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Relationship between the Augmented-Plane-Wave and Korringa-Kohn-
Rostoker Methods of Band Theory*
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(Received 25 April 1966)

The augmented-plane-wave (APW) method and the recently proposed pseudopotential method of Ziman
are derived from the "scattered-wave" or Green's-function approach, thus establishing their connection
with the original Korringa-Kohn-Rostoker (KKR) method. It is shown that the diBerences between these
various band-theoretical techniques can be understood in terms of the particular choices for the representa-
tions and basis sets used in the expansions of the composite wave function and the Green s function. It is
proven that the APW method leads to the most rapidly convergent representation in plane waves of the exact
solution to the ordinary wave equation outside the "mufBn-tin" spheres, while the KKR scheme yields the
most rapidly convergent partial-wave or angular momentum representation of the exact solution to the
Schrodinger problem within the spheres. The relative advantages of these methods in computing energy
bands and one-electron wave functions are discussed.

I. INTRODUCTION

I' is well known to specialists working in the band
. „ theory of solids that two particular methods of cal-
culating electronic energy bands, namely the "scattered-
wave" technique of Korringa' and Morse' or equivalent
Green's-function technique of Kohn and Rostoker'
(KKR method) and the augmented-plane-wave (APW)
method of Slater, ' yield practically identical results
when applied to the same crystal for identical crystal
potentials. The attempt to develop a common theoreti-
cal framework for these two methods in terms of pseudo-
potential models has been the object of several recent
papers by Ziman, ' Lloyd, ' and Slater. ~

An important outcome of the pseudopotential ap-
proach has been to show that the KKR technique,
originally cast in the angular momentum or partial-wave
representation, can be recast in a plane-wave representa-
tion somewhat similar to that of the APW scheme.
Since this representation was originally proposed by
Ziman, ' we shall call it the KKR-Z pseudopotential.
Thus both the APW and KKR-Z secular determinants,
which lead to the one-electron eigenvalues for the
energy band problem, can be written symbolically as

det~ (k„'—E)B„„.+I'„„.(k,E)
~
=0. (1)

The quantity I'„„(k,E) is the pseudopotential matrix
element which for energy E connects two plane waves
of total wave vectors k =k+K and k„=k+K„,
respectively, (k =point in reduced 8rillouin zone;
K„=principal translation vector of reciprocal lattice).
In the case of the APK method, the pseudopotential

*Research sponsored by the National Science Foundation.' J. Korringa, Physica U, 392 (1947).' P. M. Morse, Proc. Natl. Acad. Sci. (U.S.) 42, 276 (1956).' W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).' J. C. Slater, Phys. Rev. 51, 846 (1937).' J. M. Ziman, Proc. Phys. Soc. (London) 86, 337 (1965).
6 P. Lloyd, Proc. Phys. Soc. (London) 86, 825 (1965).' J. C. Slater, Phys. Rev. 145, 599 (1966); see also J. C. Slater,

Quarterly Progress Report, Solid State and Molecular Theory
Group, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1966, No. 59, p. 23 (unpublished).

takes the form (restricting our discussions to only one
atom per unit cell)" '

4xR'
, (APW)(k E)

jr( ~

k„—k„~R)—(k„'—E)
/k„' —k„(

+P(2l+1)P)(cose„„)j (k„R)jg(k„.R)

alt, '(E,R) j('(k„.R)
X

(I4(E,R) j&(k„R)

while that for the KKR-Z method is' ~

4zE'
I'„„~KKa- '(k, E)= — P(21+1)P (cost)„

0

The APW matrix element written in Eq. (2) is actually an
alternate form of the original expression derived by Slater. It
was 6rst suggested by Slater in Quantum Theory of Mo/ecules and
Solids (McGraw-Hill Book Company, Inc. , New York, 1965),
Vol. 2, p. 242.

429

-e.,'(E,R) j,'( R)-
X j,(k.R)j,(k. R)

6t,(E,R) j&(AR)

There is considerable similarity between these two ex-
pressions; for example, the appearance of the logarithmic
derivatives of the radial wave functions (solutions of the
radial Schrodinger equation for energy E) and the
logarithmic derivatives of the spherical Bessel functions
at the "mu%n-tin" sphere radius R. However, there are
also two notable differences. First of all, an extra Bessel
function term jt(~k„—k„~R)/~k —k„( appears in the
AP&pseudopotential. Secondly, the logarithmic deriva-
tives of the Bessel functions for the KKR-Z pseudo-
potential have in their arguments the quantity A = (E)"',
rather than the wave vector k„as in expression (2).

