralized at the solid surface. The method has de-
veloped out of an extended series of experimental and
interpretive studies of the neutralization of slow ions at
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solid surfaces. ' ' The "spectroscopic information" is
extracted from measured kinetic-energy distributions of
electrons ejected from the solid in the ion-neutralization
process. That -there is information about the solid in
such distributions may be seen in Figs. 1 and 2. In
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FIG. 1. Kinetic-energy distributions of electrons ejected by
5-eV He+ ions from the atomically clean faces of Ge(111),
Ni(100), Cu(100), and a Ni(100) face having the c(2&&2) struc-
ture of Ni and 0 on its surface. These are tracings of X-F re-
corder plots of analog derivatives of electron retarding potential
characteristics.

' H. D. Hagstrum, Phys. Rev. 96, 336 (1954).
~ H. D. Hagstrum, Phys. Rev. 122, 83 (1961).' H. D. Hagstrum, Y. Takeishi, and D. D. Pretzer, Phys. Rev.

139, A526 (1965).
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Fig. 1 several distributions are shown for the same ion
incident on several solids. Quite different distributions
are obtained. Clearly the ion-neutralization process
divers from secondary electron emission by primary
electrons for which the kinetic-energy distribution has a
form which is essentially independent of the solid. In
Fig. 2 are shown distributions for the (110) face of
copper obtained for the three noble-gas ions, He+, Ne+,
and Ar+. Note how the same structure features appear at
comparable points in the curves relative to the maximum
energy of each curve. As we shall see, this is direct
evidence that these features arise from structure in the
initial state of the process, namely, the filled valence
band of the solid,

Experimental data of the type shown in Figs. 1 and
2 have been obtained in collaboration with G. E.Beck.er,
D. D. Pretzer, and Y. Takeishi. Papers have been pub-
lished presenting experimental studies of the ion-neu-
tralization process for nickel, ' germanium, ' and gallium
arsenide. Although digital data of the required quality
were available, reduction of them by the methods of
INS was not attempted in these papers. This will be
done in subsequent publications. A preliminary report
of the application of INS to data for copper and nickel
has been published. '

4Y. Takeishi and H. D. Hagstrum, Phys. Rev. 137, A641
(1965).' Y. Takeishi and H. D. Hagstrum, Surface Sci. 3, 175 (1965).' D. D. Pretzer and H. D. Hagstrum, Surface Sci. 4, 265 (1966).

7 H. D. Hagstrum and G. E. Seeker, Phys. Rev. Letters 16,
230 (1966).

FIG. 2. Electron kinetic-energy distributions for three ions of
diiierent neutralization energy (ionization energy of parent atom)
incident on the same crystal face. Note how structure features
shift on the 8 scale with eRective neutralization energy but remain
fIxed relative to the maximum energy of the curve, the zero of the
scale of band energy, g. The &=0 point is determined, as indi-
cated in the text of Secs. III and VI, as the point where the
extrapolated Xs(E) distribution starts from zero.

Since the basic process of INS occurs at the surface
of the solid it will be necessary in this paper to discuss
in some detail the role of the surface. We will be inter-
ested in two types of surface: u, one that is atomically
clean annealed and well ordered, and b, one that in-
cludes foreign atoms as well as substrate atoms in a
crystallographically ordered phase, one monolayer thick. ,
attached to an otherwise clean substrate. In discussing
INS for these cases it is essential that the meaning of the
terms "density of states" and "transition probability
factors" be kept clearly in mind. For a crystal having no

specifically surface states and no band bending, an
electron in a given electronic state has access to the
entire crystal, including the surface layers and a limited
region extending into the vacuum outside. This is true
whether the surface is type a or b listed above. The wave
function extends throughout the crystal, having an
exponentially decreasing tail outside the surface. Thus
the density of states is the same throughout the bulk
and surface regions and, for the same solid, can depend
only very slightly (ca. one part in 10') on whether the
surface is type a or b. Wave-function magnitudes in the
surface region, however, will differ markedly from those
in the bulk and will also depend strongly on whether the
surface is of type a or b. This will affect the magnitude of
the matrix element of the process and hence the transi-
tion probability. Provided final-state interactions and
many-body effects are not strong, evaluation of the
principal wave-function modifications for the clean sur-
face leads to conclusions concerning the bulk density of
states for the clean crystal (Sec. VIII). Results for the
crystal with surface b, used in conjunction with the re-
sults for surface u, give information about the electronic
states introduced by the ordered surface monolayer (Sec.
X). Furthermore, borza /de surface states on semicon-
ductor surfaces should be observable if they are filled.
Hand bending at the surface will usually be so gradual
relative to the region in which the Auger electron is
excited as to have negligible effect.

INS produces data of the same general type as soft-
x-ray spectroscopy(SXS) s "and photoelectron spectros-
copy (PES) based on photoelectric-emission processes
for which k conservation is not important. ""Sand-
structure information is also obtainable from photo-
electric-emission studies for which k conservation is
important" " and from optical-constant data, " al-
though in these cases one does not derive a transition-

D. H. Tomboulian, in Handblch der Physik, edited by S.
Flugge (Springer-Verlag, Berlin, 1959), Vol. 30, pp. 246—304.' L. G. Parratt, Rev. Mod. Phys. 31, 616 (1959).' H. Niehrs, Ergeb. Exakt. Naturw. 23, 359 (1950)."H. W. B.Skinner, Rept. Progr. Phys. 5, 257 (1939).

'2 C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1044
(1964).

"A. J. Blodgett, Jr., and W. E. Spicer, Phys. Rev. 146, 390
(1966)."G.W. Gobeli and F. G. Allen, Phys. Rev. 137, A245 (1965)."F. G. Allen and G. W. Gobeli, Phys. Rev. 144, 558 (1966).

"W. E. Spicer, Phys. Rev. Letters 11, 243 (1963).
'7 H. Ehrenreich, H. R. Philipp, and D. J. Olechna, Phys. Rev.

131, 2469 (1963).
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density function for the 6lled band in the sense used
here.

The plan of this paper is as follows: In Sec. II we
discuss the ion-neutralization process on which INS is
based. The basic plan of INS is presented in Sec. III,
followed by a discussion of its experimental feasibility in
Sec. IV. The discussion of the theoretical feasibility of
the method is introduced in Sec. V and carried out in
Secs. VI—IX. The effect on INS of foreign atoms in an
ordered surface monolayer is discussed in Sec. X and
the over-all characteristics of the INS method are
summarized in Sec. XI in which comparisons with other
solid-state spectroscopies are also made.

II. THE ION-NEUTRALIZATION PROCESS

The electronic transition process basic to INS is
illustrated in the energy-level diagram of Fig. 3. In the
presence of the incoming ion outside the surface two
electrons in the 6lled valence band of the solid interact,
exchanging energy and momentum. One electron, which
we shall call the neutralizing or "down" electron,
tunnels through the barrier and drops into the vacant
atomic level. The energy released in this transition
(1 or 1' in Fig. 3) is taken up by the second electron,
termed the excited or "up" electron, which then rises
on the energy diagram. This exciting transition (2 or 2'
in Fig. 3) carries the second electron to the energy E
above the vacuum level. The atomic ground state
hes at an energy E,'(s) below the vacuum level. E,'(s)
is the energy required to ionize the parent atom at
the distance s from the solid surface and is less than
the free-space ionization energy by virtue of interaction
of the neutral and ionized states with the solid. Two
pairs of transitions, (1,2) and (1',2'), which bear an
exchange relation to each other, can be distinguished.
We shall discuss these exchange transitions and their
matrix elements later (Sec. VIII). At the moment we
focus attention on the (1,2) transitions only. For these
the down electron gives up an amount of energy
E,'(si) —p it, where—E,'(s) is evaluated for the ion-
solid separation s~ at which the electronic transitions
occur. The up electron acquires this amount of energy
in the radiationless process. The energy by which the
up electron is excited may also be written as E+++i &

Equating these energy expressions we obtain

E=E,'(s&) Oi+(p) —(I s+q). —

Since i r and i s may lie anywhere in the filled band we
expect a band of excited electrons. Some of these may,
if properly directed, surmount the surface barrier and
leave the solid. Outside, their kinetic-energy distribu-
tion may be measured. Our task. in this section is to
understand the factors which determine the form of this
distribution. We note that the ion-neutralization process
is a radiationless process of an Auger type. It has been
discussed in some detail in earlier publications. ' '
Resonance tunneling into excited states discussed in

FxG. 3. Energy-
level diagram of a
metal with an ion
just outside its sur-
face. The electron
transition pairs (1,2)
and (1',2') illus-
trate the Auger-type
transitions of the ion-
neutralization proc-
ess. Final electron
energy E is measured
from zero at the
vacuum level. The
energies of initial
states in the filled
band, f, are meas-
ured positively down
into the band from
the top of the band
(Fermi level for a
metal, p eV below
the vacuum level).
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these earlier papers does not play a fundamental role
in this work. .

We now proceed to introduce the functions needed to
discuss the Auger neutralization process and the method
of INS based upon it. These functions are shown in Fig.
4 using a somewhat different notation from previous
publications but one more suited to the present work. .
Curves for He+, Ne+, and Ar+ are shown. We consider
erst the curves for He+ and simplify the discussion at
this point by assuming that all transition-probability or
matrix-element factors are constant, independent of
band energy t and of symmetry character of the band
electrons. We also neglect, for the moment, the effects
of exchange-matrix-element cancellation and final-
state interactions, and assume equal transition probabil-
ity factors for the up and down electrons. As we shall
see, these assumptions require that (1) there be a very
thin barrier between ion and solid, (2) all band elec-
trons have the same symmetry, and (3) the matrix
element require both up and down electrons to originate
in identical regions at the solid surface. At this point
we will also assume a constant density of 6nal states and
neglect energy broadening inherent in the transition
process. Under these rather drastic assumptions the
probability of involvement of a band electron of energy
in the range i to i+dt depends solely on density of
initial states in the valence band, X„(g), which is then
equal to the function U(t') shown in Fig. 4.

