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Electron Tunneling, in Metal-Semiconductor Barriers
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Tunneling through the space-charge region of a uniformly doped semiconductor has been calculated in
the e6'ective-mass approximation. The exact solutions of the one-dimensional Schrodinger equation for a
parabolic potential are used to determine the transparency of the barrier. Numerical results are presented
for parameters appropriate to indium and n-type germanium. An example of experimental results typical of
this system is quoted to illustrate qualitative agreement.

I. INTRODUCTION
' 'N this paper we present a calculation for the dc-
' - pendence of tunneling current on applied voltage
bias in metal-semiconductor junctions. Alternatively,
this can be regarded as a calculation of the departure
from ideal behavior in a type of noninjecting Ohmic
contact. Tunneling in the rectifying metal-semicon-
ductor contact, which is more popularly known as the
Schottky barrier diode, was considered earlier, but not
in detail. A discussion of the earlier calculations and of
the Schottky model, which we adopt, is presented by
Henisch. ' More recently, Padovani and Stratton' have
analyzed tunneling in the Schottky barrier from the
standpoint of thermionic-field emission. ' Other closely
related calculations are those of Esaki, ' Keldysh, ' ' and
Kane" ' on tunneling in p-tt junctions. However, they
have not considered the dependence of electron trans-
mission on energy and applied bias which prove to be
essential features in the metal-semiconductor tunneling.
Shuey' has calculated formal expressions for direct
tunneling with improvements in this respect. His
results, however, are not directly applicable.

To obtain an expression for the tunneling current,
we generalize a result (29) of Fredkin and Wannier. "

In this form, k„has been related to kt by assuming
conservation of transverse momentum and energy, i.e.,
k, t ——k,„and E„=Et—eV . The barrier transparency

I
Tt, I

is obtained through the solution of a Schrodinger
equation. Since we assume uniform impurity density
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e„ in the semiconductor, the barrier potential is essen-
tially parabolic and an exact solution is obtained.

In Sec. II we present the model, discuss the most
significant simplifications, and obtain an expression for
the dependence of the potential barrier on applied bias.
An expression for the barrier transparency ITt~, Is

appropriate to this potential is derived in Sec. III.
Particulars regarding evaluation of the tunneling
integral (1) are presented in Sec. IV along with nu-
rnerical results for parameters pertaining to the system
of indium and e-type germanium. An example of ex-
perimental results from this materials system are quoted
in Sec. V to illustrate the existence of a qualitative
agreement. These results are presented in terms of the
dependence of incremental resistance (dj/dV) ' on
applied bias. A significant feature of this characteristic
is a maximum which is shown to occur at an applied
bias V which corresponds to the Fermi degeneracy p„
of the semiconductor.

The results derived apply strictly to a semiconductor
which is appropriately described by a single conduction
band, centered in reciprocal space and of spherical sym-
metry. An extension of this result to more general types
of band structure, e.g., many-valley, is important. Done
explicitly, relatively complicated expressions are ob-
tained. Results from the more elementary model, how-

ever, can be used without loss of significance and an
entirely satisfactory quantitative approximation can
be made through an argument detailed in Sec. VI.

II. THE METAL-SEMICONDUCTOR BARRIER

The idealized potential energy diagram of Schottky
for a semiconductor in contact with a metal is shown in
Figs. 1(a)—(c) for zero, forward, and reverse biases,
respectively. The semiconductor as represented is n-

type, uniformly doped, and degenerate. The states
occupied at T=O'K are indicated. At the energy of
minimum barrier width, d;„, arrows are drawn in the
direction of electron tunneling. This width is larger at
zero bias than for either sign of applied bias. This is
responsible for the tunneling characteristics of present
interest and causes a considerable departure from the
rectification with which the Schottky barrier is usually
associated.

The dependence of the potential q (s) in the depletion
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Pro. 1. Idealized potential energy diagrams for a metal-semiconductor interface in the cases of (a) zero bias, (b) forward bias,
(c) reverse bias. Note that the minimum distance d; through which an electron tunnels is maximum at zero bias.

layer of a semiconductor of uniform impurity density tonian written in terms of the barrier potential (2) is

e„ is essentially parabolic,

q (s) =e'tz, (d s)s/—2e„+e(V, tt,) —0(s(d. (2)
B=—

2m' ds'
s&0;

This is obtained as a solution of a simplified Poisson's

equation, and departs from the exact solution in the
reserve region d;„&s(d. This difference is most sig-
ni6cant where the tunneling distance is largest, and
hence, of least concern. The effect of the image charge
is also neglected. For the particular problem of interest,
the difference, which is practically independent of
applied bias, is small and produces no significant effect
on the results. Energy in Eq. (2) and subsequent ex-

pressions is measured with respect to the Fermi surface
of the metal.