It would be valuable to obtain additional insight into
the origins of both the similarities and diRerences of
the APW and KKR-Z methods, and to understand
their relative convergence properties. The KKR-Z
pseudopotential has not yet been applied in an actual
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energy-band calculation, so that such an investigation
could help us to decide whether there will be any ad-
vantage to using one plane-wave method over the other
in computations. The APW' and original KKR'~"
schemes have been applied successfully many times.
Since the KKR and KKR-Z representations are related
(essentially by Fourier transform), an analysis of the
relative properties of the two pseudopotentials could
also lead to a more complete understanding of why the
KKR and APW results agree so well, and whether an
angular momentum or partial-wave representation is to
be preferred over a plane-wave representation in setting
up the eigenvalue problem.

Unfortunately, the pseudopotential derivations are
primarily restatements of the original formulations and
depend upon somewhat arbitrary replacements of the
original potential by elaborate t-matrix and algebraic
expansions' or delta-function singularities on the surface
of the sphere. ' They do not provide the type of common
theoretical framework we are looking for. Moreover,
Slater' has emphasized that while a common theoretical
basis for the AP% and KKR-Z methods may indeed
be developed, there is sound reason to believe that it is
impossible to transform one technique directly into the
other. Slater's observation is based on the fact that the
"muffin-tin" approximation to the crystal potential,
which is used in both methods, introduces a lack of
uniqueness in the composite wave functions. In other
words, it is possible for two entirely di6erent wave func-
tions to converge to the proper solution of the energy-
band problem outside or inside the nonoverlapping
spheres. Outside the spheres, where the potential is
assumed to be constant (adjusted to zero in the actual
calculations), the Schrodinger equation is just the
ordinary wave or scalar Helmholtz equation

(V'+.s)e(r) =O.

Inside the spheres, where the potential is spherically
averaged, the wave function is a solution of the
Schrodinger equation or inhomogeneous wave equation

0&r&R: (V +K')4'(r) = V(r)%(r) .

It has occurred to us that since the wave function in
the region outside the spheres must be a proper solution
to the "scattering" of a Bloch "wave" by the potential
V(r), the "scattered-wave" or Green's-function ap-
proach used to develop the original KKR method could
also lead directly to both the KKR-Z and APK repre-
sentations. This approach might be a more direct and

9For a review of APW band calculations, see J. C. Slater,
Quarterly Progress Report, Solid-State and Molecular Theory
Group, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1963, No. 51, p. 14 (unpublished). This review is
also published in Advances in Quantum Chemistry, edited by P. O.
Lowdin (Academic Press Inc. , New York, 1964), Vol. I, p. 35."B.Segall, Phys. Rev. 124, 1797 (1961)."F.S. Ham, Phys. Rev. 128, 82 (1962).

I2 H. Segall, Phys. Rev. 125, 109 (1962)."K.H. Johnson and H. Amar, Phys. Rev. 139, A760 (1965).

revealing way to arrive at a common theoretical basis
for comparing these band-theoretical models and their
relative convergence properties.

It is well known that Eq. (4) can be transformed to
the integral equation for the scattering of a wave by a
sphere of radius R in the unit cell, namely"

0 c=g
[G(r, rp')V p%'(rp') 4'—(rp')V pG(r, rp')] npdSp

=e(r) R&r&r&
(6)

0e
) 0&r&R,

where G(r, rp) is the single-particle Green's function in
the "held" and "source" points r and ro, respectively,
satisfying the inhomogeneous wave equation

(V'+It')G(r, rp) = 8(r—rp) . (7)

The vector rp' refers to a point on the surface of the
sphere and the unit vector eo points away from its
center. It should be noted that an additional surface
integral of the form (6) over the unit cell boundary ro

has identically vanished because both the wave function
and Green's function satisfy the homogeneous periodic
Bloch boundary conditions there. If we then allow the
"field" point to approach the surface r' of the sphere in
the sense of taking the limit (to avoid the singularity in
the Green's function when "source" point coincides
with "field" point)

and choose suitable expansions for both the Green's
function and the "trial" wave function, we will be led
to the original set of secular equations for the KKR
technique (see Morse'). Since the wave function as
represented by Eq. (6) is formally zero within the
spheres, it is evident that one can set up the energy-
band eigenvalue or secular problem entirely in terms of
the solution outside or on the surface of the sphere.
One can ensure that this wave function will join
smoothly to the solution of the Schrodinger problem
(5) within the sphere, i.e.,

O&r&R: e(r) =
Os=«&'/3

G(r, ro) V(ro)4(ro)drp, (9)

by expressing the joining conditions in terms of inhomo-
geneous boundary conditions for the wave function on

"P. M. Morse and H. Feshbach, Methods of Theoretieo/ I'byes
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. I,
p. 805.

lim LG(r', ro')
~

*-it.Vo@(ro')8'~B ro' 8

—%(ro') VoG(r', ro') ~, =a ] trod&o

= »m e(r)~„=, , (S)
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thc sulfacc of tllc spllclc Of collrsc, ollc call also sct up
the secular problem entirely in terms of the solution (9)
within and on the sphere, and then join it smoothly to
-the wave function outside the sphere. This was the
original approach of Kohn and Rostol~er' in their
variational formulation of Eq. (9).

In attempting to derive the APW and KKR-Z repre-
sentations, as compared with the KKR representation,
directly from Eqs. (6) and (8), we should expect
that the chief differences wouM arise, first of all, from
the use of a plane-wave rather than partial-wave ex-
pansion of the "trial" wave function, and secondly from
the choices of the Green's-function expansions and the
boundary conditions on the surface of the sphere. In
the case of the APK method, for example, the boundary
condition will be just the one set up originally by Slater, 4

namely, the continuity of a single plane wave restricted
to the region outside the spheres with a linear combina-
tion of spherical harmonic-radial function products
which generate a solution to the Schrodinger equations

(5) and (9) inside the spheres. The preservation of the
original boundary conditions is an additional advantage
of the "scattered-wave" or Green's-function approach
over that of pseudopotentials in comparing the APW
and K.KR-Z representations.

Ke shall demonstrate, by both a simple use of pro-
jection operators and by the method of fitting a I"ourier
series, that the restriction of the plane-wave representa-
tion of the composite wave function to the region outside
the "muffin-tin" spheres in the APW method leads to
the most rapidly convergent plane-wave expansion of
the wave functions there. The application of this argu-
ment to the KKR-Z and K.KR representations leads
to alternate secular equations which are related
to the APW secular equations by a simple unitary
transformation.

The option of using angular-momentum or partial-
wave type expansions, rather than plane-wave expan-
sions, for both the "trial" wave function and Green's
function allows us to compare the plane-wave repre-
sentation of the wave function outside the spheres
directly with Korringa'-type wave functions expanded
in "outgoing" spherical waves in this region. This, as we
shall show below, also leads to useful information con-
cerning the relative advantages and flexibility of these
band-theoretical techniques.

These then are the objects of this paper. In Sec. II,
we shall present the derivations of the APYV and
K.KR-Z representations of the energy-band problem,
with emphasis placed on the "best" choice of expanding
the wave function outside the spheres. Section III will
constitute a discussion of the outgoing-spherical-wave
representation. In Sec. IV, we will summarize the prop-
erties of the various band-theoretical formulations and
discuss the implications of these properties on practical
calculations of energy bands.

k '—E
(10)

The distinguishing feature of the APW method is the
restriction of the plane-wave description of the wave
function to the region outside the spheres, where the
potential is Aat. Therefore, in our approach, it would be
improper to expand the "trial" APK solutions directly
in the set (11).It is more appropriate here to generate
basis functions which are plane waves C„outside the
sphere, but identically zero within the sphere. Let us
call these functions X„. The resolution of the identity
operator can be defined by the completeness of the set
C„over the unit cell. Thus we shall write

I=+ C'„)(C =g C„(r) dr'C„*(r').

Since the cell is partitioned into the regions spanned re-
spectively by the sphere of volume 0,=4srRs/3 and the
region outside the sphere, of volume 0—Q„we can
similarly partition our space of functions into two
orthogonal complements defined by the projection
operators

where

I=8(r)+(P(r); 0&r&rs, (13)

dr'C „*(r'), (14)

and

6'(r) =Q C „(r) dr'C „*(r').

The functions X„are obtained as the result of applying
the projection operator 8 to the set C„, i.e.,

X„(r)= 8(r)C„.(r)

=P C (r)iV. =C„(r); R&r&r'

=0.)
'~ B. Friedman, Principles and Techniques of App/ied Mathe-

matics Uohn Wiley tk Sons, Inc., New York, 1956), p. 213.

II. THE PLANE-WAVE REPRESENTATIONS

A. The APW Method

Proj ectt'on Operator Technique

The problem of determining solutions to the wave

equation in the integral form (6) over the domain of
the unit cell is reminiscent of similar problems in classical
potential theory. