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APPENDIX

An interatomic potential for tungsten was con-
structed which had the same form as does Potential IIT
of Erginsoy et al.” for a-iron. It consisted of an expo-
nentially screened Coulomb potential for »<1 A joined
to a simple exponential for »>1 A

¢ (r)= (24500/r) exp(—4.557), r<1 A,
¢ (7) =24500 exp(—4.557), r>1A4A.

This potential is compared with the Bohr, Girifalco-
Weizer,® Johnson, and Thomas-Fermi potentials in

8 1. A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687 (1959).
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T1c. 21. Tungsten potential used in the present study compared
with two high-energy and two low-energy potentials for
tungsten.

Fig. 21. At small separations distances (r<0.4 A)¢(r)
fits the Thomas-Fermi potential for tungsten. It is
equal to the Morse potential of Girifalco and Weizer
at r=1 A and to Johnson’s potential at 2.2 A.
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Crystal Dynamics of Potassium. I. Pseudopotential Analysis
of Phonon Dispersion Curves at 9°K
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The frequencies of normal modes of vibration of potassium at 9°K have been measured by inelastic-
neutron-scattering techniques. Certain selected frequencies are (units 102 cps): His 2.214:0.02, P, 1.78;
+£0.02, Ny’ 2.404-0.04, N5’ 1.50+0.02;, and N4’ 0.53£0.02. The results are very similar, apart from a scale
factor 1.65, to those for sodium. Analysis of the results has been carried out in terms both of conventional
Born-von K4drmén models and of potential functions defined in reciprocal space. A fifth-neighbor, axially
symmetric force model has been used to compute the frequency distribution function for the normal modes
and the associated heat capacity. The reciprocal-space analysis was performed in two ways: (a) in terms of a
total potential function, whose Fourier transform is the effective interatomic potential between ‘“neutral
pseudo-atoms” of potassium, and (b) in terms of the screened pseudopotential for the conduction-electron—
ion interaction. Analysis (a) shows that a wide variety of interatomic potentials, both with and without
long-range oscillatory character, can be found which give a satisfactory fit to the results. These potentials
are compared with those obtained from an analysis of x-ray scattering data for liquid potassium. The
pseudopotentials obtained from analysis (b) are in good agreement with that derived by Bortolani from the
Heine-Abarenkov model. A reanalysis of the phonon dispersion curves for sodium leads to very similar con-
clusions, confirming earlier work by Cochran.

1. INTRODUCTION

14 OCTOBER 1966

HE crystal dynamics of metals has received con-
siderable experimental and theoretical attention

over the past decade. A large amount of experimental
information on dispersion relations »(q) of frequency »
versus wave vector q exists for a number of metals,
while theoretical attention has been concentrated princi-

pally on the alkali metals.! Measurements of »(q) for
sodium? showed that while quite long-range effective
forces were present, they were not very strong, and no

1 For a general review of phonon dispersion curves in metals see
G. Dolling and A. D. B. Woods, in Thermal Neutron Scattering,
edited by P. A. Egelstaff (Academic Press Inc.,, New York,
1965), Chap. V.

2A. D. B. Woods, B. N. Brockhouse, R. H. March, A. T.
Stewart, and R. Bowers, Phys. Rev. 128, 1112 (1962).
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definite Kohn anomalies,® such as had been observed
in lead,? and other metals,! were present. Analysis of the
dispersion curves in terms of a pseudopotential was
carried out by Cochran®® and resulted in an effective
interatomic potential. At large distances this potential
has an oscillatory character, and Koenig” showed that
this could arise from the discontinuity in the slope of
the dielectric screening function, i.e., another aspect of
the Kohn effect. Cochran® suggested, however, that the
oscillations might result from his method of calculating
the effective potential.

Attempts to improve the accuracy of the sodium »(q)
and to measure neutron-scattering line shapes as a
function of temperature®® were made difficult by the
large incoherent neutron-scattering cross section for
sodium. In addition, the occurrence of the martensitic
transformation in sodium made it necessary to carry
out the experiments above 40°K, where it is possible
that line shapes and frequencies are already affected
by anharmonic interactions. Because it was felt to be
desirable to have a large body of precise information
about all aspects of the lattice dynamics of an alkali
metal, it was decided to pursue the measurements on
a more favorable material; potassium was chosen for
several reasons: (1) The ratio of coherent to incoherent
scattering cross sections is about two and a half times
larger than for sodium. (2) Its electronic properties are
nearly ideally free-electron-like, in common with sodium
but in contrast with many other metals. (3) No marten-
sitic transformation exists; thus experiments can be
done at low temperatures. (4) Large single crystals
were available.l

Accordingly, thedispersion curves have been measured
at a temperature of 9°K and the results interpreted on
the basis of a pseudopotential similar to that derived
for sodium. The results have also been fitted to a
Born-von Kérmidn model which was then used to
calculate the density of phonon states, g(v), and hence
thermodynamic properties such as the heat capacity.
A large part of this paper describes the methods used
in this analysis, and the results of several different
approaches to calculating an effective interatomic po-
tential as well as the pseudopotential for electron-
phonon scattering. It is hoped that these results will
assist in the understanding of electron-phonon inter-

3 W. Kohn, Phys. Rev. Letters 2, 393 (1959).

4 B. N. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and A. D.
B. Woods, Phys. Rev. 128, 1099 (1962).

5 W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963).

6 W. Cochran, in Inelastic Scattering of Neutrons in Solids and
Liquids (gnternational Atomic Energy Agency, Vienna, 1965),
Vol. I, p. 3.

78S. H. Koenig, Phys. Rev. 135, A1693 (1964).

8 A. D. B. Woods, B. N. Brockhouse, R. H. March, and R.
Bowers, Bull. Am. Phys. Soc. 6, 261 (1961).

9 See B. N. Brockhouse, A. D. B. Woods, G. Dolling, and I. M.
Thorson, in Proceedings of the Third United Nations International
Conference on the Peaceful Uses of Atomic Energy (United Nations,
New York, 1965), Vol. 7, Paper P/12, p. 419.

10 We are extremely grateful to P. A. Penz for growing two
excellent specimens for the purpose of these experiments.
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action in metals. It is further intended that these experi-
mental measurements and theoretical calculations will
serve as the basis for more extensive studies of the effect
of temperature on the phonon spectrum.

2. EXPERIMENT

The phonon dispersion curves have been measured
along the high symmetry lines A, 2, A(F), D, and G
(in previous notation! [00¢7], [¢¢07], [¢t¢], [33¢], and

TaBLE I. Normal-mode frequencies (units 10 cps) in potassium
at 9°K. The reduced wave-vector coordinates { are expressed
in units of (¢/2x), where a is the lattice constant.

¢ v v v
[00g7a, [005T4s LessTAs, 2
0.15 0.66 4=0.04 0.5240.03 s
0.20 0.89 +0.025 0.6840.025 0.77 £0.05
0.25 1.08 +0.05 0.82:£0.03 1.00 £0.06
0.30 1.21 40.03 0.994-0.02 1.20 £0.06
0.35 1.35 0.04 1.154+0.03 cee
0.40 1.53 4-0.03 1.28+0.02; 1.53 +0.05
0.45 1.63 £0.03 1.444-0.03 1.68 40.04
0.50 1.74 0.035 1.57+0.02 1.785+0.02
0.55 1.81 4-0.04 1.694-0.02 1.91 4-0.04
0.60 1.89 4-0.03 1.7940.02; 2.00 £=0.04
0.65 1.96 +0.06 1.894-0.02 2.05 0.06
0.70 1.965-0.04 1.994-0.02 2.09 £0.03
0.75 2.08;4-0.03 2.0740.03 2.12 4-0.04
0.80 2.11 £0.025 2.114-0.025 2.16 £0.03
0.85 2.15 4-0.03 2.194-0.04 2.19 +0.03
0.90 2.19 £0.02; 2.2040.03 2.18 £0.02;
0.95 2.21 0.02 2.2140.04 2.22 4-0.03
1.00 2.21 40.02 oo s
(310 (356105 (36104
0.10 1.52 £0.04 2.35+0.06 0.70 4-0.03
0.20 1.62 £0.04 2.3034-0.03;5 0.97 4-0.03
0.30 1.69 +£0.04 2.204:0.05 1.27 3:0.03
0.40 1.72 £0.04 2.01+0.04 1.55 40.04
[¢c072, [¢30725 [eeedA
0.05 ce s 0.53 4-0.03
0.10 0.74 +0.02 cee 0.95 £0.02
0.15 1.08 40.03 0.670.03 1.34 4-0.04
0.20 1.41 40.02 0.93£0.03 1.6954-0.02
0.25 1.69 4-0.05 1.114-0.03 1.95 £0.04
0.30 1.94 +0.03 1.234-0.03 2.10 £0.025
0.35 2.08 40.05 1.3640.03 2.19 0.05
0.40 2.25 £0.03; 1.444-0.025 2.15 £0.02;
0.45 2.33 +0.06 1.494-0.05 2.03 £0.06
0.50 2.40 +0.04 1.50-£0.025 e
¢ v v v
(55116, [¢¢10Gs Cesedre
0.05 2.22+40.05 2.18 +0.05 0.55 1.55 £0.04
0.10 2.1440.04 2.13 +£0.04 0.58 1.38 +£0.05
0.15 2.0140.06 2.10 0.035 0.60 1.24 +0.03
0.20 1.7840.03 2.02 £0.03; 0.62 1.17 £0.03
0.25 1.554-0.04 1.895£0.03 0.65 1.04 +0.025
0.30 1.314+0.04 1.78 4-0.025 0.68 1.0050.025
0.35 1.0740.04 1.70 £0.04 0.70 1.02 +£0.03
0.40 0.8140.03 1.57 +0.03 0.72 1.06 4-0.03
0.45 0.614+0.03 1.53 4-0.04 0.75 1.20 4-0.03
0.50 0.53+0.02 cee 0.78 1.36 £0.03
0.80 1.47 +0.02
0.85 1.77 £0.03
0.90 1.99 +-0.03
0.95 2.19 +-0.04