As indicated in Fig. 1, the potential to(s) is locked
to the interface to a value ets(0)=eVs which is inde-

pendent of doping and bias. This condition determines
the width and bias dependence of the depletion layer,

d = E&e,(V&+td, V)/ezz„5'"—

Electrons in the metal are characterized by a spherical
energy surface of Fermi degeneracy p&, density e&, and
effective mass vs& which is assumed to equal the free
mass mo. Similarly, electrons in the semiconductor are
described by p„m„, and m, .

III. BARRIER TRANSPARENCY

Consider an electron Aux impinging upon the junc-
tion from the left. A fraction E~ is rejected and a
fraction T ~ „ is transmitted. The wave functions
describing this are obtained by solving a Schrodinger
equation for each of these regions and applying the
appropriate joining conditions. The appropriate Hamil-

+z (z),
25Sr dS

0&a(d;

+e(V.—tt,), s)d.
2PEr d2'

(4)

X'=—ft'e„/4nz ,e'zz„. (6a)

(6b)

(6c)

The wave functions for the three regions must be
matched at the two boundaries. The proper matching
conditions are that 0 (z) and ztz(s) 'd4(s)/ds be con-

tinuous. The latter condition assures time-reversal
invariance and continuity of current.

In applying the effective-mass formalism, we assume
that zs(z) does not change appreciably in a lattice
spacing. Further, we assume that the value of effective
mass m„appropriate to allowed states properly describes
the tunneling electron.

"J.C. P. Miller, in Handbook of Mathematical Fstnctions, edited
by M. Abramowitz and I. A. Stegun (U. S. Department of
Commerce, National Bureau of Standards, Washington, D. C.,
1964), Appl. Math. Ser. 55, p. 685.

The wave function obtained is

sIr =Io(exp (zktsz)+ It'. t exp (ik )ts), s(0;
=Is(A'tt( tc,.s, ()+8'U—( tc,,s, ()}, 0—(s(d;
=Io(Tt, expr zjk„(z—d)5), s)d; (5)

where 'K and 'U are parabolic cylinder functions" and
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FIG. 2. Incremental resistance, plotted versus applied bias, for
indium on degenerate e-type germanium. The resistance is rnaxi-
mum for biases equal to the Fermi energy of the germanium
electrons, whose Fermi energy is indicated by an arrow ($). This
calculation is described in Secs. III and IV, and the parameters
used are listed in Table I.

1s

The transmission obtained by the matching procedure

&,=2(2/ )"'(['tt(—-', I )+ tt'( —-', fo)/ *3

X [i~„,z(—~„.' 0)+V'(—z„' 0)j
—[U ( Keg ) ( p)+z U ( Krs q I p)/Klan

)( [sK +( K 2 0)+ ttt ( s 2 0)j)—1 (7)
where

P„=P„(1 P)~~s (11b)

The integrations over energy E and angle v are limited
to the range where k„, is positive and real.

The tunneling current as a function of applied bias
and temperature can readily be obtained from (9) and
(10) by numerical means. However, a particularly
useful result is formed when the tunneling character-
istic is plotted in te.ms of incremental resistance
(dj/dV, ) . An exa.mple of this is shown in Fig. 2,
where characteristics are shown for several values of
impurity density. For each curve, a maximum occurs
a,t an applied bia, s which corresponds to the Fermi
degeneracy of the semiconductor. (The small arrow
shown denotes this value. ) The sign of applied bias
at the maxima is as shown in Fig. 1(b).

Parameters used in the numerical evaluation are
listed in Table I and are appropriate to the sysetm of

TABLE I. Parameters employed in evaluating (9) and (10) for
the case of indium and m-type germanium.

smaller than the Fermi degeneracy of the metal p, &,

the density of states g&f and Fermi velocity v&f are
treated as constants. Conservation of the transverse
components of momentum and of energy requires

h'k„, '/2m, =E+e(p„V—,)—(E+ep~)v'm~/m„, (11a)

and

I p=d/X,

Mt.m, /m(, —
'll'( —~„', I p) = Wl. (—s:„,s, I)/8(

~ rp etc.