From U(i ) in Fig. 4 we wish first to find the internal
distribution in energy F(E) of electrons excited in the
ion-neutralization process. This is readily derived from
the following observation. Excited electrons lying in a
range dE at energy E (end of arrow 2 in Fig. 3) may be
obtained from any neutralization process for which the
initial states of the two participating electrons are
symmetrically disposed on either side of the energy I
lying half-way between E and the ground state of the
atom at E,(s,). Values of E and l m—eeting this con-
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We discuss these matters in detail in Sec. VIII.
Having the internal distribution of excited electrons,

F(E), we can obtain the distribution of externally
observed, Auger electrons, X(E), from the probability
of electron escape over the surface barrier, P(E), using
the expression

X(E)=F(E)F(E). (5)

E=E,' 2(—f+y). If the matrix-element, final-state-
density, and final-state-interaction factors are in-
cluded in U(f), then F(g) becomes what might be
termed the transition density for pairs of electrons ap-
propriate to processes producing excited electrons at
E=E,' 2(t+—q). U(f) thenis the transition densityfor
the individual electrons involved. It is interesting to
note that F(f) related to U(f') by Eq. (3) extends to
a maximum t value half that of the maximum f to
which U(f) is known. We recognize that in the general
case U(f ) may not be the same function for the up and
down electrons. Thus we should distinguish a Ut(f') and
a U&(I) for down and up electrons, respectively, and
write

FIG. 4. Energy-level diagram on which are drawn the functions
important to an understanding of the ion-neutralization process.
Functions are shown which illustrate the division of X(E) by
P(E) to get F (E) and F (I ) for the three ions He+, Ne+, Ar+ inci-
dent on Cu(100). Data for He+ carry F(f) to point 1, Ne+ to
point 2, and Ar+ to point 3. Corresponding points are indicated
on the U(I) function.

dition satisfy the relation

E=E''(~~) —2(P+ v) (2)

obtained from Eq. (1) by setting lt ——fs ——f. In Fig. 3
we depict initial states at l t f +6 a——nd t s

——f' —6 which
are symmetrically disposed with respect to f'. The
probability of the specific neutralization process involv-
ing these states must be proportional to 1V„(/+6)
&&lV„(f—6), the product of state densities at the initial
energies. Clearly, the total probability of producing an
excited electron in dE at E is the integral of this product
over„the energy increment h. Using our more general
band function U(|'), we may write this probability as

(3)

The internal energy distribution F(E) is obtained from
F0') merely by changing the energy variable according
to Eq. (2) and normalizing above the Fermi level to an
area equal to one electron per incident ion.

F0) is the self-convolution, convolution square, or
fold of the function U0'). F(f) may be termed the pair
density function for all electron pairs in the initial
band which can produce an excited Auger electron at

The total yield p of all ejected electrons is the integral
of X(E) over all E. The distribution functions U(f),
F(l ), F(E), and X(E), as well as the escape probability
P(E) are shown in Fig. 4.

We have indicated above what might be termed the
"forward model" of the ion-neutralization process by
means of which one derives the externally observed
yield and electron-energy distribution from functions
which characterize the solid and the nature of the
electron transition process including escape from the
solid. We have indicated that removal of simplifying
assumptions would enta, il a careful interpretation of
U(f). Energy broadening may be incorporated in the
forward model by convolution of F(E) with an energy-
broadening function before it is normalized. The general
form of P(E) is known but its specific form would have
to be derived from data fitting. E is also a parameter of
the problem. The forward model has been applied to
the case of diamond-type semiconductors. ' Specific
matrix element factors were included and the several
parameters of the problem were determined by fitting
calculated yield and external energy distribution to
those determined experimentally.

The forward model may be summarized as follows:
(1) Devise a parametric form for the state density
X„(I) whose general form is known; (2) introduce
matrix-element dependences a,nd combine into Ur(f'),
Us(|), or, if appropriate, a single U(f); (3) fold Ut(|)
with Us(|), or U0) with itself, to obtain F(I ) LEq. (3)
or (4)]; (4) convolute F0) with a broadening function
such as a I.orentzian or Gaussian or both; (5) convert
F(f) to F(E) by the change of variable of Eq. (2);
(6) normalize F(E) to one electron per ion per eV in
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the range —//p&E( oo; (7) multiply F(E) by a para-
metric P(E) to obtain X(E) [Eq. (5)7; (8) sum the
area under X(E) to get the total yield &; (9) adjust the
parameters of the problem to bring agreement between
experimental and theoretical X(E) and y. As we shall
now see, our problem in the present work is to reverse
the above procedure and to attempt to obtain U(t)
from X(E) with a minimum of a priori assumptions.
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III. THE PLAN OF ION-NEUTRALIZATION
SPECTROSCOPY

The "forward" procedure just outlined can work only
if the general form of X„(E) is known. In this case it
can give essentially unique results because the several
parameters have orthogonal effects on the fit to the
experimental data. For diamond-type semiconductors'
it yielded information on band structure (width of
degenerate P band), on transition probability factors
(decrease in probability of electron involvement with
increasing angular momentum), and on specific param-
eters of the neutralization process (effective ionization
energy E,'). However, development of a spectroscopy
which extracts information about U(l ) from the meas-
ured X(E) requires a feasible reverse procedure. We
outline the structure of such a procedure in this section
and then examine its experimental, theoretical, and
mathematical feasibility in succeeding sections of this
paper.

Before going into any details, the skeleton of the
INS procedure will be given:

(1) Obtain experimental Xrr (E) distributions for two
ion energies X~ and X2.

(2) Extrapolate from Xrc, (E) and XIr, (E) to a
"debroadened" distribution Xp(E) having relatively
small energy broadening. This extrapolation is to be
based on the observation that energybroadening appears
to vary linearly with ion velocity. '

(3) Divide Xp(E) by a parametric P(E) function
[Eq. (5)7 to obtain the internal distribution F(E),
and by changing energy variable to f [Eq. (2)7 to
obtain F(g). The parameters of P(E) are determined by
demanding that the F(l) functions obtained for He+,
Ne+, and Ar+ ions should be essentially coincident in
those portions where they overlap.

(4) Further trim the starting portion of F(l) to
correct for inadequacies of the linear X(E) extrapola-
tion in this region and to ensure proper functioning of
the unfold procedure.

(5) Unfold Kq. (3) to obtain U(l) from F(l)
We shall elabora, te a little further on this procedure

here and then discuss its experimental and theoretical
feasibility and justification in subsequent sections.

Earlier studies have shown that the total broadening
va, ries linea, rly with ion velocity for neutralization
processes involving electrons from the solid near the
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FIG. 5. X(E) distributions for He+ ions incident on the atomic-
ally clean (100) face of nickel. X4(L!) and XM (E') are tracings of
X-I" recordings of the distributions for 4 and 10 eV ions, respec-
tively. Xo(E) is a distribution, obtained by linear extrapolation,
from which most of the inherent energy broadening has been
removed.

This extrapolation is applied to data for He+, Ne+, and
Ar+ ions. Adding and subtracting Xp(E) inside the
square bracket, we may write for the parameter E.

R= (Xp —Xrr )/[(Xp —X/r ) (Xp XK )7. (7)

In a linear theory for small deviations the differences
between a broadened and unbroadened distribution
will be proportional to the broadening parameter, that
is, the parameter of the broa, dening function which adds
for successive broadenings. This parameter has been
shown to be proportional to velocity e or X'". Then
Eq. (7) for the parameter R may be written

1/2/(R 1/2 R 1/s) (8)

"H. D. Hagstrum and D. D. Pretzer, in Proceedings of the
Seventh International Conference on Ionisation Phenomena i n
Gases, Belgrade, 1965 (to be published}.

top of the valence ba,nd." This is made the basis for a,

linear extrapolation of X(E) from Xrc, (E) and Xrr, (E)
to a function Xp(E) which should be characterized by a
considerably reduced amount of energy broadening, at
least near the top of the band. The broadening inherent

X&, or Xz, will vary with X& and X2, of course, but
also the specific solid and ion. To minimize the extrap-
olation we make X~ as small as experimentally feasible;
it is usually 4 or 5 eV. X2 is usually 10 eV, suKciently
small to keep Xx,(E) in the range of linear broadening
but suKciently different from Xp(E) to avoid intro-
ducing large errors in the calcula, tion of the difference
distribution [Xp(E)—Xip(E)7.

The linear extrapolation of X(E) may be written
thus:

Xp(E) =Xrr, (E)+R[XIr,E) Xrr, (E)7. —(6)
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Specidc values calculated from this formula are
R4, ~0

——2.31 and R5,~0
——3.11. These R values are calcu-

lated from incident energies E~, E2 which are corrected
for ionvelocity change near the surface, as is discussed in
Sec. VI. The extrapolated distribution Xe(E) and the
two experimental distributions from which it is derived
are shown for Ni(100) in Fig. S. We note here that
distributions for Ne+ ions have anomalously large
broadening. ' As a consequence smaller R values must
be used as is discussed in Sec. VI.

From the "debroadened" external distribution Xe(E)
we now determine in step (2) the internal distribution
F(E) by dividing by a vacuum level cutoB function
P(E) which includes the escape probability and any
other dependence on final-state energy E. Thus we are
inverting Kq. (S) to obtain

P(E) =Xe(E)/P(E). (9)

In Fig. 4 Xo, P, and Jf' functions are plotted for the
data obtained for He+, Ne+, and Ar+ ions on Cu(110).
Now using Kq. (2) we transform to band energy, ob-
taining an F(I) function for each ion. That for He+
extends deepest into the band, that for Ne+ less, and
for Ar+ least. However, over those ranges of I for which
data for any two ions overlap we expect F(g) for the
two ions to be approximately the same if: (1) P(E) did
not change from one ion to the other and we had
selected the correct set of parameters, (2) transition
probabilities of the Auger processes do not depend on
which ion is used, and (3) the density of final states is
approximately constant. We have found it possible to
find a set of parameters for P(E) which inakes F(I)
for the three ions have closely the same form to within
a multiplicative normalizing constant. How well this
is done may be judged from Fig. 6, which shows results
for He+ and Ne+ ions on Ni(111).Further evidence con-
cerning this is contained in the final unfolding results
of Figs. 9 and 10 for different ions. We conclude that
P(E) and the transition probabilities do not depend

I I I I I

7 6 5 4 & 2 I 0
( Ieev

FIG. 6. Figure illustrating how well the parameters of P(E) may
be adjusted to give a common FQ). Heavy lines indicate the 6nal
result. Curves u result if the E'(E) function does not rise from zero
rapidly enough, curves b if it rises too rapidly. The P(E) functions
used for He+ and Ne+ data rise from zero at the respective E, =O
points indicated for the two ions.

strongly on the ion used and that the 6nal-state density
is a relatively smooth function of K

In Fig. 4 we have indicated by dashed lines an
uncertainty in the F(E) functions near E=O. A para-
metric P(E) function for a limited number of parameters
(three have been used here) will be least accurate near
E=O where P(E) varies rapidly. Fortunately, the large
amount of energy available in the neutralization of He+
enables us, for metals at least, to obtain the band infor-
mation we seek using data at J'fgreater than a lower
limit of 2 to 4 eV. For E larger than 2 to 4 eV, P(E)
varies relatively slowly and three parameters are ample.
In fact, considerable deviation from the correct P(E)
can be shown to introduce negligible error into the
final unfold function UQ'). In many cases it would be
sufficient to assume P(E) to be constant over the range
of data used.