= Continuation of A branch,
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[¢¢1], respectively) at 9°K, using the Chalk River
triple-axis crystal spectrometer in its constant-mo-
mentum-transfer (constant Q) mode of operation.!* All
of the measurements were carried out by observation
of neutron-energy-loss processes with variable incident
energy; the (aluminum) analyzer was set to observe
several neutron energies in the region of 0.012 eV.

The results are shown in Fig. 1 and Table I. The fitted
curves shown in Fig. 1 will be discussed in Sec. 3. In-
spection reveals that, apart from a scale factor of
approximately 1.65, they are very similar in shape to
the corresponding curves for sodium?—a not unexpected
result. The same kind of correspondence, though not
quite so close, exists between these results and those
for the alloy B-brass (CuZn).??

In common with the sodium dispersion curves the
A; and Ajs branches appear to cross near {=0.75. It is
difficult to confirm this point, however, and we are
hesitant about drawing any conclusions about the

11 B. N. Brockhouse, in Inelastic Scattering of Neutrons in Solids
and Liguids (International Atomic Energy Agency, Vienna,
1961), p. 113.

2 G. Gilat and G. Dolling, Phys. Rev. 138, A1053 (1965).

shapes of the curves in this region; they are very close
together, and the possibility of double-scattering proc-
esses’ introduces an uncertainty in the identification of
observed peaks with particular modes. With the possible
exception of these branches near {=0.75, the curves are
quite smooth and show no evidence of any Kohn
anomalies.

3. ANALYSIS OF RESULTS

The measured normal-mode frequencies have been
analyzed in two ways: (a) using the method of Born
and von K4rmén to obtain interatomic force constants
(in real space) between near-neighbor atoms, and (b) in
terms of potentials defined in reciprocal space, in a
similar manner to that employed by Cochran® for
sodium.

A. Born-von Kdrman Analysis

The processes of setting up equations of motion for
the atoms in a monatomic bcc crystal, and of the re-

13 Reference 1, p. 196, and Ref. 4.
14 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1954).
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TasLE II. Force constants (units dyn/cm) of model A (up to
5th nearest-neighbor axially symmetric forces). The notation for
the Born—von Karmén constants s, 8; is that of Ref. 2.

