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The arrangement of atoms around a screw dislocation in copper has been calculated by a variational
method. The pairwise interaction between discrete atoms was represented by a Morse potential function.
The displacements parallel to the dislocation line agree well with those given by linear elastic theory except
for atoms within a distance of about 5.3 A of the center of the dislocation. Because of this, there is a disparity
between the atomistic and elastic energies inside a core radius of 5.3 A for a complete (110)screw dislocation
(Burgers vector= (uo/2)(110)), where os is the lattice parameter. The corresponding core energy is 1.0 ev
per nearest-neighbor distance. In the calculation of the complete dislocation, the atoms were not permitted
to relax in a direction perpendicular to the dislocation line. This prevented dissociation. When this con-
straint is removed, dissociation into two partial dislocations occurs spontaneously. If the core is replaced by a
hole of radius r,s(the equivalent hole rudius), the inside of which is hollow and outside of which linear-elastic
theory holds at all points, this radius is 1.1 A..The energy of the screw dislocation varies as lnr at large radii,
in agreement with elastic-continuum theory. By comparing this asymptotic behavior with the corresponding
curve for the edge dislocation, atomistic values of the shear modulus and Poisson s ratio were obtained.

I. INTRODUCTION
' ' N a previous paper' (hereafter referred to as Paper I),
~ - it was shown that the difhculties associated with the
core of an edge dislocation can be successfully overcome
by the use of an atomistic model. Such a model was used
in a computer calculation of the positions of the atoms
in the core of an edge dislocation, and the core radius
and core energy were computed for a (112) dislocation
(Burgers vector (as/2) (110), where as is the lattice
parameter). The relaxed positions of the atoms in the
dislocation were compared with the positions given by
elastic theory and certain important discrepancies were
noted. In particular, the displacements parallel to the
dislocation line were found to be finite and to have both
positive and negative sign. The isotropic elastic theory
predicts that these displacements should be zero. These
nonzero displacernents indicated that the dislocation
was dissociating. They were artificially held at zero to
prevent this dissociation and hence permit a calculation
of the core energy and atomic configuration of a complete
dislocation.

This paper describes a similar investigation of the
atomistic properties of a screw dislocation in an fcc
metal. Such a calculation affords a comparison between
edge and screw dislocations on an atomic scale.

Not all of the rough estimates of the core energy cited
in Paper I distinguish between the cores of edge and
screw dislocations. 8ragg's estimate, ' for instance,
which used the fact that the energy density in the core
cannot exceed the latent heat of melting, appears to be
applicable to both types of dislocation. The estimate
was 1 eV per atom plane. Hasiguti and Doyama' used

*Based on work performed under the auspices of the U. S,
Atomic Energy Commission.
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the fact that if two parallel screw dislocations having
opposite signs are separated by one atomic layer the
long-range stress fields cancel and all the interaction
energy is stored in the dislocation cores. They calcu-
lated the interaction energy by assuming that elastic
theory holds down to atomic distances and obtained a
core energy of under 1.0 eV per atom plane. Cottrell's
estimate, 4 based on the assumption that Hook. e's law
holds inside the core, gives 1.3 eV per atom plane for
an edge dislocation. H the same assumption holds for a
screw dislocation and if the core size is the same for
both types of dislocation, the core energy should be
(1—v) times the core energy of an edge dislocation,
where v is Poisson's ratio. Taking v to be 3 in a typical
face-centered cubic metal, we find that the core energy
of a screw dislocation should be about 0.8 eV per atom
plane. Huntington et al. ' have investigated the core of a
screw dislocation in sodium chloride.

The present investigation was carried out with the aid
of a CDC 3600 digital computer. The pairwise interac-
tion between atoms was represented by a truncated
Morse potential function.

II. NATURE OF THE PROBLEM

When calculated by the isotropic elastic-continuum
theory, the displacements parallel to the three axes
x, y, and s, due to a screw dislocation lying along the x
axis, are, respectively,

6 8
u= —arctan—

7

2x'

v=0,

vv=0,
4 A. H. Cottrell, Dislocations and Plastic Flow in Crystals

(Clarendon Press, Oxford, 1953), p. 39.' H. B. Huntington, Phys. Rev. 59, A942 (1941).H. B. Hunt-
ington, J. E. Dickey, and R. Thomson, ibid. 100, 1117
(1955).
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where b is the Burgers vector. For a sufficiently large
crystal the elastic energy per unit length of the disloca-
tion is

pb' prt)
4~ pro &

(2)
dE
dr

tb'- r )
E'(v) =—ln

~

—1 +E„„'.
4x r, J

(3)

Differentiating Eq. (3) with respect to r we have

dE' pb' 1

7

dr 4m r

where p, is the shear modulus, r~' is the core radius,
E„„'is the core energy, and r~ is the outer radius of
the crystal. In all cases the superscript letter s denotes
applicability to the screw dislocation. The second term
in the brackets arises from relaxation of surface stresses.

The energy per unit length of a cylinder of radius r
inside the crystal, with the dislocation along its axis, is

reh

Fto. t. Schematic plot of drz/dr aa a function of r for a
dislocation. r is the distance from the center of the dislocation
and E is the energy within a radius r. r, and r,h are the core and
equivalent hole radii, respectively. The areas of the horizontally
and vertically shaded regions are both equal to the core energy.

and for large r this gives the classical result

E'(r) = (1—v)Es(r)

for equal lengths of edge and screw dislocations having
the same Burgers vector.

and Eq. (4) can be plotted to give the curve shown in
I'ig. 1. The substitution

(where r,h' is the effective hole radizzs) can be used to
change Eq. (3) to

IJP
E'(r) = ln

4x re
(6)

EE(r) = ln-
4zr (1—v) r,as

can be combined to give

L'"(r)/Es(r) = (1—v) [in(r/r, q') ]/fin(r/r, qs) j, (8)

'In reality the solid line in Fig. 1 is not continuous because
the crystal is atomistic. The horizontally shaded region should
therefore be replaced by a histogram having the same area.

and we see that for the screw dislocation, too, the dislo-
cation behaves as if it had a hollow hole of radius r,h'

down its axis and that outside this hole the linear-elastic
theory is obeyed at all points. The position of r,&' is
clearly such that the area lying under the dashed curve
between r,q' and ro' in Fig. 1 (the vertically shaded
region) is equal to the area under the solid curve
between r=0 and ro' (the horizontally shaded region). '
As before, we expect r,h' to be somewhat smaller than
r~', the core radius.

It is worth noting that Eq. (6) and its counterpart
for the edge dislocation (where the superscript letter E
refers to the edge dislocation),

III. METHOD OF COMPUTATION

A. The Crystal Model

The screw dislocation investigated here lies along a
(110) direction. Its Burgers vector was therefore of the
(ao/2) (110) type. There are just two nonequivalent
types of plane normal to a (110) direction in the fcc
lattice. Outside these adjacent planes the pattern is
repeated. All realxing operations could therefore be
carried out only on atoms in these planes, and. the
crystal was made electively infinite along the disloca-
tion line by use of periodic boundary conditions which
permitted simultaneous movement of equivalent atoms.
The number of atoms in each (110}plane normal to the
dislocation line was about 2000.

The L1101 dislocation line was along the x axis, and
the y and s axes were placed along $112j and L111$
directions, respectively. The units along these axes were
chosen so as to allow the position of each atom to be
described by integer coordinates. The units along the x,
y, and s axes were d/2, d/2%3, and (g-,')d, respectively,
where d is the atomic spacing. The dislocation cut the
ys plane at y=0, a=0.5.

Calculations of the energy and atomic configuration
of the dislocation were made for both elasto atomic and-
atomisHc models. The atoms in the elasto-atomic model
were treated as discrete atoms embedded in an elastic
"ether. " Their energies were calculated according to
interactions using the Morse potential function de-
scribed briefly in the next section. This model was also
used as a starting point for the atomistic calculation in
which the atoms were allowed to relax individually until
equilibrium prevailed.

The positional coordinates of the atoms in the perfect
crystal were first fed into the computer, and the energy
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and Wiezer were obtained with a large crystal (con-
taining 4000 atoms) in which each atom was allowed to
interact with all other atoms. The field of each atom
therefore virtually extended to infinity. In variational
calculations of the type used here, the successive relaxa-
tions of atoms are rather time consuming even when the
latest computers are employed; so it becomes impracti-
cable to consider such long-range interactions. More-
over, one cannot be certain that the field of an atom is
still adequately described by a Morse function at dis-
tances greater than a few nearest-neighbor distances.
One would expect screening effects from other atoms to
modify the field. For both of these reasons it becomes
desirable to truncate the potential (i.e., to limit J to
some convenient finite number). It can be shown' that
as J decreases from infinity to 12 (the number of nearest-
neighbor atoms in the perfect fcc lattice), the value of
ro decreases from about 1.3do to do, where do is the
nearest-neighbor distance. There is also a corresponding
variation in 0, and D. In the work described here the
potential was truncated at 176 neighboring atoms and
the constants were r~ ——2.9130 A, ao ——3.6028 A,
D=0.3227 eV, and n=1.2866 A ', where ao is the lattice
constant (=do&2). These constants were determined by
the method described by Girifalco and Wiezer. ' The
Morse potential for these constants is plotted as a func-
tion of truncation in Fig. 2. Although the different
curves in Fig. 2 refer to different truncations they have
all been extended out to the asymptotic limit. This is
necessary because, even though the truncation may
eliminate all but a few of the neighboring atoms, some
of the latter may nevertheless be displaced to relatively
large distances when the lattice is under strain. This
method uses the fact that bulk crystal properties
calculated with a particular truncated potential must
match the experimental values of those properties. In
this case the properties chosen were the energy of subli-
mation, the bulk modulus, and the lattice constant. An
additional constraint was that the Born stability criteria
have to be satisfied. Moreover, the potential used here
gives values of the elastic constants which are in good
agreement with the experimental values. The experi-
mental values of Cii, Cts, and C44 are 12.88X10" dyn
cm ') 12.6X10" dyn cm ', and 8.25X10" dyn cm ')
respectively. ' The theoretical values derived with the
Morse potential were 15.98X10"dye cm ', 11.22X10"
dyn cm—' and 11.22X10" dyn cm ' for the same
quantities. In deriving these elastic constants the
Cauchy relation has to be obeyed because only central
forces are considered. Thus the theoretical values of
C» and C44 are always equal. Because of this an ef-
fective value of C~~, which was simply the mean of the
experimental values of C~2 and C44, was used to calcu-
late an effective bulk. modulus. This procedure af-

"M. Doyama and R. M. J. Cotterill, Bull. Am. Phys. Soc.
10, 323 (1965).

H. B. Huntington, in Solid State Physics, edited by I'. Seitz
and D. Turnbull {Academic Press Inc. , New York, 1958), Vol. 7,
p. 213.
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FIG. 3. Positions of atoms in two {111)planes, one above
(triangles) and one below (circles) the slip plane of a screw dis-
location. The dislocation line lies along the (110) direction indi-
cated by the arrow. A narrow region of stacking fault lies at the
center.

forded the best compromise agreement between the
experimental and theoretical values of C~~, C~2, and C44.

This procedure was also adopted in the work described
in Paper I. The value of Eo was —7.07066 eV.

IV. RESULTS

A. Comylete Screw Dislocation

For calculations on the complete screw dislocation,
the atoms were not permitted to relax in any direction
perpendicular to the dislocation line. This prevented
dissociation. The positions of the atoms near the center
of the dislocation, and in (111) planes immediately
above and below the slip plane, are plotted in Fig.
3(b). For the sake of comparison the corresponding
positions of atoms in the elasto-atomic approximation
are given in Fig. 3(a). The positions of some of the
atoms near the center of the dislocation for both the
elasto-atomic and atomistic cases of the complete screw
dislocation are given in Tables I and II. Also given is
the energy E; of each atom.

The energy of the complete screw dislocation is
plotted as a function of radius in Fig. 4. Again, both
the elasto-atomic and atomistic energies are plotted.
The energies are plotted against lnr so that the extent
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'l'AB.t.K I. Positions and energies of atoms around
elasto-atomic screw dislocation.

TABLE II. Positions and energies of atoms around
complete screw dislocation.
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0.000

Distance
from the
center in
nearest-
neighbor
distances

(A)

0.408
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6.000—6.000

11.000

3.000—3.000—3.000—1.000

3.304
3.342
3.342
3.403

—7.060—7.049—7.062—7.055

9 3
6 —3—6 —3

11 —1

1,201—0.330—0.542
0.759

9.000 3.000
6.000 —3.000—6.000 —3.000

11.000 —1.000

3.304
3.342
3.342
3.403

—7.050—7.067—7.056—7.062

1.117 11.000 2.000 3.403 —7.062 1.045 11.000 2.000 3.403 —7.048
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l.2 TABLE III, Positions and energies of atoms around
dissociated screw dislocation.