The three-parameter formula we have used for
P(E) is

in which
P(E)=-', (1—M)/(1 —AM),

3II= tanh 'BS/tanh '8,
cV= PH/(H+E)$'".

(10)

This formula results if Po, ' the angular distribution of
excited electrons, is taken to be proportional to the
square of the radius of a prolate spheroid which is
stepped at the critical angle O, =cos '$H/(H+E) J",
for escape across the surface barrier. The parameters are
A, which is related to the magnitude of the step in
Pg at 0, and thus to the ratio of matrix elements for
escaping and internally reRected electrons; 8, which is
related to the eccentricity of the ellipsoid and thus the
possible matrix element variation within the range
0&O„and H, the surface-barrier height above the
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Fro. 7. F, P, and U functions for He+ ions on Cu(110). Data are
cut off at a for E~4 eV above which point the P(E) function is
relatively Rat. The difference between the experimental curve and
the dashed portion indicated at b is probably due to secondary
electrons. The U(g) curve shown here and in Figs. 9 and 14 repre-
sents the most recent and best data. It differs slightly near &=6
eV from that given in Figs. 1 and 3 of Ref. 7.
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FIG. 8. Curves of F, E, U for He+ ions on Ni(111) similar to
those of Fig. 7.

valence-band bottom. Although there is some rationale
behind the derivation of the F(F) of Eq. (10), it should
be regarded here purely as a three-parameter formula
of the right general shape. Other F(F) functions have
been derived and used. They all differ very little from
one another for E&4 eV.

The extrapolation procedure of Eq. (6),step (1) above,
cannot be expected to give the right answer at or near
the high-E end of Xp(E). Because of this and beca, use
the subsequent unfolding procedure is very sensitive
to the starting form of F Q') near (=0 a further extrap-
olation of the data is required (Sec. IX).This is applied
to the F(t ) function and consists of a further trimming
of the starting portion of the function by at most a few
tenths of an eV. Final F(i) functions are shown for
copper and nickel in Figs. 7 and 8, respectively.

We now are in possession of an F(t ) function which
for He+ ions extends over the longest range of the band
energy t' and agrees quite well over smaller energy
ranges with results for Ne+ and Ar+ ions. F(t') is to be
interpreted either in terms of Eq. (3) or the more general
form of Eq. (4). In general we do not have sufhcient
a priori information to solve Eq. (4) for the component
functious Ui(t') and Ua(t') of the convolution product.
The convolution square of Eq. (3) can be solved for
U(t') digitally. We discuss the justification of this
procedure in Sec. VIII.

The functions F(t) and U(t') in digital form are

F(rabat)=F, 44=1, 2, 3,

U[(2ia —1)ht']= Ua„ i, aa=1, 2, 3, . (12)

We note that Af =0 05 eV for. AF. =0.1 eV [Eq. (2)].A
straightforward derivation based on approximating
U(t') by a step function with steps centered at the
points is„ t leads to what we shall call the step digital

CU (110)

He+
Ne+

10

( (eV)

Fio. 9. Comparison of 6nal unfold functions UQ) for He+, Ne+,
and Ar+ ions on Cu(110).The R values used in the X(L') extrap-
olation were E5, 10

——3.11 for He+, 85410 ——0.2 for Ne+ and Ar+.
Although the He+, Ne+, and Ar+ data extend to larger g than
shown, they are terminated at the points 1, 2, and 3, respectively,
as the maximum values to which the data agree and meet one of
the basic requirements of the INS data-handling procedure.

fold-unfold relations:

Fi Uiaht', ——
Fa ——2vivadt,
Fa= (Ua'+2viva)~k
F4 (2va Us+ 2——vi Ua) At,

F„(eodd)=26&(v '/2+V~ av.4.a

+V. 4V.+4+ . +viva —i),
F„(44 even) =26/(v„ ivy+i+ UR avn+a

+ +v.v.. .), (»)
and

(F /~|-)'",
(F /»t-)lv,
(Fa/2Ag Uaa/2)/U, , —
(1/U, ) (F./2~i V„ /2 V„,V—„+, —

—U 4U +4—. —Uava„a),
(1/Ui) (F /2d 1 U„ iv„+i-

—U av +a— —Uavs a) . (14)

U3 ——

U5 ——

Ua. , (ra odd) =

V2 1(ia eveil) =

The digital unfold [Eqs. (14)]must proceed sequen-
tially since U„values of lower m appear in expressions
for U„at higher e. We see from Eqs. (11) and (12) that
the U(t') function extends over twice the range of t
of the F(t) function as pointed out earlier. This is a
basic characteristic of the fold-unfold relation when
written in the form of Eq. (3).

We have thus arrived at a U(t') function derived by
the four basic steps of the INS procedure listed above.
Examples of data derived from electron distributions
for He+ ions are shown in Figs. 7 and 8. Comparison of
final unfold results for different ions on the same target
are shown in Figs. 9 and 10. The agreement shown for
different ions depends not only on the ability to 6nd
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FIG. 10. Comparison of final unfold functions U(p) for He+ and
Ne+ iona on Ni(111}.The R values used in the X(E) extrapolation
were E~, ip ——3.11 for He+ and E~ 10= 1.61 for Ne+.

IV. EXPERIMENTAL FEASIBILITY OF ION-
NEUTRALIZATION SPECTROS COPY

Experimentally, the feasibility of INS hinges on our
ability to obtain Xrr(E) energy distributions which are
of sufFicient accuracy and which have been measured
under a demanding set of experimental conditions. The
apparatus used in the ion-neutralization measurements
is in principle the same as that used in earlier work. ""
However, we are now using a new, mechanically
superior, and more versatile apparatus, depicted
schematically in Fig. 12. Since no account of this

"H. D. Hagstrum, Rev. Sci. Instr. 24, 1122 (1953).
~p H. D. Hagstrum, Phys. Rev. 119, 940 (1960)."H. D. Hagstrum, D. D. Pretzer, and Y. Takeishi, Rev. Sci,

Instr. 36, 1183 (1965).

the parameters for a common P(E) function but also
on our use of different E values in Eq. (6) for the
different ions. This is discussed further in Sec. VI.

The experimental data are obtained in digital as well
as analog form. A first computer program is used to
interpolate the data to a convenient even hE grid,
smooth it, and normalize the area of the X(E) distribu-
tion to the measured total electron yield y. Steps (2),
(3), and (5) of the INS procedure are carried out by
further computer programs. To date step (4) has been
carried out by hand but certainly need not be. In
addition to the data smoothing accomplished in the
first computer program, further smoothing is done in
step (2). The total amount of smoothing can be varied
and some study of its effect has been carried out. For the
data used in this paper, three 9-point smoothings have
been used, one on each of the Xx(E) functions, one on
the difference function X~,—X~„and one on the final
extrapolated function Xs(E). The quality of the digital
data for the final unfold U(f) may be judged from
Fig. 11 ~

The basic plan of the INS method has now been
presented. A more detailed discussion of its experimental
feasibility and theoretical justification follows.

particular apparatus has been published we shall
point out its salient features briefIy.

The apparatus depicted in Fig. 12 is enclosed in a
metal vacuum envelope in the form of a 3-dimensional
right-angle cross of tubing diameter about 16.5 cm.
There are four horizontal fIanged ports, one port on top,
and another on the bottom. The top port carries the
target-turning mechanism which (1) can present the
target face to any one of the horizontal ports by rota-
tion about axis A-A and (2) can turn the target about
the axis 8-8 through its face. The bottom port con-
nects to the pumps (sputter-ion and mercury diffusion)
and a gas-inlet system. The ion-neutralization apparatus
bolted to port 1 is like that previously used except for
mechanical improvements and a larger sphere S for
increased instrumental resolving power. The source end
to the left of the septum is independently pumped and
has an independent gas-inlet system.

Port 2 carries the target-processing apparatus. The
target at the port-2 position may be enclosed in the
rectractable sphere Sp. Here the target may be sput-
tered and heated by passing current directly through it.
At port 3 the target may be examined by low-energy
electron diffraction (LEED). This apparatus is basi-
cally the same as the display type in current use"
except that here we look past the gun at the pattern on
the phosphor-coated glass screen Sc, rather than past
the target and through the grids as in the conventional
system. The gun has been placed to one side giving
excellent screen visibility. When desired, normal
electron-beam incidence can be achieved by rotation
about axis 8-8 which takes the target from position 3
to position 4.