Neighbor(7) Radial Tangential a; Bi
1 2576 —109 786 895
2 432 29 432 29
3 —95 12 —41 12
4 3 —4 2 —4
5 15 2 6 4

duction of these equations to a (3X3) dynamical matrix
whose eigenvalues are proportional to the squares of the
normal-mode frequencies, are too well known to require
discussion here.! The measured dispersion curves have
been fitted by the method of (linear) least squares to a
variety of force models involving axially symmetric
(A-S)" forces extending as far as 10th-nearest-neighbor
atoms. The employment of general tensor, rather than
A-S forces, produced no significant improvement in the
fits to the data. A satisfactory fit was achieved with a
6-parameter A-S model involving forces extending to
3rd-nearest neighbors. Inclusion of more distant neigh-
bor force constants produced only small improvements
in the quality of fit. The effect of fitting models to the
present measurements in conjunction with the measured
elastic constants!'® was also investigated. Values of the
elastic constants may be derived from the initial slopes
of the dispersion curves at small wave vectors. These
values differ significantly (89, for C11, for example) from
those obtained from ultrasonic measurements. Never-
theless, a fully satisfactory fit to all the data was
achieved with an A-S model (model A) involving forces

r’li 2 (N R

1.5

[¢] 0.5 10 1.5 20 25
4
FREQUENCY ¥/ (UNITS 10 cps)

F1G. 2. The frequency distribution function g(») for the normal
modes in potassium at 9°K, calculated from the model shown in
Fig. 1. A sample of 60 466 176 normal modes was employed to
produce this histogram.

15 T. Wolfram, G. W. Lehman, and R. E. DeWames, Phys.
Rev. 129, 2483 (1963).

16 W. R. Marquardt and J. Trivisonno, J. Phys. Chem. Solids
26, 273 (1965).
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F16. 3. Equivalent Debye temperatures for potassium, com-
puted in the harmonic approximation from the distribution of
Fig. 2, )and compared with experimental heat-capacity data
(Ref. 18).

extending to Sth-nearest-neighbor atoms. The best-fit
values for the 10 force constants of this model (one
“radial” and one “tangential” constant for each type
of neighbor) are given in Table IT, together with the
Born-von Kédrmén constants derived from them. The
relationships between these various constants are con-
veniently listed in Ref. 5. The quality of the fit to the
data is illustrated by the curves in Fig. 1. The frequency
distribution function g(v) for the normal modes has
been computed by means of the extrapolation method!’
from the parameters of model A. The result of sampling
60466 176 normal-mode frequencies from the first
Brillouin zone is shown in Fig. 2. From this function it
is straightforward to calculate the variation of the heat
capacity with temperature, in the harmonic approxi-
mation. In view of the very low temperature for which
the model is appropriate, one might expect to obtain
good agreement with the heat capacity observed at low
temperatures, and such is indeed the case. The equiva-
lent Debye temperatures obtained from the calculated
and observed heat capacity,'® as shown in Fig. 3, agree
to better than 29, over the range 0 to 30°K, though
there appears to be a systematic discrepancy (about
1.89,) near the minimum of the curve between 2 and
8°K. We may also compare theoretical and experimental
values'® of the moments of g(»), or the equivalent
“Debye frequencies” v, derived'? from these moments.
The agreement is good for <2 (see the dashed curve of
Fig. 4) and only v shows a discrepancy larger than
experimental error. Figure 4 also shows the effect
of using a force model fitted only to the neutron-
scattering data, omitting the elastic constants. The
poor agreement for »< —2 arises from the above-men-
tioned inconsistencies between initial slopes and elastic
constants. This does not necessarily imply that either
type of measurement is in error, since the ultrasonic

17 G. Gilat and G. Dolling, Phys. Letters 8, 304 (1964).

18D. L. Martin, Phys. Rev. 139, A150 (1965), and references
cited therein.

T, H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy.
Soc. (London) A242, 478 (1957).



150
T T T T 1T T T T T T T T T TTT
24 -
2.3 -
S 22— —
)
o 2l -
3
= 20F /§ i
N /
Lo & 1,7 -
N
P T T T Y I
-3 o 3 6 9 12

F16. 4. Equivalent Debye frequencies derived from the moments
of the distribution of Fig. 2, dashed curve, compared with experi-
mental heat-capacity data (Ref. 18). The solid curve shows the
effect of utilizing a force model fitted only to the results in Fig. 1,
ignoring the measured elastic constants.

measurements refer to vibration frequencies <10° cps,
far below the lowest value (5X 10 cps) obtained in the
neutron-scattering experiments. At S5°K, the heat
capacity is dominated by modes of intermediate fre-
quencies (10" cps).

B. Reciprocal-Space Analysis

The normal-mode frequencies » are given by the
equation’

Ar'mv?Uo(qQ) =2 Das(q) Us(q) , 1)
where ?
Dos(q)= Zl $a5(0,0) exp(iq-1;); (2)

U.(q) specifies the polarization of the mode, ¢qs(0,])
represents force constant linking the atom at an origin
(0) with that at position r. We assume an axially
symmetric two-body interaction V(r) between the
atoms, dependent only on the distance between them:

azv(r)
¢ (0)= l:dua (0)dus(0) L” 170,

¢aﬂ (070) = Z ¢rxﬁ (071) ) 10

where #,(]) is the displacement from equilibrium of the
atom /. We now express V(r) in terms of its Fourier
transform

V(r)=(2m)%

3)

V(Q) exp(—iQ-1)dQ,  (4)

where v is the volume of the unit cell and V' (Q) depends
only on | Q|. Substituting Egs. (3) and (4) into (2), and
taking into account the term ¢.5(0,0) we obtain2

Dap(@) =2 [(¢at7a) (gst7a) V(a+m) —rarsV (2)], (5)
where ©= (74,73,7,) represents a vector of the reciprocal

% D. Pines, Elementary Excitations in Solids (W. A. Benjamin,
Inc., New York, 1963), p. 26.
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lattice of the crystal, and g+<=Q. Following Cochran
we may subdivide this expression for the dynamical
matrix element into three contributions

Des(g)=DP+DO+DE. ©

These terms represent contributions arising from short-
range overlap forces, long-range electrostatic forces be-
tween the bare ions, and interactions involving the
conduction electrons and the ions, respectively. Recent
work by Vosko? has strongly suggested that DZ is very
small indeed for both Na and K, and in most of our
calculations we have neglected this contribution. (Intro-
duction of a small overlap force produces no significant
change in any of the results discussed below.) The
“Coulomb” contribution D¢ is easily calculated with
the help of the Ewald 6 transformation, leaving only
the conduction-electron term D¥ to be dealt with. Two
different methods of analysis suggest themselves:

(a) To subtract from the observed phonon frequencies
[i.e., the D,s(q)] the known contribution D, as was
done by Cochran for sodium,’ and to fit the remainder
to some function V#(Q) corresponding to the contribu-
tion D®. A refinement of this procedure is to assume a
local pseudopotential model for the conduction electron-
ion interaction: If ¥ ,(Q) is the Fourier transform of the
local pseudopotential (we omit the vector sign to
emphasize the axial symmetry of the potentials), and
€(Q) is the dielectric function, we have

VEQ)= (v/4re) QA= (D V()2 (7)

The experimental results are then fitted to the screened
potential V,(Q)/e(Q). The advantage of this is that,
as shown by recent calculations of Animalu® and by
Bortolani,® V,(Q)/e(Q) is of oscillating sign. Thus,
while V#(Q) is always non-negative, it displays cusp-
like singularities at Q values for which V,(Q)=0. It is
therefore much easier and more satisfactory to fit the
experimental data with the fairly well-behaved screened
potential than with VZ(Q) itself.

(b) To analyze the total D,s(q) in terms of a potential
function V7(Q), using Eq. (5). This total potential is
the Fourier transform of the effective ion-ion potential
in real space, whose first and second derivatives at the
interatomic distances give the conventional Born—von
Karman force constants. We might refer to this as the
potential between ‘“neutral pseudo-atoms” .

Both methods of analysis have been carried out in
the same manner, as follows: It is convenient to define
new functions G#(Q) and G*(Q):

2 2
VEQ)=—GFQ); VIQ=—GT(©).  (®)

0% O™
In the first instance the functions GZ(Q) and G7(Q)

2 S. H. Vosko, Phys. Letters 13, 97 (1964).

2 A. 0. E. Animalu, Technical Report No. 3, Solid State Theory
Group, Cavendish Laboratory, Cambridge, 1965 (unpublished).

2V, Bortolani (private communication).

% J. M. Ziman, Advan. Phys. 13, 89 (1964).
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were specified by a Fourier series of up to 30 terms:

G(Q)=A¢—[1—cos(mQ/Qmax) ]2m+ X A,)

n odd

7max

+ Z=:1 A [1—cos(mmQ/Qumax) ],

where Qmeax is some upper limit beyond which the two
functions G(Q) are assumed to be negligible. 4, is a
constant, equal to 47 for GZ(Q) and zero for GT(Q). The
form of the first part of this expression was chosen so
that the G(Q) would tend smoothly to their respective
limits at Q=0 and Qmax. The coefficients 4, were then
obtained by the method of linear least-squares fitting to
either Dog(=D%+DF) or D as the case may be. This
procedure, although most efficient, was found to be un-
satisfactory owing to the existence of “ripples” in the
fitted G functions arising from the large # terms in the
Fourier series. These fitted G functions could, however,
be used as the first stage of a nonlinear least-squares
fitting procedure in which the function is specified by
a table of values at between 10 and 30 selected Q values.
Values of G at intermediate Q=(Q; are found by
Lagrange (cubic) interpolation, using the two nearest
tabulated values on either side of ;. The same method
was used in the process of fitting D¥ by means of a tabu-
lated V,(Q)/e(Q) function. By definition, G¥(0)=4r
and GT(0)=0, and the screened pseudopotential
V »(Q)/e(Q) tends to a finite value at Q=0. We assume a
value Q=Qmax, beyond which GZ(Q)=G7(Q)=V,(Q)/
€(Q)=0. The fitting process is initiated by specifying a
table of values for the function concerned at Q values
between 0 and Quax, and imposing the condition that
the function tend smoothly to zero at Qmax. These
tabular values constitute the variable parameters of the
least-squares fit. The phonon frequencies for any given
reduced wave vector ¢ may now be computed from
Egs. (1) and (5) through (8). The computation is
simplified if q lies along a direction of high symmetry,
since the dynamical matrix factorizes into three equa-
tions involving linear combinations of the D,s(q). The
number of lattice points = involved in the summation
of Eq. (5) becomes very large as Qmax increases, as does
the number of tabular values required for adequate
specification of the function. These factors effectively
restrict the choice of (¢/27)Qmax to less than about 2.8;
indeed, there seem to be insufficient data at present to
specify the G functions much beyond 2.4. (For com-
parison, the calculations previously carried out® for Na,
assumed a cutoff at aQ/2r=v2.) Calculation of phonon
frequencies from the screened pseudopotential involves
a knowledge of the dielectric function e(Q). We have
employed both the expression given by Bardeen? and
also that proposed by Heine and Abarenkov,?® which
incorporates certain corrections (e.g., for exchange
effects) to the simple Bardeen formula.

25 J. Bardeen, Phys. Rev. 52, 689 (1937).
26 V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).
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I'16. 5. The screened pseudopotential V,(Q)/e(Q) for the con-
duction electron-ion interaction in potassium at 9°K (upper
diagram). A and B are theoretical curves based on the Heine-
Abarenkov model, while C and D are fitted to the results of Fig. 1,
as described in the text. The lower diagram shows the function
G*”(Q) derived from curves A (solid) and C (dotted) above. The
large wave-vector region is shown on a 10X scale on the right.

The results of these least-squares fitting calculations
for potassium, with (a/27)Qmax chosen to be 2.4, are
shown in Fig. 5 (upper diagram) both for the Bardeen
(curve C) and Heine-Abarenkov (curve D) dielectric
functions. Two screened pseudopotentials calculated on
the basis of the Heine-Abarenkov model???® are also
shown in curves A and B, respectively. The downward
kink in the curves C and D near Qmax results from the
condition that V,/e goes smoothly to zero at Qmax. As
Omax is changed, the quality of the fit to the phonon
frequencies increases as Qmax increases, but the same
general shape of curve results. If (¢/2m)Qmax is increased
beyond 2.4, then the calculated errors of the tabulated
values of the curve increases, showing that there are
insufficient data to determine them.

The phonon frequencies calculated from curves C and
D are an excellent fit to the measurements, similar to
that shown in Fig. 1. As would be expected from the
close similarity of our curve, D, with that of Bortolani,?
A, and the contrast with that of Animalu,”? B, the fit
to experiment given by use of A is substantially better
than that obtained with B. The lower part of Fig. 5
shows the function GZ(Q) derived from curves A and C
above. Note the enlarged scale for ¢Q/27>1 to show the
details more clearly.

