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An interatomic potential for tungsten was con-
structed which had the same form as does Potential III
of Erginsoy et u/. ' for o.-iron. It consisted of an expo-
nentially screened Coulomb potential for r(1 A joined
to a simple exponential for r) 1 A
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ATOMIC SEPARATION, A

P(r) = (24500/r) exp( —4.55r), r(1 A;

P(r) =24500 exp( —4.55r), r) 1 A.

This potential is compared with the Bohr, Girifalco-
Weizer, 4' Johnson, " and Thomas-Fermi potentials in

"L. A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687 (1959).

FIG. 21. Tungsten potential used in the present study compared
with two high-energy and two low-energy potentials for
tungsten.

Fig. 21. At small separations distances (r(0.4 A)g(r)
fits the Thomas-Fermi potential for tungsten. It is
equal to the Morse potential of Girifalco and %eizer
a,t r= 1 A and to Johnson's potential at 2.2 A.
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Crystal Dynamics of Potassium. I. Pseudopotential Analysis
of Phonon Dispersion Curves at O'K
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The frequencies of normal modes of vibration of potassium at 9'K have been measured by inelastic-
neutron-scattering techniques. Certain selected frequencies are (units 10" cps): H&5 2.21+0.02, P4 1.78&

&0.02, N1' 2.40&0.04, N3' 1.50%0.025, and N4' 0.53~0.02. The results are very similar, apart from a scale
factor 1.65, to those for sodium. Analysis of the results has been carried out in terms both of conventional
Born-von Karman models and of potential functions defined in reciprocal space. A fifth-neighbor, axially
symmetric force model has been used to compute the frequency distribution function for the normal modes
and the associated heat capacity. The reciprocal-space analysis was performed in two ways: (a) in terms of a
total potential function, whose Fourier transform is the effective interatomic potential between "neutral
pseudo-atoms" of potassium, and (b) in terms of the screened pseudopotential for the conduction-electron-
ion interaction. Analysis (a) shows that a wide variety of interatomic potentials, both with and without
long-range oscillatory character, can be found which give a satisfactory fit to the results. These potentials
are compared with those obtained from an analysis of x-ray scattering data for liquid potassium. The
pseudopotentials obtained from analysis (b) are in good agreement with that derived by Bortolani from the
Heine-Abarenkov model. A reanalysis of the phonon dispersion curves for sodium leads to very similar con-
clusions, confirming earlier work by Cochran.

I. INTRODUCTION

'HE crystal dynamics of metals has received con-
siderable experimental and theoretical attention

over the past decade. A large amount of experimental
information on dispersion relations v(q) of frequency v

versus wave vector q exists for a number of metals,
while theoretical attention has been concentrated princi-

pally on the alkali metals. ' Measurements of v(q) for
sodium' showed that while quite long-range effective
forces were present, they were not very strong, and no

' For a general review of phonon dispersion curves in metals see
G. Dolling and A. D. B. Woods, in Therma/ Neltron Scattering,
edited by P. A. Egelstaff (Academic Press Inc. , New York,
1965), Chap. V.

~A. D. B. Woods, B. N. Brockhouse, R. H. March, A. T.
Stewart, and R. Bowers& Phys. Rev. 128, 1112 (1962).
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definite Kohn anomalies, ' such as had been observed
in lead, ' and other metals, ' were present. Analysis of the
dispersion curves in terms of a pseudopotential was
carried out by Cochran' ' and resulted in an effective
interatomic potential. At large distances this potential
has an oscillatory character, and Koenig' showed that
this could arise from the discontinuity in the slope of
the dielectric screening function, i.e., another aspect of
the Kohn effect. Cochran' suggested, however, that the
oscillations might result from his method of calculating
the effective potential.

Attempts to improve the accuracy of the sodium v(tI)
and to measure neutron-scattering line shapes as a
function of temperature' ' were made dificult by the
large incoherent neutron-scattering cross section for
sodium. In addition, the occurrence of the martensitic
transformation in sodium made it necessary to carry
out the experiments above 40'K, where it is possible
that line shapes and frequencies are already affected
by anharmonic interactions. Because it was felt to be
desirable to have a large body of precise information
about all aspects of the lattice dynamics of an alkali
metal, it was decided to pursue the measurements on
a more favorable material; potassium was chosen for
several reasons: (1) The ratio of coherent to incoherent
scattering cross sections is about two and a half times
larger than for sodium. (2) Its electronic properties are
nearly ideally free-electron-like, in common with sodium
hut in contrast with many other metals. (3) No marten-
sitic transformation exists; thus experiments can be
done at low temperatures. (4) Large single crystals
were available. "

Accordingly, the dispersion curves have been measured
at a temperature of 9'K and the results interpreted on
the basis of a pseudopotential similar to that derived
for sodium. The results have also been fitted to a
Born—von Karman model which was then used to
calculate the density of phonon states, g(v), and hence
thermodynamic properties such as the heat capacity.
A large part of this paper describes the methods used
in this analysis, and the results of several different
approaches to calculating an effective interatomic po-
tential as well as the pseudopotential for electron-
phonon scattering. It is hoped that these results will

assist in the understanding of electron-phonon inter-

2. EXPERIMENT

The phonon dispersion curves have been measured
along the high symmetry lines A, Z, A(F), D, and 6
(in previous notation' [00$], [g0], [gl], [-',—',f], and

TABLE I.Normal-mode frequencies (units 10's cps) in potassium
at 9'K. The reduced wave-vector coordinates g are expressed
in units of (a/2v), where a is the lattice constant.

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.10
0.20
0.30
0.40

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

(001')tery

0.66 ~0.04
0.89 &0.02'
1.08 ~0.05
1.21 +0.03
1.35 +0.04
1.53 ~0.03
1.63 +0.03
1.74 ~0.035
1.81 ~0.04
1.89 +0.03
1.96 +0.06
1.965+0.04
2.08g+0.03
2.11 ~0.025
2.15 ~0.03
2.19 +0.025
2.21 ~0.025
2.21 +0.02

Lk'sl 1Dr

1.52 &0.04
1.62 ~0.04
1.69 +0.04
1.72 ~0.04

LÃ0j»
~ ~ ~

0.74 ~0.02
1.08 ~0.03
1.41 ~0.02
1.69 ~0.05
1.94 ~0.03
2.08 ~0.05
2.25 +0.035
2.33 +0.06
2.40 ~0.04

LOOI/A,

0.52~0.03
0.68~0.025
0.82+0.03
0.99%0.02
1.15+0.03
1.28'0.02;
1.44~0.03
1.57a0.02
1.69+0.02
1.79+0.02'
1.89~0.02
1.99~0.02
2.07+0.03
2.11+0.025
2.19~0.04
2.20+0.03
2.21+0.04

2.35~0.06
2.30~0.035
2.20~0.05
2.01+0,04

~ ~ ~

0.67~0.03
0.93~0.03
1.11~0.03
1.23&0,03
1.36~0.03
1.44+0.025
1.49~0.05
1.50~0.025

pg'Igh. 3, 1'3

~ ~ ~

0.77 +0.05
1.00 ~0.06
1,20 ~0.06

~ ~ ~

1.53 ~0.05
1.68 +0.04
1.78g~0.02
1.91 ~0.04
2.00 +0,04
2.05 ~0.06
2.09 ~0.03
2.12 ~0.04
2.16 +0.03
2.19 ~0.03
2.18 ~0.02'
2,22 ~0.03

~ ~ ~

I:ll 1'1D4

0.70 ~0.03
0.97 &0.03
1.27 ~0.03
1.55 ~0.04

0.53 +0.03
0.95 ~0.02
1.34 ~0.04
1.695+0.02
1.95 +0.04
2.10 &0.02'
2.19 ~0.05
2.15 +0.025
2.03 ~0.06
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action in metals. It is further intended that these experi-
mental measurements and theoretical calculations will
serve as the basis for more extensive studies of the effect
of temperature on the phonon spectrum.

e W. Kohn, Phys. Rev. Letters 2, 393 (1959).
4 B.N. Brockhouse, T.Arase, G. Caglioti, K.R. Rao, and A. D.

B.Woods, Phys. Rev. 128, 1099 (1962).' W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963).
W. Cochran, in Irtelastic Scatterirtg of ItIeutroIts in Solids and

Liglids (International Atomic Energy Agency, Vienna, 1965),
Vol. I, p. 3.' S. H. Koenig, Phys. Rev. 135, A1693 (1964).

SA. D. B. Woods, B. N. Brockhouse, R. H. March, and R.
Bowers, Bull. Am. Phys. Soc. 6, 261 (1961).' See B.N. Brockhouse, A. D. B.Woods, G. Dolling, and I. M.
Thorson, in I'roceedings of the Third United Sutions International
Coeferertce oN the Peaceful Uses of Atomic Ertergy (United Nations,
New York, 1965), Vol. I, Paper P/12, p. 419.

' We are extremely grateful to P. A. Penz for growing two
excellent specimens for the purpose of these experiments.

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2.22~0.05
2.14~0.04
2.01+0.06
1.78w0.03
1.55~0.04
1.31~0.04
1.07+0.04
0.81~0.03
0.61+0.03
0.53+0.02

2.18 ~0.05
2.13 ~0.04
2.10 +0.035
2.02 ~0.035
1.895&0.03
1.78 ~0.02'
1.70 ~0.04
1.57 ~0.03
1.53 ~0.04

a COntinuatiOn of A branCh.

0.55
0.58
0.60
0.62
0.65
0.68
0.70
0.72
0.75
0.78
0.80
0.85
0.90
0.95

1.55 ~0.04
1.38 ~0.05
1.24 ~0.03
1.17 ~0.03
1.04 ~0.025
1.005~0.02'
1.02 a0.03
1.06 ~0.03
1.20 ~0.03
1.36 +0.03
1.47 ~0.02
1.77 ~0.03
1.99 ~0.03
2.19 ~0.04
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Fro. 1. Measured dis-
persion curves for po-
tassium at 9'K. i'(2s/u)
is a reduced wave-vector
coordinate. In the L00i ),
Pi 10), and (iTI') direc-
tions, transverse (longi-
tudinal) modes of vibra-
tion are denoted by
circles (triangles). The
solid curves represent
the best 6t to the re-
sults on the basis of
a Born—von Karma, n
model with axially sym-
metric forces extending
to fifth-nearest-neighbor
atoms.
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L|$1$, respectively) at 9'K, using the Chalk River
triple-axis crystal spectrometer in its constant-mo-
mentum-transfer (constant Q) mode of operation. "All
of the measurements were carried out by observation
of neutron-energy-loss processes with variable incident
energy; the (aluminum) analyzer was set to observe
several neutron energies in the region of 0.012 eV.

The results are shown in Fig. 1 and Table I.The fitted
curves shown in I'ig. 1 will be discussed in Sec. 3. In-
spection reveals that, apart from a scale factor of
approximately 1.65, they are very similar in shape to
the corresponding curves for sodium' —a not unexpected
result. The same kind of correspondence, though not
quite so close, exists between these results and those
for the alloy P-brass (CuZn). "

In common with the sodium dispersion curves the
hr and Ds branches appear to cross near t =0 75 It is. .
difFicult to confirm this point, however, and we are
hesitant about drawing any conclusions about the

"B.N. Brockhouse, in Inelastic Scattering of Eeltrons in Solids
and Liglids (International Atomic Energy Agency, Vienna,
1961),p. 113."G. Gilat and G. Doiling, Phys. Rev. 138, A1053 (1965).

shapes of the curves in this region; they are very close
together, and the possibility of double-scattering proc-
esses" introduces an uncertainty in the identification of
observed peaks with particular modes. With the possible
exception of these branches near )=0.75, the curves are
quite smooth and show no evidence of any Kohn
anomalies.

3. ANALYSIS OF RESULTS

The measured normal-mode frequencies have been
analyzed in two ways: (a) using the method of Born
and von Karman'4 to obtain interatomic force constants
(in real space) between near-neighbor atoms, and (b) in
terms of potentials defined in reciprocal space, in a
similar manner to that employed by Cochran' for
sodium.

A. Born—von Karman Analysis

The processes of setting up equations of motion for
the atoms in a monatomic bcc crystal, and of the re-

"Reference 1, p. 196, and Ref. 4.' M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1954).
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2.4

I I I I I I I I I .I I I I I I I lattice of the crystal, and q+~= Q. Following Cochran
we may subdivide this expression for the dynamical
matrix element into three contributions

D s(q) =Dan+Do+DE. (6)
o 22

C4

O

2.I—I-

2.0—

I ~
9- &,

--&'-

I.s I I I I I I I I I I I

6 9 I2

F&G. 4. Equivalent Debye frequencies derived from the moments
of the distribution of Fig. 2, dashed curve, compared with experi-
mental heat-capacity data (Ref. 18). The solid curve shows the
eBect of utilizing a force model fitted only to the results in Fig. 1,
ignoring the measured elastic constants.

measurements refer to vibration frequencies &10' cps,
far below the lowest value (5&(10"cps) obtained in the
neutron-scattering experiments. At 5'K, the heat
capacity is dominated by modes of intermediate fre-
quencies (&10"cps).

D s(q)=p g s(O, t) exp(iq r~); (2)

& (q) specifies the polarization of the mode, p &(O, t)
represents force constant linking the atom at an origin
(0) with that at position r~. We assume an axially
symmetric two-body interaction V'(r) between the
atoms, dependent only on the distance between them:

d2V r()
y.,(o,t) =

du. (0)dgp(t)
(3)

y.,(0,0)= —p y.,(o,t), two

where I (t) is the displacement from equilibrium of the
atom t. We now express V(r) in terms of its Fourier
transform

V(r) = (2rr) 'v V(Q) exp( iQ r)dQ—, (4)

where v is the volume of the unit cell and V(Q) depends
only on

I Q I. Substituting Eqs. (3) and (4) into (2), and
taking into account the term P„s(0,0) we obtain"

D.s(q) =Z L(q-+r-) (qs+re) V (q+~) r-ruV (~)3,—(5)

B. Reciprocal-Space Analysis

The normal-mode frequencies v are given by the
equation'4

4m'mv'U. (q) =Q D. (qs) Us(q),

where

These terms represent contributions arising from short-
range overlap forces, long-range electrostatic forces be-
tween the bare ions, and interactions involving the
conduction electrons and the ions, respectively. Recent
work by Vosko" has strongly suggested that D~ is very
small indeed for both Na and K, and in most of our
calculations we have neglected this contribution. (Intro-
duction of a small overlap force produces no significant
change in any of the results discussed below. ) The
"Coulomb" contribution D~ is easily calculated with
the help of the Ewald 8 transformation, leaving only
the conduction-electron term DE to be dealt with. Two
different methods of analysis suggest themselves:

(a) To subtract from the observed phonon frequencies
Li.e., the D s(q)$ the known contribution Do, as was
done by Cochran for sodium, ' and to fit the remainder
to some function V~(Q) corresponding to the contribu-
tion DE. A refinement of this procedure is to assume a
local pseudopotential model for the conduction electron-
ion interaction: If V„(Q) is the Fourier transform of the
local pseudopotential (we omit the vector sign to
emphasize the axial symmetry of the potentials), and
e(Q) is the dielectric function, we have

V (Q) = (e/4~e')Q'(1 —e '(Q))
I V.(Q) I'

The experimental results are then fitted to the screened
potential V~(Q)/e(Q). The advantage of this is that,
as shown by recent calculations of Animalu' and by
Bortolani s' V„(Q)/e(Q) is of oscillating sign. Thus,
while V (Q) is always non-negative, it displays cusp-
like singularities at Q values for which V„(Q)=0. It is
therefore much easier and more satisfactory to 6t the
experimental data with the fairly well-behaved screened
potential than with VE(Q) itself.

(b) To analyze the total D, (qs) in terms of a potential
function V (Q), using Eq. (5). This total potential is
the I'ourier transform of the effective ion-ion potential
in real space, whose first and second derivatives at the
interatomic distances give the conventional Born—von
Karman force constants. We might refer to this as the
potential between "neutral pseudo-atoms". '4

Both methods of analysis have been carried. out in
the same manner, as follows: It is convenient to define
new functions GE(Q) and Gr(Q):

tp2 e2

V'(Q) = '(Q); V'(Q)= '(Q)' (g)
Q2e Qse

In the first instance the functions G~(Q) and Gr(Q)

where ~= (r, rp, rr) represents a vector of the reciprocal

20 D. Pines, E/ementary L&'recitations its Sohds (W. A. Benjamin. ,
Inc. , New York, 1963), p. 26.

"S.H. Vosko, Phys. Letters 13, 97 (1964)."A. O. E. Animalu, Technical Report No. 3, Solid State Theory
Group, Cavendish Laboratory, Cambridge, 1965 (unpublished).