The basic experimental requirements of INS are
as follows:

(1) The incident ions must be slow in order to
reduce the inherent energy broadening of the neutraliza-
tion process. Data of the accuracy required can be
obtained for ion energies E as low as 4 eV, as determined
by the net acceleration in the lens system. Image-force
attraction will increase this by about 2 eV. Thus we
a.re working within a factor of 3 in energy or V3 in
velocity of the absolute minimum possible if the ions
were started toward the surface with infinitesimal
velocity and were accelerated by the image force only.
The ion optics, modes of lens operation, and negative
feedback beam stabilization have been discussed
elsewhere. ""

(2) The apparatus must have su%ciently high re-
solving power in the energy-distribution measurement.
In the method used here of differentiating a retarding
potential curve of electron current to electrode S,
resolving power depends on the relative sizes of the
target T and the electron-collecting sphere S. S is a
sphere of 80-mm diameter (ds) and T has a rectangular

"J. J. Lander, J. Morrison, and I'. Unterwald, Rev. Sci,
Instr. 33, 782 (1962).
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FIG. 11.Reproduction of the computer plot of the UQ') function of Fig. 8 illustrating the quality of the digital data involved.

front face 14)&7 mm which we may approximate by a
sphere of 10-mm diameter (dr). Monoenergetic elec-
trons of energy E will be completely retarded from 5 in
the Vsr interval between (1—(dr/da)s)E and E.
Roughly, this corresponds to the convolution of a
distribution in energy by an instrumental broadening
function whose width at half-maximum is of order half
the above retarding interval or —,'(dr/ds)'E=0. 0075E.
At E=10 eV this corresponds to an instrumental
broadening of less than 0.1 eV.

(3) The data should have as little noise, particula, rly
low-frequency noise (1—10 cps), as possible. Since we
are dealing with ion beams of 10 '-10 "A, and measure
and differentiate electron currents to S which are as
small as 10 "A, this is a difFicult requirement. High-
frequency noise is effectively averaged out by counting
during a 0.1-sec gating interval in the digitalization
electronics. The traces of recorder plots of the analog
derivatives in Figs. 1, 2, and 5 are representative of the
best operating conditions. Electronic as well as digital

smoothing of the data or curve averaging is necessary,
however.

(4) Very strict requirements must be met concerning
the target-surface condition. If we are to determine
bulk-state densities by INS the surface must be
atomically clean and well ordered. We require back.-
ground pressures in the apparatus below 10 ' Torr.
Pressures as low as 6)&10 " Torr are consistently
achieved. Low background gas pressure and low con-
tent of adsorbable impurities admitted with the noble
gas used. in the ion source make possible minimum
monolayer adsorption times in the range 5—10 h. Flash-
filament accumulation measurements indicate that we
can sputter a target, anneal it, observe the LEED
pattern, and complete the measurement of an Xrc(E)
distribution before 2/o of a monolayer of foreign gas
has adsorbed on the target. More details concerning
surface conditions and diagnostic methods will be
given in subsequent publications of experimental
results.
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requires that transition probability vary reasonably
slowly with band energy f T. his in turn requires a thin
barrier between ion and solid with consequent relatively
large transition rate and energy broadening. Initial-
state lifetime broadening and nonadiabatic broadening
due to the motion of the ion are the principal broadening
components. ' Nonadiabatic broadening is appreciable
even at the lowest ion velocities which are experi-
mentally feasible and even, in fact, at the lowest
possible "image-force velocity. " Thus we expect to
have to "debroaden" the measured Xz(E) distributions.
Ke are talking about an amount of broadening which
varies with ion and solid but lies in the range 0.2 to
1 eV for 5-eV He+ ions.

In the forward model (Sec. II) broadening was intro-
duced by convoluting the F(f) function with a sym-
metrical broadening function such as the Gaussian or
the I.orenztian. Writing the unbroadened function
generally as Fp(E) and the broadening function as
B(X), this convolution integral is

Fi(E) = B(X)Yo(E X)dX=—B*Fo. (15)

Our problem is to reverse this procedure at some point
in the INS data handling and to determine the un-
known I'0 from the measured Y~. There is a considerable
literature relating to the removal of instrumental
broadening of spectral lines"" and x-ray diffraction
lines, ""the effects of antenna smoothing in radio
astronomy, " and the sharpening of observational data
on the darkening of the solar limb. " In each of these
cases, unlike our own case, the broadening function is
independently known or can be determined. Van
Cittert's first-order procedure" is then to convolute the
known broadening function 8 with the measured I'~ to
obtain a function Fs——B*F'i and then to take (F i—I s)
as a first-order approximation to (Fp—F'i). Thus he
obtains

F'p ——Fi+ (Fi—Fs) = 2F'i —B*Fi. (16)

Higher order approximations involving further succes-
sive convolutions of the experimental data have also
been made. "

Although it cannot be applied in our case because we
do not know 8, Van Cittert's approximation has been
suggestive of the possibility of ending I'0 from two
measured distributions using the first of Eqs. (16) if
a way of determining how I'& is to be measured relative
to F~ can be found. In our case the Y functions are the
Xz(E) distributions which broaden as IC is increased;
so the problem could be stated thus: Having a dis-

"P. H. Van Cittert, Z. Physik. 69, 298 (1931).
'4 H. C. Burger and P. H. van Cittert, Z. Physik 79, 722 (1932)."C. G. Shull, Phys. Rev. 70, 679 (1946).
M M. S. Patterson, Proc. Phys. Soc. (London) A63, 477 (1950).
'7 R. N. Bracewell and J. A. Roberts, Australian J. Phys. 7,

615 (1954).
28 P. B. I'"ellgett and F. B. Schmeidler, Monthly Notices Roy.

Astrcn. Soc. 112, 445 (1952).

tribution Xz, (E), at what Ess'hall another distribu-
tion be measured so that Xp(E) —Xz,(E)=Xz,(E)—Xz, (E)? An equivalent way of stating the problem is
embodied in Eq. (6) in terms of which our problem is
to find the R parameter such that (Xp—Xz,)=R(Xz,—Xz,), Xz, and Xz, being any two measured dis-
tributions. We proceeded in Sec. III from Eq. (6) to
Eq. (8) forRz, z, byuseof the statement that (Xp—Xz)
is proportional to ion velocity or QE. This dependence
of broadening on ion velocity has been discussed else-
where. ' The ion-velocity scale has been determined by
making two corrections to the nominal ion accelerating
voltage. Corrections are made (1) for the fact that the
ions are formed in space at a potential in the bom-
barding electron beam which differs by 0.3 V from the
potential of electrode D and (2) for the image force
acceleration of the ion near the target surface. The
increase in ion energy is related to the change in effec-
tive ionization energy near the surface. ' ' We have tak.en
these to be equal and used AE;=2 eV from the data
fit of Ref. 2. This assumption suggests that the ion-
solid separation at neutralization is about 2 A, a not
unreasonable value. Thus combining instrumental and
image force corrections to V~~ we obtain for E,

&=llr»l —03+2=II'»I+17e~ (»)
It should be pointed out that the result of this

linear-extrapolation procedure is not the same as what
one would obtain if the experiment could be performed
of projecting the ion at lower and lower velocity toward
the surface and could circumvent in some way the
image force speedup near the surface. The results of
such an experiment would drastically alter the form of
Xz(E) because as E decreases the ion-solid separation
at neutralization increases, the barrier between ion and
solid thickens, introducing a steep variation of transi-
tion probability with band energy f (Sec. VIII and
Ref. 3). What the extrapolation procedure gives is
approximately what one would measure could one
produce ions of negligible velocity at the distance from
the surface where the Auger process occurs for E 5—10
eV. The linear-extrapolation procedure should reduce
the energy broadening to below 0.1 eV into the range
of the instrumental broadening, at least near the top of
the band.

(Note added se proof. The extrapolation procedure
outlined above should take care of the broadening
components which vary with ion velocity, but not final-
state broadening, which is independent of ion velocity.
Final-state broadening is zero at the top of the band and
increases with increasing f deeper in the band. Recently
we have experimented with extrapolations involving a
variable E parameter which increases with increasing f
Results of this procedure will be discussed in later work.
Extrapolation for constant R is used exclusively in this
paper. )

In Fig. 5 we have seen an extrapolated Xp(E) dis-
tribution for the cases of a metal showing a considerable
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amount of broadening. We see that the linear-extrapola-
tion procedure of Eq. (6) fails at the high-energy end of
the distribution, producing negative values of Xo(E).
Thus we should not be surprised if the F(f) function
derived from an X,(E) like that of Fig. 5 simply by
throwing away the negative portions at higher E
should prove to be unsatisfactory. In fact, as we shall
see, such P (f) functions do not unfold properly. Further
trimming of the function near the ordinate axis is re-
quired. As discussed in Sec. IX, this not only makes
unfolding possible but b~ings the F(t) and UO)
functions into agreement with what is expected near the
Fermi level from other considerations. Several ways of
adjusting the data in this region could be used. In that
employed almost exclusively to date, a new crossing
point for the curve is chosen and the increment neces-
sary to accomplish this is applied to the digital F
values in linearly decreasing magnitude between this
new zero of the F function and its first point of inRec-
tion. F(t) =0 in any case defines l'=0.

Finally, in this section we mention the anomalous R
values needed for Ne+ ions. When the extrapolation
methods discussed are applied to Xx(E) distributions
for Ne+ it is immediately apparent, in comparison with
extrapolation of He+ data, that a much larger extrap-
olation has been effected. This is undoubtedly related
to the anomalously large energy broadening found for
Ne+. ' Ne+ broadening, although linear with respect to
e, was found to be considerably larger than that for He+,
in violation of what one expects if broadening depended
on ion velocity in going from one ion to another. Ar+
broadening is considerably smaller than He+broadening,
as expected. This behavior for Ne+ is possibly related
to another anomalous behavior of Ne+, namely, that of
total electron yield with respect to ion velocity which
was attributed to the involvement of excited states in
the neon atom in the neutralization process. As dis-
cussed elsewhere, ' this could account for greater
broadening in the velocity range where such excited
states are involved. As ion velocity decreases, however,
we expect the excited states to play a decreasing role
and, in terminology used earlier, ' to go from a mixture
of Auger neutralization and Auger de-excitation to pure
Auger neutralization. Thus a linear extrapolation of
Ne+ data to v=0 would overcorrect the data, as is
found. Smaller R values are used for Ne which match
the form of the high-energy end of Xp(E) for Ne+ to
that for He+. This results in a good match for the U(f)
curves as seen in Figs. 9 and 10.

VII. DIVISION BY ESCAPE PROBABILITY

The ion-neutralization process has two basic depend-
ences on energy. One is the dependence on band energy
f, and involves the density-of-initial-states and matrix-
element factors which depend on the position of the
participating electrons in the band. The second energy
dependence is that on final-state energy which can be
taken as E, the energy of the ejected electron. This

includes final-state density and escape probability of
the excited electron. The function P(E) is understood
to include not only escape probability, but all other E
dependences including final-state density. As can be
seen in Fig. 4, structure traceable to an E dependence
will remain stationary on the E scale whereas features
arising from a f dependence will be shifted on the E
scale for different ions by the difference in effective
ionization energy [Eq. (2) and Fig. 2].