)
I .0—

O 0.8—
O
O

V)

a 0.6—
U.j
CC
O

0.4
O

8
8

0
0—1

Identity

—2
3

0 —0.504
1 —0.606

0.576
0.637

Coordinates

—1.789
2.813

0.990
0.017

—0.219 —0.006
1.228 1.022

Distance
from the
center in
nearest-
neighbor
distances

(x)

0.418
0.555
0.653
0.903

Energy
F.;

(eV)

—6.970—6.897—7.059—7.119

C3

0.2
IJJ

G.O-
O. I

x

b d

O. 2 0.4 0.6 I .0
I I I I I I II

2 5 4 6 IO

DISTANCE FROM CENTER OF SCREW DISLOCATION

iN NEAREST NEIGHBOR DISTAN CFS

0

0

4 1—1—1 2

2 —1
2—5

0.293
0.202
0.490
1.554

—0.395
0.314—0.306
0.655

2.092—4.841—3.928

2.022
0.982
1.986

—3.218 —0.033
4.202 1.033—1.079 —1.011—0.925 1.999

1.929 —0.992

1.026
1.289
1.272
1.252

1.339
1.382
1.452
1.661

—6.847—6.836—7.01.6—7.028

—7.038—6.998—7.142—7.039

I'xG. 4. Energy within a given radius as a function of that radius
as measured from the center of a screw dislocation. The three cases,
elasto-atomic, complete, and dissociated, are shown.

of the linear region of the curve Lwhich would be in
agreement with Eqs. (3) and (5)] can be seen.

B. Dissociated Screw Dislocation

After the calculations on the complete screw disloca-
tion were completed, the 6nal positions of the atoms
were fed back into the computer and further relaxations
were permitted, this time with the limitations against
movements perpendicular to the dislocation line re-
moved. The complete dislocation dissociated spontane-
ously. The positions of the atoms near the dissociated
dislocation are shown in Fig. 3(c) Lwhich should be
compared with Figs. 3(a) and 3(b)j. The two partial
dislocations can be distinguished in Fig. 3(c); and by
comparing the positions of the atoms with respect to
the 6duciary triangles in the last two sections of Fig. 3,
and noting that the open circles suffer a displacement in
the (112) direction. It can be seen that the region be-
tween them is a stacking fault. The separation distance
between the partials is approximately 12 A or Sb. The
reasons why (as in the case of the edge dislocation) this
separation distance might not reAect the true situation
in copper are discussed in Sec. V. The positions of the
atoms surrounding the dissociated screw dislocation are
given in Table III.

The energy of the dissociated dislocation is plotted as
a function of radius in Fig. 4. The drop in energy during
dissociation is the vertical distance between the asymp-
totic regions of the complete atomistic and dissociated
atomistic curves. As was noted earlier, this energy
change will be in error if, as is quite likely, the distance
of separation of the partials is not correctly given by
the calculation. This error is discussed in Sec. V. It is
shown in that section that the separation distance is
probably underestimated, and the dissociation energy