2' V. Bortolani (private communication).
'4 J, M. Ziman, Advan. Phys. 13, 89 (1964).
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were specified by a Fourier series of up to 30 terms:

(Q)= .-( -- (-Q/Q ..)&(-+ Z

Ryd

0.02—

I I I I I I I I

r 1 1 1 I ERRORS IN CURVES
C and D

A odd

%max

+ 2 ~.t 1—--(. Q/Q, ...)j,
n=l

where Q, is some upper limit beyond which the two
functions G(Q) are assumed to be negligible. 2, is a
constant, equal to 47r for G~(Q) and zero for Gr(Q). The
form of the first part of this expression was chosen so
that the G(Q) would tend smoothly to their respective
limits at Q=O and Q,„.The coeKcients A„were then
obtained by the method of linear least-squares fitting to
either D s(=Dc+Dan) or D~, as the case may be. This
procedure, although most efficient, was found to be un-
satisfactory owing to the existence of "ripples" in the
fitted G functions arising from the large e terms in the
Fourier series. These fitted G functions could, however,
be used as the first stage of a nonlinear least-squares
fitting procedure in which the function is specified by
a table of values at between 10 and 30 selected Q values.
Values of G at intermediate Q=Q, are found by
Lagrange (cubic) interpolation, using the two nearest
tabulated values on either side of Q;. The same method
was used in the process of fitting D~ by means of a tabu-
lated V„(Q)/e(Q) function. By definition, G~(0)=4~
and Gr (0)=0, and the screened pseudopotential
V~(Q)/e(Q) tends to a finite value at Q=O. We assume a
value Q=Q, , beyond which GE(Q) =Gr(Q) = V„(Q)/
e(Q) =0. The fitting process is initiated by specifying a
table of values for the function concerned at Q values
between 0 and Q,„, and imposing the condition that
the function tend smoothly to zero at Q, . These
tabular values constitute the variable parameters of the
least-squares fit. The phonon frequencies for any given
reduced wave vector q may now be computed from
Eqs. (1) and (5) through (8). The computation is
simplified if q lies along a direction of high symmetry,
since the dynamical matrix factorizes into three equa-
tions involving linear combinations of the D p(q). The
number of lattice points g involved in the summation
of Eq. (5) becomes very large as Q, increases, as does
the number of tabular values required for adequate
specification of the function. These factors effectively
restrict the choice of (a/2~)Q, „to less than about 2.8;
indeed, there seem to be insufhcient data at present to
specify the G functions much beyond 2.4. (For com-
parison, the calculations previously carried out' for Na
assumed a cutoff at aQ/2~= v2. ) Calculation of phonon
frequencies from the screened pseudopotential involves
a knowledge of the dielectric function e(Q). We have
employed both the expression given by Bardeen" and
also that proposed by Heine and Abarenkov, "which
incorporates certain corrections (e.g., for exchange
effects) to the simple Bardeen formula.

s5 J. Bardeen, Phys. Rev. 52, 689 (1937)."V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).
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The results of these least-squares fitting calculations
for potassium, with (a/2')Q, chosen to be 2.4, are
shown in Fig. 5 (upper diagram) both for the Bardeen
(curve C) and Heine-Abarenkov (curve D) dielectric
functions. Two screened pseudopotentials calculated on
the basis of the Heine-Abarenkov modeP2" are also
shown in curves A and B, respectively. The downward
kink in the curves C and D near Q, results from the
condition that V~/e goes smoothly to zero at Q„„.As

Q,„ is changed, the quality of the fit to the phonon
frequencies increases as Q,„ increases, but the same
general shape of curve results. If (a/27r)Q, „is increa, sed
beyond 2.4, then the calculated errors of the tabulated
values of the curve increases, showing that there are
Insufhcient data to determine them.

The phonon frequencies calculated from curves C and
D are an excellent fit to the measurements, similar to
that shown in Fig. 1. As would be expected from the
close similarity of our curve, D, with that of Bortolani, "
A, and the contrast with that of Animalu, "B, the fit
to experiment given by use of A is substantially better
than that obtained with B. The lower part of Fig. 5
shows the function G~(Q) derived from curves A and C
above. Note the enlarged scale for aQ/2ir) 1 to show the
details more clearly.

In Fig. 6 we show the results of calculations of the
function Gr(Q) for various Q, . All these curves
provide a satisfactory fit to the experimental data, but
the increase in size of error bars as Q, ,„increases is much
more pronounced than in the screened-pseudopotential

I I I I

0 I.O 20 3,0 4.0
WAVE VECTOR aQ /2m.

Fio. 5. The screened pseudopotential V~(Q) je(Q) for the con-
duction electron-ion interaction in potassium at 9'K (upper
diagram). A and 8 are theoretical curves based on the Heine-
Abarenkov model, while C and D are 6tted to the results of Fig. 1,
as described in the text. The lower diagram shows the function
G'-"(Q) derived from curves A (solid) and C (dotted) above. The
large wave-vector region is shown on a 10)& scale on the right.
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FIG. 6. The total po-
tential function G~(Q)
derived from the results
of Fig. 1, for various
values of the cutoB wave
vector Q ME for potas-
sium at 9'K. Typical
error bars are indicated
at arbitrary intervals.
For (o/2s)Q~)2. 4, the
error bars become very
large, indicating insufB-
cient data to specify the
function.
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calculations. As mentioned earlier, the Fourier trans-
forms of these curves and their derivatives represent
effective potentials (and derivatives thereof) in real
space between the potassium atoms, including con-
duction-electron effects. The existence of many different
functions Gr(Q), all of which fit the experimental data,
merely rejects the fact that the interatomic potential
V(r) for all r cannot be determined from a knowledge
of phonon frequencies alone. Nevertheless, it seems of
interest to compute V(r) for the various Gr(Q). The
results for Q, (a/2')=1. 6 (curve A of Fig. 6) are
shown in Fig. 7. The values of (1/r) d V/dr and d'V/dr'
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FIG. 7. The eGective interatomic potential and its derivatives
for potassium at 9'K, obtained by Fourier transformation of
curve A, Fig. 6. The dashed curve is one of several similar oscil-
latory potentials derived (Ref. 2/) from x-ray scattering data
for liquid potassium.

at the atomic positions are simply related to the force
constants of a conventional Born—von Karman analysis.
The derivatives shown in Fig. 7 are in good agreement
with the force constants obtained in the Born—von
Karman analysis of Sec. 3 A. After the initial oscillation
at the near-neighbor distance, V(r) falls smoothly and
monotonically to zero, in marked contrast to the inter-
atomic potential deduced" for liquid potassium from
x-ray scattering data. Transformation of curve C of
Fig. 6, however, leads to a long-range oscillatory po-
tential V(r), similar in character to the dashed curve
in Fig. 7. Thus, in the case of solid potassium, it is
possible to construct long-range oscillatory potentials
which are consistent with the measured phonon fre-
quencies. However, such potentials are certainly not
necessary and seem less physically plausible than the
potential shown as a solid line in Fig. 7.
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Fio. 8. The screened pseudopotentiai V~(Q)/a(Q) for the con-
duction electron-ion interaction in sodium. The labels 3 and D
are the same as for Fig. 5. Curve E (open circles) is that derived
by Cochran (Ref. 5) from the function Gs(Q).

M. D. Johnson, P. Hutchinson, and N. H. March, Proc.
Roy. Soc. (I,ondon) A282, 283 (1964). See also J. E. Enderby and
N. H. March, Advan. Phys. 14, 455 (1965).

We have also performed the above analysis for the
case of sodium, using the normal-mode frequencies ob-
tained by Woods et a/. ' As in the case of potassium, we

again assumed the short-range interaction D~ to be
negligible. The results are generally similar to those for
potassium, particularly in respect of the total potential
function Vr (Q) and its Fourier transform in real space.
The screened pseudopotential derived assuming the
Heine-Abarenkov dielectric constant, " is shown in
Fig. II (curve D), together with that computed by
Animalu" (curve II). The fmal oscillation in curve D
near Q, is not significant; the experimental data for
sodium are barely sufhcient to specify the pseudo-
potential at this range. Indeed, a rather satisfying Gt to
the data can be obtained with (a/27r)Q, „as low as 1.3,
in con6rmation of the earlier work, ' shown in Fig. 8 as



COWLEY, WOODS, AND DOLLI NG

IO'
—0.8

G (Q)

6—

0.6

0.4

—0.2

open circles. The function G~(Q) derived from curve D
of Fig. 8 is shown in Fig. 9. Up to a wave vector
(aQ/2s. )= 1.2, this function is almost indistinguishable
from the analogous curve obtained by Cochran. (Beyond
this point, Cochran's G function is virtually zero. )

Dispersion curves for potassium have also been calcu-
lated by Krebs" on the basis of a model in which (a)
short-range forces between an atomic and its first and
second nearest neighbors are described by only two
empirical "force constants, " and (b) an arbitrary
analytic form is used to describe the screened pseudo-
potential. The three disposable parameters of the model
are fitted to the measured elastic constants, and the
calculated normal-mode frequencies are in surprisingly
good agreement with our measurements, the average
(largest) discrepancy being about 5% (14%).From the
foregoing discussion, however, it is clear that there is
little physical justification for assuming a contribution
(a), particularly in the two-constant form adopted by
Krebs. Nor can the use of the "Wigner-Seitz" function
in the specification of the screened electron-ion inter-
action be justified in detail. Its analytic form merely
has qualitatively the desired behavior. The Krebs model
would nevertheless appear to be a quite convenient
alternative to the conventional Born—von Karman
analysis.

4. CONCLUSIONS

The frequencies of the normal modes of vibration of
potassium have been measured at 9'K for propagation
directions along sylninetry lines to an accuracy of about
2%%u~. The results are significantly different from those
given by ultrasonic measurements of the elastic con-
stants. " Possibly this arises from different modes of
propagation of sound at frequencies &10' cps and)5&(10"cps.

The measurements have been used to 6nd the param-
eters of a conventional axially symmetric Born—von

0.5 I.O I, 5 2.0
WAVE VECTOR a Q /27r

Fro. 9. The function G (Q) for sodium derived from curve D
of Fig. 8. The large wave-vector region is shown on a 10)& scale
on the right. The cutoff is at 2.0.

Karman model which, with forces extending to fifth
nearest neighbors, gives an excellent account of the
experimental results. This model has been then used to
calculate the frequency distribution and specific heat of
potassium. At low temperatures the model gives a small
but probably significant discrepancy with the measure-
ments of the specific heat"; this may be associated with
the elastic-constant behavior.

The experimental results have also been used to
deduce pseudopotentials for the electron-phonon inter-
action, following the work of Cochran. '' These po-
tentials are in quite close agreement with that found

by Bortolani" using the method of Heine and Abaren-
kov."The shapes of these potentials are largely inde-
pendent of their range in reciprocal space, so thatwe may
conclude they are physically quite well defined, and
that the measurements lead fairly unambiguously to
the pseudopotentials. It is probably worth commenting
that the screened pseudopotential changes sign very
close to 2k~ (Fig. 5), and so the magnitude of the Kohn
effect is expected to be very small in both potassium
and sodium, as found experimentally. At the smallest
reciprocal lattice vectors, (110) and (002), the curve
does have nonzero though small values, and so the
band structure is not given exactly by the free-electron
approximation.

An alternative method of analysis was also employed
to find the interatomic potential between neutral
pseudo-atoms. This approach gave results which were
very dependent on the range chosen for the potential.
When transformed to real space, some of these po-
tentials were of comparatively short range, whereas
others had a very long-range oscillatory character. Since
both types of potential gave excellent accounts of the
experimental results, we must conclude that there is
considerable arbitrariness in the choice of an interatomic
potential. However, it is difIicult to understand the
physical origin of these long-range oscillations, since the
Kohn effect is so small in these materials. Rather similar
considerations result from an analysis of the phonon
dispersion curves for sodium. Long-range oscillatory
potentials have also been found from an analysis of
liquid metal structure factor curves. ""It is perhaps of
interest to speculate whether there is also a possibility
of fitting these curves by a comparatively short-range
potential. This arbitrary behavior did not occur in the
pseudopotential analysis, which therefore appears to
be physica. lly the more sensible approach at present.
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