It is clear that a relatively smooth P(E) function
such as that of Eq. (10), shown plotted in Figs. 4, 7,
8, cannot account for sharp peaks or variations in the
density of final states. On comparing He+, Ne+, and
Ar+ results we have not seen any effects which appear
to result from features in the density of final states.
From results to date it appears that a common F(f)
and a common P (E) function may be found for different
ions for the same solid. It can be shown that the
existence of either a common F(g) or a common P(E)
function requires the existence of the other.

VIII. PHYSICAL JUSTIFICATION OF UNFOLDING
AND THE MEANING OF U(()

Having arrived at an F(t ) function characteristic of
the ion-neutralization process for a given solid but
essentially independent of the specific ion used, we can
proceed only if F(i) is expressible as a convolution
square or self-fold of a, function U(P) as given in Eq. (3).
Our probelm in this section is to discuss how nearly
Eq. (3) expresses the physics of the situation and what
the U(t) function then means. We shall not repeat the
more general theoretical setup of the problem to be
found in Secs. XI—XV of Ref. 2, but shall introduce only
those elements necessary to our purposes here.

As in Ref. 2 we assume initially that the process can
be described with reasonable accuracy in the one-
electron approximation. We shall find that we obtain a
very reasonable explanation of the INS results for Cu
and Ni on this basis. This appears to indicate that final-
state interactions and many-body effects do not play a
dominant role in the work we have done to date. This
does not preclude finding such effects in the INS results
as more detailed comparisons with SXS and PES are
made. The effects to be expected from some possible
final-state and many-body interactions are mentioned
later in this section.

The elemental transition rate for a pair of electronic
transitions such as are depicted in Fig. 3 depends on
band energies of the two electrons, angles, and ion-
solid separation. We may write it as

r~(l, h, Q,s) = (2ir/h) ~Hr, ~'Nr(E)dQ, , (18)

using standard, time-dependent perturbation theory.
In Eq. (18) 0 is the solid angle, Hr, the matrix element,
and Nr(E) the density of final states. Since we are
interested in the totality of those elemental processes
which produce excited electrons in dE at E, we must
integrate r ~ over angle, ion-solid separation s, and the
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energy difference 6 (Fig. 3). This gives us the function
FQ ) which may be written

u e (z) u&~(z)

for constant density of final states. Taking account of
antisymmetrization of the total wave functions in-

clusing space and spin functions,
l
Hr, l' may be written

as

le, l'=[H"+H"' H'H—"$, (20)

in terms of the "elemental" matrix elements H' and
H" for each of the elemental pairs of transitions shown
in Fig. 3.' H' may be written as

u„'(&)

u, *(1)u,*(2)(e'/rrs)u„'(1)u„"(2)drrdrs, (21) &0

in terms of wave functions shown in Fig. 13. H" is
obtained from Eq. (21) by interchanging electrons 1

and 2 in the initial-state wave functions as dictated by
Fig. 3.

As discussed in Sec. XII of Ref. 2, we can distinguish
two general kinds of matrix-element dependence. One
arises from exchange-matrix-element cancellation and
is a dependence on the energy difference 2A between the
participating electrons. The other is the dependence on

l r and is of the participating electrons. We note that
the matrix element may be viewed as a Coulomb inter-
action integral between two charge clouds u, e (1)u„'(1)
and u,*(2)u„"(2) for electrons 1 and 2, respectively.
This is seen if we rewrite Eq. (21) in the form

ug*(1)u„'(1)(e'/r»)u, *(2)u."(2)drrdrs. (22)

The Coulomb-interaction term most likely does not
have the simple form written here. H' will be larger the
larger the magnitudes of the component wave function
products for each electron and the larger their overlap.

If we write'

Eq. (20) becomes

H"=mH', 0&m& 1, (23)

l
H~,

l

'= H"[1+m+m'$ =H"[s+ (m —-')'$ (24)

Thus near the edges of bands or in narrow bands the
two electrons lie at nearly the same energy and m 1.
The grea, test deviation of

l
Hr,

l

' from H" occurs at
m = s when

l
Hr, l

'= 4s H". m clearly must be a function
of the energy separation of the two electrons in the band,
2A. Electron exchange changes the wave-function
products from the pair u,*(1)u„'(1), u, ~ (2)u„"(2) to the
pair u,e(1)u„"(1), u,"(2)u„'(2). The changes in the
product wave functions tend to compensate in the
overlap region. Thus if the range of interaction between
the participating electrons is small, we expect little
effect of electron exchange. Since, as we shall see, there
are reasons for believing that this is approximately the

ug (1)

FIG. 13. Electron-energy diagram showing electron wave func-
tions for the initial band states, I,'(1), I,"(2), for the atomic
ground state, N, (1), and for two excited states, one which crosses
the surface barrier, N. (2), and another which is internally re-
flected there, I,'(2).

case, we shall neglect the effects of electron exchange and
any possible dependence on energy difference of the tw'o

electrons.
We are now left with the matrix element dependences

on l t and l s. The nature of these dependences involves
two fundamental characteristics of the neutralization
process: (1) the thickness of the barrier between ion and
solid when transition occurs, and (2) the range of the
interaction between electrons 1 and 2. As discussed
elsewhere, ' a thick barrier would limit the tunneling of
electron 1 to fr values near zero at the top of the band.
This would put us at what we have called the one-elec-
tron limit of the problem since t s only would then be
allowed to vary through the band. This would mean that
the F(g) function and not the UQ') function of Figs. 7
and 8 would be related to the state density in the filled
band. From what we know of the transition metals Cu
and Ni this is clearly impossible. The expected d bands
show up in U(f), not F(l ) Furthermore, .when the U(P)
functions are plotted on the same plot as in Fig. 14 it
appears that both the d band and the background of
s-p electrons under the d bands decrease in magnitude
with increasing 1 rather than remaining approximately
constant as band calculations require. This points to a
relatively weak tunneling dependence on band energy
and is further evidence that we are near the two-elec-
tron or Auger limit of the process.

We are now in a position to summarize the transition
probability factors for electron 1 of Fig. 13, the "down"
electron. These factors are those which a6ect the mag-
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Fro. 14. Plots of the unfold functions U(f) from Figs. '7 and g
for Cu(110) and Ni(111). The constant ordinate lines are plots
of the exponential A exp( —0.12$).

nitude of the wave-function product N,*(1)N„'(1).Since
u,*(1) is restricted to the region of the atom by the
rapid fall-off of I,"(1) away from the atom, this wave-
function product is governed by the tunneling effi-

ciency of u„'(1) into the a,tomic well. This in turn
depends on t i, on the symmetry character of the band
wave function which we designate by I&, and on the
angle 8i which the electron's k vector makes with the
surface normal. We shall write the transition probability
factor as qi(f't, l&,8&) and the probability that an electron
in df't at t t becomes a "down" electron in a neutraliza-
tion process as the product qr(f, 4,8i)lq, (f&).

The magnitude of u„'(1) at the position of the atom
is governed by an expression of the form

q (f,l,8)=f(f )X m( —{(2 )'"&L(f+p)
—(gp —t t)cos'8i O'I's}), (25)

in which the dependence on symmetry is given by
f(ti) and the dependence on |& and 8i by the exponential.

lp is defined in Figs. 3 and 13. The term (fp+&p) is
total barrier height and (t p pi) cos'8i—is proportional to
k„', the energy associated with velocity normal to the
surface. f(lt) expresses the fact that the magnitude
outside the solid of the atomic orbital at a given distance
from the nucleus of a surface atom decreases in ma, gni-
tude as l~ increases, i.e., as one goes from an s electron to
a p, to a d, etc. (Sec. XII of Ref. 2). This eRect is to
be seen in the results for the d electrons in Cu a,nd Ni
(Fig. 14), where the magnitude of the d peak is much
reduced relative to the s-p background (Sec. XI). An
attempt to measure areas of the d peak and the s-p
background indicates that the d peak is reduced in
relative magnitude in both Cu and Ni by several times
a factor of 10. The ratio of d-peak height to s-electron
intensity near the Fermi level for Cu in Fig. 14 is about
a factor of 10 lower than this ratio for the PES results. "
The exponential factor is what one expects for a plane
wave incident on a barrier at which it is totally reflected.

It indicates a, decrease in qi with increasing f'i and 8i,
favoring electrons near the top of the band and those
which a,re moving normally to the surface. The de-
pendence on 0~ might be different for d electrons from
what it is for s or p since the d electrons are not as well
approximated by plane waves. We have seen evidence
for the t i dependence in Fig. 14. Propst" has attempted
a calculation of this tunneling factor and for a reason-
able choice of s has obtained exp( —0.4$), a somewhat
steeper exponential than that in Fig. 14.Possible reasons
for this are discussed in Sec. IX.

Turning now to the transition probability factor
qs(fs, ts, 8s) for the "up" electron, electron 2 of Fig. 13,
we are confronted with the second fundamental
characteristic of the neutralization process, namely, the
range of interaction between electrons 1 and 2. If
electron 2 could be excited over large distances from
electron 1, the u,"(2)n„"(2)product would be dominated
by the bulk parts of the wave functions and q2 could
hardly be expected to have the same dependences as
qi. Under these circumstances we write ~Hr;~' in Eq.
(19) as the product qrqs and obtain

Xq, (t ~, l„8,)E,(f h)dD. (26)—
This is Eq. (4) with Ui= qtlV& and Us = qslV&. If on the
othe~ hand the perturbation in Eq. (21) limits rip to
small values, the important part of n,"(2)u„"(2) is also
that part which overlaps the region of the atomic well
and q~ q~. Under these circumstances the unfolding
of Eq. (3) in the INS procedure is justified. In an
intermediate case, unfolding of Eq. (3) for qi different
but not greatly diferent from q2 would yield a sort of
average U(f') which would still be interpretable.