(Sa)

(Sb)

(Sc)

In evaluating (7), the functions at I =0 are known,
and those at tp are found by asymptotic expansion"
for (p))

~

—s„,s~. In this approximation, the barrier
transparency is

Parameter

ml

mr

Vf,

Value taken

m0

0.12mp

0,52 eV
8.6 eV
16&0

O'K

4 (1(- s) ~rP+-',

w [1+(-', I pr,)'Q

exp( tp)
X[I-'(-'--" ')+(-" ')P-'(-:—" ')3

IV. TUNNELING CHARACTERISTICS

(9)

indium and e-type germanium, The Fermi degeneracy
of the metal p, ~ was calculated in the free-electron ap-
proximation. The barrier Uq height shown is 3 of the

1 I I I
i

I I I I l I I I I
l

I I I I

SAhlPLE I084
In on Ge/Sb
T = 4.2'K

To facilitate evalua, tion, the tunneling integral (1) is
rewritten in the form

CA

C)

I

&IO—e

dEf~, (E) ~,(E ev.)j——
max

~d~—
~
T, „['. (10)

Kg&

For the spherical system of coordina, tes used, v=—sino
and 8 is the angle between k~ and the current, z, axis.
Since the applied bias voltage V„ is generally much

IOl t s i t I & i s I I s s i r l

—.I -.05 0 +.05 +.I
Vo (VOLTS)

Fzo. 3. A selected experimental example of the tunneling char-
acteristic of In and n-type germanium (to be compared vrith the
dependence in Fig. 2 corresponding to e„=1X10'9cm ').
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energy gap as measured near O'K. u u The degeneracy
in the semiconductor p, „ is related to impurity concen-
tration through a published value of the density of
states effective mass. "Carrier "freeze-out" is assumed
not to occur.

V. AN EXPERIMENTAL RESULT

As an example of experimental results, the character-
istics of a sample made by alloying indium to n-type
germanium is shown in Fig. 3. The Fermi degeneracy
l „=0 031. ev and impurity concentration Ez ——1.0X10"
were estimated on the basis of a resistivity measure-
ment. The general features compare favorably with the
theoretical dependence shown in Fig. 2. We elect, how-

ever, to defer a discussion of this particular result as
well as the more general aspects of our experiments. "

VI. CONCLUDING DISCUSSIQN

The derivation presented applies strictly to a semi-
conductor with zone-centered conduction band of
spherical symmetry. This is readily generalized to in-
clude the case of a valence band. The significant differ-
ence in results from the two cases is a reversal in the
dependence with respect to the sign of applied bias. If
the structure shows degeneracy, the band of lightest
mass is most significant. The many-valley structure
forms another important case. A detailed solution for
this has been made. The results obtained from this are
essentially equivalent to the results from the elementary
model and need not be presented. The underlying
reasons for this can be demonstrated by means of a
simple physical argument.

Two features of the many-valley problem are sig-
nificant. The surfaces of constant energy are described
as ellipsoids and they are not centered in reciprocal
space. One implication of this is the requirement that
the effective mass be taken as the component of the

"C.A. Mead and W. G. Spitzer, Phys. Rev. 134, A713 (1964)."G. G. Macfarlane et al., Phys. Rev. 108, 1377 (1957).' R. N. Dexter et al. , Phys. Rev. 104, 637 (1956)."J.W. Conley and J. J. Tiemann ito be published).

tensor along the axis of the tunnehng current. For an
axis of sufficient symmetry, all ellipsoids may be
equivalent in this respect. Further, the displacement
of the centers of the ellipsoids is generally smaller than
the radius of the Fermi sphere of a metal. Hence,
momentum k& can be conserved directly, i.e., without
phonon assistance. This effects a mark. ed difIference
between tunneling in metal-semiconductor and p-e
junctions. Details in the integration differ from those
of the spherical and zone-centered situation but only
with respect to geometry. In practice these details do
not mak. e any significant difference.

For these reasons, results based on the derivation
presented, properly weighed for the number of valleys
and the component of tensor mass in the tunneling
direction, can be expected to be in excellent qualitative
agreement and retain all the physical significance of
the more involved situations. In the particular case of
Ge, there are four equivalent minima on (111)axes of
masses nz»/ms ——1.6 and m, /me ——0.0819 which are
centered at the edge of the reduced zone."For a tun-
neling current axis in the (100) direction they are
equivalent and have m„=0.12 as a mass component.
This is the value listed in Table I on which the results
shown in Fig. 2 are based.

We have calculated the tunneling characteristic of
metal-semiconductor junctions and have obtained
qualitative results in a form which is suited to direct
comparison with experiment. One application of par-
ticular importance is the noninjecting Ohmic contact
of device technology. Such a comparison, however,
should most properly be considered to be qualitative.
To do more would require a degree of accuracy in
specification of the parameters which is not in general
available. A maximum in the incremental resistance is
predicted at a bias potential which corresponds to the
Fermi degeneracy of the semiconductor. This offers a
technique for the direct observation and quantitative
measurement of degeneracy.

"For a survey of the literature regarding this see R. A. Smith,
Sensicondlctors (Cambridge University Press, New York, 1959),
Chap. 10.