—4 —1 —0.659—6 0 —0 874
6 0 —0.263
5 —1 0.693

1.273
0.539

7 1 —0.931
1 —2 —1.420

—2 —2—3 3

4 —2—7 2—7

—0.514
1.624
1.430
0.782

—0.346
1.734
0.215—1.627

8 2 0.168
8 —1 —0.239

0.810
0.027

0.692

0—1
0 —3
7 —2

0.321—0.447—1.285

—1
0

1
10

4 —0.479
1 0.000—2 4

3 —3

—3 —3—8 —2

0 —10

0.593
0.617

0.477—0.727
0.436
0.795

—1 —11—1. —5
1 —9

—0.156—0.347
1.748

1.233
6 —3 —0.327—6 —3 —0.611

11 —1 0.814

1.098

0 —10 —1 —0.872

—4.094 —1.029—6.172 —0.028
5.874 0.013
4.931 —0.987

5.096
0.025

2.029
3.002

7.144 1.020
0.981 —1.998

—2.030 —2.010—2.979 2.993
3.041 3.017—7.905

3.980—6.936—7.085—5,046

0.991

—1.993
1.989—1.025—2.021

8.077 2.019
7.942 —0.992
8.931 0.004—9.113 —0.013

—5.976
6.049—0.001
6.977

1,005
10.090

1 999
2.999

2.992
3.021—3.001—1.994

4.004
1.007
3.997—2.996

4.017—9.951

—10.063—10.953—4.997—8.976

9.042

4.012
1.995

—1.014
0.999
3.995
2.995

3.014
5.996 —2.996—6.021 —3.015

10.959 —0.998

11.054 2.009

—3.010 —3.009—8.046 —2.019

1.719
1.833
1.741
1.871

1.929
2.043
2.106
2.059

2.132
2.2 1.0
2.235
2.317

2.337
2.342
2.395
2.522

2.641
2.596
2.610
2.664

2.667
2.699
2.858
2.864

2.875
2.942
2.913
2.983

2.994
3.102
3.093
3.121

3.157
3.188
3.198
3.296

3.321
3.338
3.355
3.392

3.421

—6.992—6.854—7.142—7.043

—6.997—7.058—6.889—7.059

—7.052—7.057—7.040—7.131

—7.053—7.046—7.009—7.033

—7.023—7.050—7.116—6.929

—7.052—7.034—7.061—7.052

—7.062—6.963—7.061—7.062

—7.059—7.040—7.053—7.054

—7.035—7.100—7.060—7.050

—7.047—7.057—7.048—7.057

—7.043
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derived from Fig. 4 (i.e., about 0.08 eV per {110)
plane) is a lower limit.

rg = 2.idp. (12)

Furthermore, the energy at that point is equivalent
to the horizontally shaded region of Fig. 1 and is simply
the core energy. In the present case this is

E„„'=0.5 eV per do/2. (13)

Finally, it will be noted that the intercept on the lnr
axis of the extrapolated straight-line region in Fig. 4 is
equal to r,h', the equivalent hole radius in Fig. 1.This is
found to be

r,i,' ——0.44dp.

A calculation of the dislocation energy using the elastic-
continuum equation (9) and this value of r,h' would
automatically take into account the true energy of the
core.

As in Paper I, the term cutog radius has not been
used. This is to avoid ambiguity because that term can
validly be applied to both r&' and r,h'. On the other
hand, the terms core radius and equivalent hole radius
are quite unambiguous and can be applied to these two
radii, respectively, without any risk of confusion.

The spontaneous dissociation of the screw dislocation,
when the atoms are allowed to move in a direction per-
pendicular to the dislocation line, is demonstrated by
the difference between Figs. 3(b) and 3(c). The equi-
librium separation distance of the partial dislocations
is achieved when the replusive force between them is
just balanced by the attractive force of the stacking
fault which separates them. If conditions were such that
no other factors affected the separation, one could, in
principle, make an estimate of the stacking-fault energy
using this distance.

The magnitude of the force per unit length between
two parallel, infinite, complete, pure edge dislocations is"

P~= pbr~bP/2x (1 v)r, —(15')

where b~ and b2 are the Burgers vectors of the respective

' Reference 4, p. 61.
"A. J. Foreman, M. A. Jaswon, and J. K. Wood, Proc. Phys.

Soc. (London) A64, 156 (1951).
~ Reference 4, p. 45.

V. DISCUSSION

It can be seen from Fig. 3 (b) that the complete screw
dislocation is not very wide. Formally, the width is
defined as being the range of x within which the dis-
placement is less than one-half of its limiting value
(i.e., —b/8&&u(x) &~b/8).""Using this criterion, the
dislocation in the present study is found to have a width
of about 2 b.

The energy plot of Fig. 4 is, of course, directly related
to Fig. 1. The point at which the atomistic curve devi-
ates from a straight line is equivalent to the point at
which the solid and dashed lines meet in Fig. 1 (i.e. ,

the point at which r =re*) Thus .the core radius can be
read off directly from Fig. 4 and one gets a value

dislocations, and r is the distance of separation. The
corresponding force between screw dislocations is

P'= Ijbr'bs'/2rrr. (16)
For a dissociated screw dislocation the partials have

both edge and screw components, where b,~=de/2v3,
bs~ d—=s/2%3, br' ds——/2, and bs' ——dp/2. The force per
unit length between the partials, when they are sepa-
rated by a distance r, is

—Pdp pdo2
p=p&+p~= = +

24'. (1—v)r 8mr

The force per unit length due to the stacking fault is
simply —y. Thus the total force trying to separate the
partials is

P,dp
Ptotal— (18)

Equating Ft,t,& to zero, we obtain the equilibrium
separation of the partials, r,h'

pdp 2 3ps-
eq

24m' 1—v

Using the experimental values for copper, p=4.9)&10"
dyn cm ', ds ——2.5 A, y~60 erg cm ', and v=0.3, we
obtain

(20)

In the present calculations, however, there are at least
two reasons why the separation distance might be in
error. It must be noted that the present calculations are
strictly applicable only to the absolute zero tempera-
ture so that the two partials have no chance of over-
coming the Peierls-Nabarro barrier. ""The situation
is shown in Fig. 5, and there are three energy corn-

ponents to be considered. The stacking-fault term in-
creases linearly with separation, while the interaction
term falls asymptotically to zero. The Peierls-Nabarro
energy is periodic (but, of course, is not necessarily
sinusoidal). Summing up these three contributions, we
obtain the net-energy curve shown at the bottom of the
figure. It can be seen from the figure that even at the
absolute-zero temperature the complete dislocation will

move to position A. This position is probably the one
which is achieved by the second partial dislocation in
the present calculations. At a Gnite temperature the
partial could move to position 8, and eventually by a
series of jumps to C, by a thermally activated process.
The second source of error concerns the stacking-fault
term itself. If the stacking fault which appears between
the partials is to play its proper role in determining the
separation distance, the stacking-fault energy predicted
by the model would have to match the true value of that
parameter. This poses considerable difficulty. Details
of a calculation of the stacking-fault energy of copper
based on the Morse potential are given in Paper I.It has
been shown that the calculated stacking-fault energy

"R.Peierls, Proc. Phys. Soc. (London) 52, 34 (1940)."F. R. N. Nabarro, Proc. Phys. Soc. (London) 59, 256 (1947).
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depends upon the truncation of the potential. ' For no
truncation the value is close to 1 erg cm '. This is only
about 2%%u~ of the experimental value for copper. Trun-
cation at 176 neighbors gives an "artificial" value of
30 erg cm '. This is why this truncation was used in the
present calculations.

It is interesting to note that, by use of Eqs. (6) and
the corresponding equation for the edge dislocation,

pP
E (r) = ln-

47r (1—r ) r,t,a
(21)

(9
w

M Dl STANCE

D I STA NCE

(b)

lL p

LLJ Dl STA NCE

(c)

together with the observed asymptotic slopes of the
curves shown in Fig. 4 and the corresponding curve for
the edge dislocation, atomistic values of p, and v may be
derived. The asymptotic slope of the complete atomistic
edge dislocation is 0.59 eV per {112)plane (i.e., per
distance dp/2&3), ' and from Fig. 4 the corresponding
slope for the screw dislocation is 0.73 eV per {110)
plane (i.e., per distance dp/2). From Eq. (6) the slope
for the screw disloca, tion is ub'/4rr, a,nd p is the only

unknown quality. Thus we have

u=-18.8X10u dyn cm '". (22)

From Eq. (21) the slope for the edge dislocation is
ub'/4s(1 —v). Thus the ratio of the slopes is (1—v),
from which one obtains

v= 0.28. (23)

VI. SUMMARY

The investigation described in this paper shows that a
realistic three-dimensional crystal model of an atomistic
screw dislocation can be constructed within the frame-
work of the central-force approximation. The calcula-
tions were specifically for copper, but they could easily
be extended to other fcc metals. Moreover, with minor
modifications this method could be extended to other
crystal structures. This might well shed some light
on the as yet not-well-understood properties of disloca-
tions in such crystals.

The dislocation studied here was the screw dislocation
in copper. A variational method was employed, and the
pairwise interaction between discrete atoms was repre-
sented by a Morse potential function. The calculations
were carried out on a digital computer. For the complete
screw dislocation it was necessary to artificially prevent
atoms from moving in a direction normal to the disloca-
tion line. This prevented dissociation. For a complete
dislocation (Burgers vector (ap/2) (110)) linear elastic
theory breaks down inside a core radius of 5.3 A. The
core energy, 1.0 eV per nearest-neighbor distance, is in
good agreement with previous rough estimates. If the
core is replaced by a cylindrical hole of radius r,h (the
equivalent hole radius), the inside of which is hollow and
outside of which linear elastic theory holds at all points,
this radius is 1.1 A. The complete dislocation has a
width of 5 A (i.e., 2b).

VVhen the atoms are allowed to relax in the directions
normal to the dislocation line, spontaneous dissociation
into two Heiderneich-Shockley partials occurs, with no
activation energy.

A comparison between the asymptotic behavior of
energies of the edge and screw dislocations at large
radii permitted atomistic values of the shear modulus
and Poisson's ratio to be calculated. These values were
18.8)&10" dyn cm ' and 0.28, respectively, for copper.

A brief account of these calculations has been pub-
lished earlier" "

+

K
p

4J DI STANCE

(d)

Fzo. 5. Schematic plot of the relative energies of a system of
two partial dislocations separated by a stacking fault. The rela-
tive energies are shown as a function of the distance separating the
partials. The first three curves show the separate components
arising from (a) the stacking fault, (b) the interaction between
the partials, and (c) the Peierls-Nabarro barrier. Curve (d) is the
result of summing the various components.
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