There is evidence that electron 2 is excited near the
surface and hence near electron 1. This comes from the
experimental result that the ion-neutralization distribu-
tions have many, many times few'er inelastically
scattered secondary electrons than would the one-elec-
tron photoelectric emission process for hp —18 eV which
is the equivalent of the He+ ion-neutralization process.
Thus electron 2 must be excited much closer to the
surface than are photoelectrons in these experiments. ""
In a metal we would expect the screening of the Coulomb
term in Eq. (21) to limit rip to 0.5 A were it not for
the large energy transitions which lie above the plasma
frequency. If one considers the neutralization process
to be the release of a photon by the "down" electron
which is a,bsorbed by the "up" electron we point out
that this photon is not a plane-wave photon as in the
photoelectric effect. The dipole which generates the
radiation lies very close to the solid. Thus other band
electrons at the surface of the solid lie in the near-field
region of the dipole radiation which falls off very rapidly
with distance and limits excitation of electron 2 to the

"F.M. Propst, Phys. Rev. 129, 7 (1963).



ION —NEUTRALIZATION SPECTROSCOPY 509

surface of the solid. Heine" has shown that the long
range of the unscreened potential does not lead to any
divergences which might be expected in calculating the
emergent current. Since only those elemental processes
which correspond to large momentum change contribute
effectively, Heine concludes that the excited or "up"
electron originates largely in the first atomic layer and
outside the solid. He also has discussed the momentum
dependences of the transition probability.

Finally, we note that the results of unfolding Eq. (3)
produce very reasonable results in terms of the known
transition probability factors. Since it is improbable that
the transition probability factors for the up and down
electrons are identical, we conclude that the unfolding
produces a reasonable U(f') average between the true

Ut(g) and Us(f) Und. er these circumstances we expect
the U(P) obtained from the unfold of Eq. (3) to display
the dependences on l, l, and 8 which are like those
deduced for q~ for the down electron only. This is, in

fact, the case.
The one-electron approximation used here in dis-

cussing the physics of INS does not, as said earlier,
include exciton-like, final-state interactions or many-

body effects of possible importance. An example of a
final-state interaction is that between the two holes
formed in the valence band. By virtue of screening we

would expect the energy involved to be appreciable
only if the two holes were formed on the same atom.
The potential energy of repulsion eventually appears as
kinetic energy of the holes which decreases the energy
available for excitation of the up electron. A distribution
in magnitude of such repulsive energies would result in

a broadening of the observed d band in copper, for
example. Integration of this effect over the volume in
which excitation of the up electron is appreciable would

greatly reduce the probability of very close initial
proximity of the two holes even if the interaction radius
were as small as twice the lattice constant. Other inter-
actions of a many-body nature could involve excitation
of more than one up electron or simultaneous excitation
of an electron and a plasmon. There is no direct evidence
for the first of these in results to date. The second would

essentially remove the up electron from observation
because of the large value of the plasmon energy in the
materials studied so far. As said elsewhere, w'e take the
position that the one-electron approximation gives a
reasonable first interpretation of the results, there being
no direct evidence as yet of important final-state or
many-body interactions. Some further discussion of
many-body eRects is included in Sec. XI, (1).

IX. THE MATHEMATICS OF UNFOLDING

We discuss in this section the means of unfolding the
integral expression of Eq. (3) to obtain the function

' V. Heine, Phys. Rev. (to be published).

TABLE l. Analytic fold and unfold functions which are
solutions of F (1') =j'ot U(1+6)UQA' —)dA

(&)
(2)
(3)
(4)
(5)

A

A g
—1/2

A+By

A2g
2 A2g3

—,'~A2P
-', xA2
A2g+2ABP+-,'-B2g3

U(f). Given Eq. (3),

F(t) = U(1+6)U(f d—)dA, (3)

we can readily write down some analytic functions
satisfying this relation. Several examples are given in
Table I. Also, as indicated in Sec. III, we can produce
the digital fold-unfold relations of Eqs. (13) and (14)
by assuming U(|') to be approximated by a step func-
tion, i.e., U(f) constant at the value Us„ t in the
interval (2e—2)ht &l &2nhf. [See Eq. (12).7 The
relations of Eqs. (13) may be obtained from a matrix in
which the term in the mth row and the pth column is
U2~ ~U2~~. I"„is the sum of terms appearing along the
diagonal of the matrix running from the U2 ~U~ term
to the UtUs„ t term. This gives the F„of Eqs. (13).
Sequential unfold by Eqs. (14) proceeds through the
matrix from the U~' term in the upper-left-hand corner.

Unfolding bymeans of the step-digital-unfold relations
of Eqs. (14) is fraught with difhculties, and considerable
time and effort were expended in overcoming these.
Only after we had come to an understanding of the
basic instabilities and error introductions of the method
was it possible to apply Eqs. (14) successfully. During
this work several different unfolding methods were tried.
These are mentioned briefly later in this section.

The step-digital-unfold sequence of Eqs. (14) dis-

plays two basic instabilities. The first of these, which
we call the h2 instability, arises for the case F(l) =0 at
)=0 when d'F/dP or the second difference 62 is too
large. The step-digital fold-unfold relations of Eqs. (13)
and (14) are completely accurate only for the case
F(l)=l (d'F/dP=O), which is entry (1) in Table I.
Digitalization of F(f')=| unfolds properly, giving the
digitalized form of U(f)=1, as is seen in Fig. 15(a).
When one digitalizes F(f') = ssf's [entry (2) in Table I7,
however, and tries to unfold this by Eqs. (14) one is
in serious trouble in a few points, as Fig. 15(b) indicates.
F(g) in this case starts out with zero slope, greatly dif-
ferent from the case F (P) = l, 62=0 for which Eqs. (14)
are accurate. Note that the digitalization of F(l) =st'-
was done to 8-place a,ccuracy. Thus no matter how
accurate one's digital data for F(f), one is in trouble if
F(f') =0 at &=0, dF/dl is small, and d'F/dP large One.
can circumvent this difhculty by replacing the first
10 points of F(f) by the digitalized fold by Eqs. (13)
of an assumed analytic fold U(l) and carefullymatching
this to the experimental data at the 11th point. In
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Q2 IN9TABILITY

jt 8.6

U((1=1

0
0

(a) (b)

this way we were able to circumvent the h2 instability
for some germanium data. We were then plagued, how-

ever, with the harmonic-error introduction discussed
below.

The second instability of Eqs. (14) is a noise in-

stability. If too much noise is allowed to remain in the
data, the digital U2 & points will be alternately above
and below the smooth U(f) function at distances which

eventually increase to a very large value. This instability
can be of point-to-point character or can involve longer
ripples in the data which are not unlike the harmonics
discussed below. The amount of smoothing used has
been entirely adequate to circumvent this difhculty.

The unfolding procedure is found to be very sensitive
to the form of the function F(t) near )=0. This is
believed to result from the convoluted nature of F(i).
The value of F Or) at i t depends on the values of U(i)
at all i (t t The initi. al portions of U(P) are used over
and over again in developing F(l ) Thus the onse. t por-
tion of an experimentally derived F(g) near i =0 must
be consistent with the rest of the F(i) function if we

are to unfold it to produce the correct unfold U(f). An
"incorrect" initial portion of F(g) introduces error into

U(f) in the form of harmonics whose magnitude and
phase depend on relatively small changes in the initial
portions of F(i) We have seen .above that it is just
here that we know least about F (P) by virtue of energy
broadening and the failure of the linear extrapolation
near )=0. Figure 16 for Ni data illustrates this har-

-20.2 & -].05

FIG. 15. P (I ) and U (i ) functions indicating (a) the absence,
and (b) the presence of an instability caused by too large a second
difference in the digital data at the onset of the Ii (I ) function.

HARMONIC ERROR

He+/Ni. (iii)

12 10

FIG. 16. U{|)functions illustrating change m harmonic error
introduction when the initial portion oi the F(i) function is varied.
Curves u and b in the inset show the initial portions of the Ii {g)
functions corresponding to the dashed and full U(i') curves,
respectively. Curve c of the inset corresponds to curve 1 of
1 ig. 17, as indicated in the text.

monic-error introduction. If for F(i) we use a curve
derived from an Xs(E) distribution only and simply cut
it oB at / =0 as shown at a in the inset of Fig. 16, the
dashed curve for U(i ) is obtained. If for F(g) we use an
Xp(E) curve like that of Fig. 5, discarding the negative
portions, we have the F(i) shown at b in the inset of
Fig. 16 and obtain the solid curve for U(f). Note the
shift in phase of the spurious harmonic. When F(g)
is cut oR to the curve shown at c in the inset, curve 1 of
Fig. 17 results. This curve no longer includes a spurious
harmonic. Continuation of this trimming procedure by
moving i =0 toward larger f by 0.1-eV steps, dis-
tributing the incremental changes necessary to do this
linearly over the succeeding data points with the
increment reaching zero at the first point of infiection
of the function, the series of curves 1—5 of Fig. 17
results. Notice that U(i) has now stabilized without
harmonic-error introduction except for the changes
brought about by the differing treatments of the data
near i =0 Afur. ther comment on the genesis of har-
monic error is made below.

The above illustrates a basic characteristic of the
ion-neutralization spectroscopy. Within the range of
stable unfolding we cannot u priori choose among the
curves of Fig. 17. However, we are quite sure that the
"correct" U(t ) function is to be found among those for
which a stable unfold without harmonic introduction is
possible. In fact, this necessity of making the initial
portion of F(i) consistent with the rest of the function
so that the stable unfold is possible considerably
narrows the range of possible U(|) functions. However,
it is necessary to choose among the stable solutions for
U(f') such as those of Fig. 17, making use of other band-
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structure information in this choice, as will be explained
in more detailed publications for individual solids. This
procedure gives us an answer which could misplace
structure observed deeper in the band by no more than
a few tenths of a volt. INS more accurately locates
deeper lying structure features relative to each other
than to the Fermi level.

During the above studies of the step-digital-unfold
procedure other methods of unfolding were investigated.
Blackmansr pointed out that Eq. (3) had a simple elec-
trical-network analog. A four-terminal network to whose
input terminals a unit impulse (8 function at t=0) is

applied produces the so-called unit impulse response
function R~ at its output terminals. This can be fed
into a second identical network to obtain the unit
impulse response function R2 of two identical networks
in tandem. Rt is U(l) and Rs is F(f) of Eq. (3). It was
possible to set up a network on an analog computer and
to display U(f) and F (1) on alternate cycles."Variation
of the network parameters varied both U(g) and Fg ).
In principle, one could fit F(f) to a function determined
in the ion-neutralization experiment and obtain Uo')
in this way by trial and error.

Another possibility involves expansion of the un-
known U(f) in terms of orthonormal functions and
determination of the expansion coefficients from the
given F (l'). An analytic expression or a means of calcu-
lating digital F values from an assumed U(f) in terms
of the expansion coefficient is then set up. The initially
chosen coefficients are refined by a successive approxi-
mation program using least-squares fit of the calcu-
lated F„to the experimental Ii . Two methods of doing
this were investigated.

We expand the unknown U(l) in terms of ortho-
normal polynomials, w riting

(27)

F(t) from Eq. (3) then becomes

m, n=a, t

For F„(f)we chose the shifted Chebyshev polynomials.
It was soon found, however, that the procedure was
impractical for two reasons. First, derivation of the
polynomial expressions for the integral fold of the
F„(P) polynomials required in Eq. (28) wa, s prohibi-
tively tedious if carried to sufficiently high-order
polynomials. Second, evaluation of the integral in
polynomial form had prohibitively large round-o6
errors since the final value, of order unity, was obtained
as the result of subtracting very large numbers.

Another scheme based on Eq. (27) was then tried
and used successfully. From an initial choice of the a„,
the function U(l') was evaluated at 120 points by Eq.

"R.B.Blackman (private communication)."This was done at the kind instigation of C. F. Simone.

He /N t {1'll}

12 'jo

f (eV}

Fro. 17. U(f'} functions for He+ iona on Ni(111}illustrating the
eBect of trimming the initial portion of the F(g) function. All
these curves are in the range where harmonic error has been
depressed.

(27). These U„data were then folded by Eqs. (13) to
obtain F„.A subset of F„was then compared with the
experimental values and a least-squares error calcu-
lated. Minimization of this least-squares error was
carried out using a successive-approximation program. "
Although tedious to apply, the program worked if one
had a reasonable initial choise of U(f). Although the
program was not used extensively, enough was done
with it to show that harmonic error was also introduced
here if the initial portion of F(f) was "incorrect. "

The setup of the successive-approximation method
illuminates the question of harmonic-error introduction
in a way worth mentioning. The a„coefficients of
Eq. (27) may be divided into two classes: those to
which the least-squares error is sensitive and those to
which it is not. If the least-squares error is insensitive
to a given u, it means that a large amount of this
harmonic can be inserted into the U(t ) function without
greatly affecting the resultant F(f). The harmonic in

U(l) "folds itself out, " so to speak, in producing F(f).
Conversely small "errors" in the experimental F(t)
can demand large harmonic amplitude of such an
insensitive harmonic as our experimentation with the
initial portion of F(t') has shown. Methods of preventing
the introduction of these "insensitive" harmonics have
been tried. An iterative procedure based on repetitive
application of Eqs. (14) and involving reduced weight on
points at higher l was tried with the hope of stopping
the procedure before "insensitive" harmonics developed.
The method was only partially successful.

The only really practicable unfolding of the experi-
mental data uses the step-digital-unfold relations and
has proceeded by cutting off the initial portions of
FO) step by step until harmonic-error introduction
was depressed and a stable solution insensitive to
further cutting of the initial portion was achieved. The

"C. L. Semmelman and J. M. Schilling (unpublished}.



512 HOMER D. HAGSTRUM

0.8

0.6

0.4—

and U, (f) = 1, shown in Fig. 18 were folded by Eq. (4).
The fold thus produced was then unfolded by Eq. (3)
and the U(i) function of Fig. 18 obtained. For com-
parison the geometric mean of the original U~ and U~
is also plotted. Thus we see that if U~/ U2 we expect our
unfold to show a smaller variation with f than that of
Ut(t), which by the discussion of Sec. VIII should be
that of the down electron. We would not expect the
position of local band-structure features to be affected
by this averaging, however. Perhaps it is averaging of
this sort which accounts for the fact that the exponential
Lexp( —0.12$)) appropriate to the s-p electrons in
Fig. 14 is less steep than the exponential Lexp( —0.4j)j
calculated by Propst" (Sec.VIII).Propst considered that
only the down electron tunnels into the atomic well
with the up electron being excited deeper in the solid.

0.2—

0
12 8 6

fiN ev'

FIG. 18. Functions illustrating the averaging eGect produced
by unfolding according to Eq. (3) when Eq. (4) really applies.
U(f) is the unfold by Eq. (3) of the fold of U&(f) = exp( —0.3 f')
and U2(f') =1 by Eq. (4).

unfold procedure of Eqs. (14) has been used inde-
pendently by McMillan, '4 who has encountered Eq. (3)
in the study of superconducting tunneling. Here the
analytic F and U functions are like those of entry (4)
in Table II and no unstabilities or harmonic-error
introduction has been encountered in the digital-un-
folding procedure. Apparently a sharp step in F(g) at
)=0 facilitates unfolding, a fact which encouraged the
procedure used here of cutting off the tail of F(f) at
/=0

Trimming the F(f) function to a steeper initial
slope requires a larger initial rise in U(f) at )=0 For.
metals this is what is expected physically. The transition
probability favors involvement of electrons near t =0,
again giving rise to a sharp step at the top of the band.
This latter effect apparently accounts for the results
for semiconductors where a rather steep rise of F(t)
at f=0 is also required for proper unfolding.

Finally, in this section we discuss the mathematical
effect of unfolding an F(t) function to get a U(f)
function by Eq. (3) when different transition probabili-
ties for the up and down electrons would indicate that
Eq. (4) applies. In this case we would expect the UQ)
function from unfolding Eq. (3) to be some sort of
average between the Ut(g) and Uso) function of
of Eq. (4). The nature of this averaging is best illus-
trated by an example. The functions Ut(f) =exp( —0.3$)

'4 W. L. McMillan and J. M. Rowell, Phys. Rev. Letters 14,
108 (1963); and private communication.
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Fro. 19. Xo(E) distributions for He+ iona incident on an atom-
ically clean (100) face of Ni and a (100) face on which a centered
(2)&2) surface two-dimensional crystal of Ni and 0 has been
grown.

"H. D. Hagstrum, V. Tak.eishi, G. E. Becker, and D. D.
Pretzer, Surface Sci. 2, 26 (1964).

X. ION-NEUTRALIZATION SPECTROSCOPY IN
THE PRESENCE OF ORDERED SURFACE

MONOLAYERS INVOLVING
FOREIGN ATOMS

The claim has been made that although the surface
character of the ion-neutralization process affects
transition probability factors in the transition density,
the density-of-states factor for atomically clean surfaces
is that of the bulk. solid except for the two modifications
for semiconductors. We turn now to discuss brieQy
the effect of foreign surface atoms on INS. A preliminary
report concerning this has been made, but it did not
include unfolding of the energy distributions. '5 We
limit ourselves here to surfaces in which atoms from the
bulk and foreign atoms form a crystallographically
ordered monolayer surface phase, the surface of type
b mentioned in the Introduction. An example is the
centered (2&&2) nickel-oxygen structure, studied by
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Mac Rae, 3 which forms on Ni when exposed to oxygen.
Experimentally it is found that the presence of this
two-dimensional surface lattice modifies the electron
energy distribution X(E) drastically. This is shown in
Fig. 19, where Xs(E) distributions are shown for
atomically clean Ni and for Ni with the c(2)&2)
ordered phase of nickel and oxygen on the surface.
Figure 19 shows that for the surface containing oxygen
there are far fewer of the faster electrons than for the
atomically clean surface. The two-dimensional surface
crystal produces a density of states throughout the
combined crystal lattice which differs from that of the
crystal having a clean surface. This difference is small,
however, since there are about 10"surface atoms on one
face of a centimeter cube containing about 10" atoms,
and it will elude detection by any method like SXS or
PES, which samples an appreciable region of the bulk.

The surface crystal will act like a band-pass filter
for wave functions from the bulk crystal to which it is
attached. It will act as a forbidden region in some energy
ranges and will permit large wave-function magnitude
in others. Because INS samples surface-wave-function
magnitude we expect to be able to determine, and
results to date confirm that we can, this band-structure
feature of the surface-monolayer crystal. We would

expect, a priori, that we can do this uniquely only if we
are willing to Inake an assumption as to where the up
electron is excited. H it arises in the surface monolayer
then F(l) is represented by the convolution square of
Eq. (3) which can be unfolded. This leads, for the Xs (E)
distribution of Fig. 19, to the U(l ) for Ni(100)c(2X 2)O
in Fig. 20. The U(l) for the atomically clean Ni(100)
surface is also shown in Fig. 20, UQ') for Ni(100)c
&& (2&(2)0 differs markedly and interestingly from UQ')
for the clean surface. We note the appearance of a broad
band lying at energies 3.5(l (7.5 eU, which on the as-
sumption made is the band in which the surface crystal
transmits the bulk wave functions. We note also the
decrease in intensity of the bulk d band near the Fermi
level. Wave functions in this band must tunnel through
a forbidden region in the surface crystal and are, as a
result, much decreased in intensity at the ion position.

If we go to the other extreme and assume that the
up electron arises in the bulk of the crystal the appro-
priate expression for F(g) is the convolution product of
Eq. (4) in which Ut(f) characterizes the down electron
and Us (f) should be a bulk function something like the
Uo') function for clean Ni(100). We have very recently
shown that unfolding the convolution product using the
Uo') for clean Ni(100) as Us O) produces essentially the
same low-lying features in U&(l) as was found in U(P)
from the convolution product. These results will be
discussed in detail elsewhere. INS is also sensitive to
amorphously held gas on the surface, as has been amply
demonstrated in earlier work. ""

"A. U. Mac Rae, Surface Sci. 1 319 (1964).
"H. D. Hagstrum, Phys. Rev. 104, 1516 (1956).
"H. D. Hagstrum, J. Appl. Phys. 32, 1015 (1961).
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FIG. 20. Unfold functions U(f) derived from the Xs(E)
functions of Fig. 19.

XI. CHARACTERISTICS OF ION-NEUTRALIZA-
TION SPECTROSCOPY AND COM-

PARISON WITH OTHER
SPECTROS COPIES

Ion-neutralization spectroscopy is a procedure for
deriving a function UO) from experimentally deter-
mined energy distributions X& (E) of the ion-neutraliza-
tion process. In this section we summarize the character-
istics of INS and compare it, where appropriate, with
other spectroscopies of the solid state, namely, the
soft—x-ray spectroscopy (SXS) and the photoelectron
spectroscopy (PES).

(1) Density of imifial states. Although there are strong
and characteristic transition probability factors, we
have seen that when the crystal surface is atomically
clean the bulk density of initial states plays a large role
in determining the structure of the U(g) function.
d-band electrons are clearly visible in the U(P) for
copper and nickel, Fig. 14, but their intensity is reduced
relative to the s-p band. Similarly, the degenerate

p band of diamond-type semiconductors as will be
reported elsewhere, can be seen. Thus INS, like SXS
and PES, provides information about bulk density of
states. The transition-rate factors )items (3) and (4)
below) show interesting differences, however.

Also of interest is the question as to whether INS
will detect many-body resonances as have been dis-
cussed by Spicer and collaborators" "' and by Hop-
field."As will be discussed in more detail elsewhere, no
resonance below the d band was found in Ni although

"C. N. Serglund, in Optica/ Properties and Electronic Structure
of MetaLs and ALLoys, Proceedings of the International Colloquium,
Paris, 1965 (North-Holland Publishing Company, Amsterdam,
1966), p. 285."W. E. Spicer, in Ref. 39, p. 296.

4' J. J. Hopfield, Phys. Rev. 139, A419 (1965).
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there is some evidence of low-lying peaks in Cu which
differ in position with crystal face. It is not incon-
ceivable that transition-probability characteristics of
INS will preclude the observation of resonances which
are detectable photoelectrically. Mott4' has suggested
that the positive charge of the incoming ion will repel
the d-band hole on a, Ni atom whose presence is re-

quired. to produce the resonance observed by PES.
Spicer4' has suggested that a charged atom will draw
its wave functions closer to itself and thus possibly
not be detectable at the ion position. We cannot
attribute the failure to observe the low-lying resonance
in Ni to the inability of INS to see a peak which is
deep in the band in view of the results for the surface
crystal discussed in Sec. X.

It was pointed out in Sec. VIII that the ion-neutral-
ization process favors the involvement of band elec-
trons moving in the crystallographic direction normal
to the sample face at which ion neutralization takes
place. Thus INS tends to give one information on the
bulk density of states of k vector normal to the surface
of the sample used. This is an interesting result in view
of the known fa,ct that the density of states normal to
the surface does not enter into the tunneling ra, te
through a thin barrier. The semiconductor presents an
interesting special case in that filled surface states in
the forbidden gap or states restricted to the surface by
band bending should be detectable by INS. Semicon-
ductors studied to date have had p-type surfaces where
bona/de surface states lie above the Fermi level and are
unfilled. Study of a semiconductor surface which has
filled surface states of density approximating one per
atom is of great interest. Since it appears that both
electrons in the ion-neutralization process originate at
the surface, band bending would have to be extremely
severe before its effect could be detected by INS.

(2) Density of anal sta, tes. There is no evidence that
the use of INS to date has revealed any features at-
tributable to the density of final states. This is in-
extricably tied up with the escape probability as the
other principal dependence on final-state energy. SXS
used in absorption gives direct data on final-state
densities. PES also gives results interpretable as varia-
tions in the density of final states. ~ The rationale behind
the extraction of information concerning final-state
density from INS is the same as that for PES. In PES
a large number of photon energies may be used. In
INS only 2 or 3 equivalent input energies may be
used for different noble-gas ions.

(3) Transition probability factors for the clean surface
The principal factors here are a tunneling factor de-
creasing with increasing depth in the band (l') and a
symmetry factor decreasing as the character proceeds
from s to p to d, etc. Results appear to be consistent

4s N. F. Mott, Advan. Phys. 13, 325 (1965); in Ref. 39, p. 314;
and private communication.

"W. E. Spicer {private communication).
44 N. B.Kindig and W. E. Spicer, Phys. Rev. 138, A561 {1965).

with approximately equal factors applied to both
"down" and "up" electrons or with U(t) being a mean
between somewha, t divergent U~(l ) and Us(l) functions
for the two participating electrons. Also, no effects
have as yet been observed which are attributable to
final-state interactions of the ion-neutralization process.

Transition-probability factors can be affected by
the presence of excited states (most likely broadened by
interaction with the solid) in the atomic well lying
opposite filled levels in the solid. The anomalies ob-
served for Ne, which has the lowest lying excited levels,
imply that the ionization limit of all the noble-gas
atoms are most likely accounted for by these states.
Electrons tunneling into excited states greatly enhance
the transition probability for the range of f over which
this is possible. This restricts the use of INS to solid
surfaces for which q is large enough to put the Fermi
level below the lowest lying excited atomic level of the
neutralized atom at the ion-solid separation at which
neutralization occurs.

Except for the case of increased probability of transi-
tion for electrons moving normal to the surface, little
in the way of momentum conservation is expected in
INS. This results from the fact that the atomic ground
state can absorb large amounts of momentum. In this
regard INS might well differ considerably from SXS
and PES although in the latter case momentum non-
conservation appears also to play an important role. 4'

(4) A ddi tional transition probability factor for the

surface containing foreign atoms Foreign . atoms in-
corporated in a reconstructed, crystallographically
ordered surface monolayer or in an amorphous layer
can alter the dependence of transition probability on
band energy. From this it appears possible to delineate
the energy profile of this property of the surface crystal.
This fact puts a stringent requirement on surface
cleanness of the sample if bulk properties are to be
studied, but offers the further possibility of electronic
spectroscopy of the surface which is unavailable to
SXS or PES. Thus INS offers the attractive possibility
of studying the electronic band structure as defined in
this paper of extremely thin layers of one material
upon another and of the nature of the band-structure
transition from one solid to another. In the present
apparatus growth of one solid upon another, whether
epitaxial or amorphous, could simultaneously be
followed by INS and I.EED over the range from a
fraction of a monolayer to films of any desired thickness.

(5) EJect of digerenti ons. In PES photon energy may
be changed essentially continuously. The equivalent
photon energy in the ion-neutralization process is the
energy E —p which may thus be varied only by chang-
ing ions. In principle it would be possible to use many
different ions, but because of the possibility of adsorp-
tion of the parent gas on the target surface we have
limited ourselves to the noble gases and hence to only
a few equivalent photon energies. This is possibly a

4' W. E. Spicer, Phys. Rev. Letters 11, 243 {1963).
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disadvantage of INS. He+ provides the largest equiv-
alent photon energy, giving E,' —p 22.5 —4.5 18 eV
for a solid having a 4.5-eV work. function. This is large
compared to the photon energies which have been used
to date in PES when ultrahigh vacuum is desired. Of
course if one dispenses with windows and can tolerate
"monochromator vacuum, "PES can be carried to much
higher photon energies.

(6) Egect of diferent crystal faces. For atomically
clean surfaces there is little u priori reason to expect
different transition-probability factors for different
crystallographic faces. Work to date bears this out.
However, the effect of greater transition probability for
band electrons moving normal to the surface will
produce differences, as has been pointed out in'Sec. VIII.
LItem (1) above. ] Such effects have been seen in the
results for both metals and semiconductors.

For surfaces containing foreign atoms, different crystal
faces could form different two-dimensional structures
involving the same foreign atom. These surface crystals
would in general have differing band-pass character-
istics which can be studied by INS.

(7) Energy broadening and its removal. The ion-
neutralization process has a considerable amount of
energy broadening attributable to several causes. The
extrapolation used to reduce the broadening works
well except at the high-energy end of the X&(E) dis-
tribution. Here it is tied in with the problem of locating
the Fermi level. Energy-broadening eRects are serious
in SXS, especially for solids of the heavier atoms where
the situation is much more difficult than for INS. Final-
state energy broadening becomes a nuisance in PES
at higher photon energies, at least for cesiated surfaces.
Final-state broadening exists in INS as in SXS and
PES, but its magnitude has not been evaluated as yet.

(g) Fermi level Loca-tiara. The Fermi level cannot be
located directly and straightforwardly in INS by virtue
of the energy broadening inherent in the process.

It is an absolute essential to start the F(l) function
properly, however, if it is to unfold. This is really a
blessing in disguise because the necessity to make the
starting portion of F(l) consistent with the rest of the
function does, in fact, help to locate the Fermi level.
Location of the Fermi level is not particularly easy in
SXS, especially for heavier materials. In PES the Fermi
level can be located quite accurately.

(9) Egect of escape probability. The procedures of
INS provide a way to determine a three-parameter
escape probability. The large effective photon energy of

the process for He+ ions means that one can investigate
a band structure to a point 10 eV below the Fermi level
and still remain almost 4 eV away from the vacuum
level. This is a distinct advantage of INS over PES
when LiF windows are used. Then important portions
of the data lie immediately above the vacuum level
where the P(E) function varies rapidly. SXS has no
equivalent problem.

(10) Egect of inelastic scaitenng. Although present,
inelastic scattering appears to be small in INS by virtue
of electron excitation near the surface. This is a definite
advantage since it reduces final-state lifetime broadening
and avoids a pile-up of slower electrons which tends to
obscure structure deeper in the band. Inelastic scatter-
ing is appreciably less in INS than in PES used with
cesiated surfaces.

(11) Egect of Nmfoldi zg. In principle the necessity to
unfold in INS must be listed as a disadvantage. Un-
folding raises the basic questions of the di6erence in
transition-probability factors for the "up" and "down"
electrons concerning which we have only indirect
evidence. Unfolding requires precise and relatively
smooth data and thus decreases energy resolving power
somewhat.

(12) Resolving power. At the moment it appears that
we cannot expect a better resolving power for INS than
a few tenths of an eV. Thus the value of INS might well
lie in delineation of the coarser features of band state
densities. Comparison with SXS would indicate SXS
superior for the elements lighter than calcium, INS for
the heavier elements. PES has a resolving power superior
to INS except when electron-scattering eRects are
important.
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