In Fig. 6 we show the results of calculations of the
function G7(Q) for various Qmax. All these curves
provide a satisfactory fit to the experimental data, but
the increase in size of error bars as Quax increases is much
more pronounced than in the screened-pseudopotential



150

T T T T T I
CUT-OFF VALUES
Fc. 6. The total 5 bor
1G. 0. e total po- 16 7
tential function GT(Q) 8 200
derived from the results u ¢ 240 7

of Fig. 1, for various
values of the cutoff wave
vector Qmax for potas-
sium at 9°K. Typical
error bars are indicated

TOTAL POTENTIAL FUNCTION

- .

at arbitrary intervals. 8

For (a/27) Qmax>2.4, the = -

error bars become very

large, indicating insufh- 4- 7

cient data to specify the |

function. A B
o L 1 L1
(o} 10 20 30

WAVE VECTOR aQ/2m

calculations. As mentioned earlier, the Fourier trans-
forms of these curves and their derivatives represent
effective potentials (and derivatives thereof) in real
space between the potassium atoms, including con-
duction-electron effects. The existence of many different
functions G7(Q), all of which fit the experimental data,
merely reflects the fact that the interatomic potential
V (r) for all 7 cannot be determined from a knowledge
of phonon frequencies alone. Nevertheless, it seems of
interest to compute V(r) for the various G7(Q). The
results for Qmax(a/27)=1.6 (curve A of Fig. 6) are
shown in Fig. 7. The values of (1/7) dV/dr and d?V /dr*

Ry T T T T T T T
.006‘— NEAR NEIGHBOUR POSITIONS B
= | N T
< 005 12 3 45 6 78 ]
2 004 .
E
@ .003- -
g
S o ,~  LIQUID POTASSIUM
< (JOHNSON ET AL)
5 .00I-
= dyn/cm
-4000
=00I-
8000 ,
dv.
—2000 4,2
1000
dyn/c o]
200
—-1000
0
1 - -
+ & -200
-400-
—-600—
-800F
1 1 1 1

! ) N S| 1
-0004—"—%—% 7§ 9 10 Il 2

DISTANCE r (A°)

F16. 7. The effective interatomic potential and its derivatives
for potassium at 9°K, obtained by Fourier transformation of
curve A, Fig. 6. The dashed curve is one of several similar oscil-
latory potentials derived (Ref. 27) from x-ray scattering data
for liquid potassium.
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al the atomic positions are simply related to the force
constants of a conventional Born—von K4rman analysis.
The derivatives shown in Fig. 7 are in good agreement
with the force constants obtained in the Born-von
K4rman analysis of Sec. 3 A. After the initial oscillation
at the near-neighbor distance, ¥ (r) falls smoothly and
monotonically to zero, in marked contrast to the inter-
atomic potential deduced?” for liquid potassium from
x-ray scattering data. Transformation of curve C of
Fig. 6, however, leads to a long-range oscillatory po-
tential ¥ (r), similar in character to the dashed curve
in Fig. 7. Thus, in the case of solid potassium, it is
possible to construct long-range oscillatory potentials
which are consistent with the measured phonon fre-
quencies. However, such potentials are certainly not
necessary and seem less physically plausible than the
potential shown as a solid line in Fig. 7.
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F16. 8. The screened pseudopotential V,(Q)/e(Q) for the con-
duction electron-ion interaction in sodium. The labels B and D
are the same as for Fig. 5. Curve E (open circles) is that derived
by Cochran (Ref. 5) from the function GZ(Q).

We have also performed the above analysis for the
case of sodium, using the normal-mode frequencies ob-
tained by Woods ef al.2 As in the case of potassium, we
again assumed the short-range interaction D® to be
negligible. The results are generally similar to those for
potassium, particularly in respect of the total potential
function V7(Q) and its Fourier transform in real space.
The screened pseudopotential derived assuming the
Heine-Abarenkov dielectric constant,?® is shown in
Fig. 8 (curve D), together with that computed by
Animalu® (curve B). The final oscillation in curve D
near Qmax is not significant; the experimental data for
sodium are barely sufficient to specify the pseudo-
potential at this range. Indeed, a rather satisfying fit to
the data can be obtained with (a/27)Qmax as low as 1.3,
in confirmation of the earlier work,® shown in Fig. 8 as

27 M. D. Johnson, P. Hutchinson, and N. H. March, Proc.
Roy. Soc. (London) A282, 283 (1964). See also J. E. Enderby and
N. H. March, Advan. Phys. 14, 453 (1965).
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F16. 9. The function GZ(Q) for sodium derived from curve D
of Fig. 8. The large wave-vector region is shown on a 10X scale
on the right. The cutoff is at 2.0.

open circles. The function G¥(Q) derived from curve D
of Fig. 8 is shown in Fig. 9. Up to a wave vector
(aQ/2m)=1.2, this function is almost indistinguishable
from the analogous curve obtained by Cochran. (Beyond
this point, Cochran’s G function is virtually zero.)

Dispersion curves for potassium have also been calcu-
lated by Krebs? on the basis of a model in which (a)
short-range forces between an atomic and its first and
second nearest neighbors are described by only two
empirical “force constants,” and (b) an arbitrary
analytic form is used to describe the screened pseudo-
potential. The three disposable parameters of the model
are fitted to the measured elastic constants, and the
calculated normal-mode frequencies are in surprisingly
good agreement with our measurements, the average
(largest) discrepancy being about 59, (149%,). From the
foregoing discussion, however, it is clear that there is
little physical justification for assuming a contribution
(a), particularly in the two-constant form adopted by
Krebs. Nor can the use of the “Wigner-Seitz”’ function
in the specification of the screened electron-ion inter-
action be justified in detail. Its analytic form merely
has qualitatively the desired behavior. The Krebs model
would nevertheless appear to be a quite convenient
alternative to the conventional Born—von Kdrméan
analysis.

4. CONCLUSIONS

The frequencies of the normal modes of vibration of
potassium have been measured at 9°K for propagation
directions along symmetry lines to an accuracy of about
29%. The results are significantly different from those
given by ultrasonic measurements of the elastic con-
stants.® Possibly this arises from different modes of
propagation of sound at frequencies <10° cps and
>5X 10! cps.

The measurements have been used to find the param-
eters of a conventional axially symmetric Born-von

28 K. Krebs, Phys. Rev. 138, A143 (1965).
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Kérméin model which, with forces extending to fifth
nearest neighbors, gives an excellent account of the
experimental results. This model has been then used to
calculate the frequency distribution and specific heat of
potassium. At low temperatures the model gives a small
but probably significant discrepancy with the measure-
ments of the specific heat!®; this may be associated with
the elastic-constant behavior.

The experimental results have also been used to
deduce pseudopotentials for the electron-phonon inter-
action, following the work of Cochran.%® These po-
tentials are in quite close agreement with that found
by Bortolani® using the method of Heine and Abaren-
kov.2® The shapes of these potentials are largely inde-
pendent of their range in reciprocal space,so that we may
conclude they are physically quite well defined, and
that the measurements lead fairly unambiguously to
the pseudopotentials. It is probably worth commenting
that the screened pseudopotential changes sign very
close to 2kp (Fig. 5), and so the magnitude of the Kohn
effect is expected to be very small in both potassium
and sodium, as found experimentally. At the smallest
reciprocal lattice vectors, (110) and (002), the curve
does have nonzero though small values, and so the
band structure is not given exactly by the free-electron
approximation.

An alternative method of analysis was also employed
to find the interatomic potential between neutral
pseudo-atoms. This approach gave results which were
very dependent on the range chosen for the potential.
When transformed to real space, some of these po-
tentials were of comparatively short range, whereas
others had a very long-range oscillatory character. Since
both types of potential gave excellent accounts of the
experimental results, we must conclude that there is
considerable arbitrariness in the choice of an interatomic
potential. However, it is difficult to understand the
physical origin of these long-range oscillations, since the
Kohn effect is so small in these materials. Rather similar
considerations result from an analysis of the phonon
dispersion curves for sodium. Long-range oscillatory
potentials have also been found from an analysis of
liquid metal structure factor curves.?”® It is perhaps of
interest to speculate whether there is also a possibility
of fitting these curves by a comparatively short-range
potential. This arbitrary behavior did not occur in the
pseudopotential analysis, which therefore appears to
be physically the more sensible approach at present.
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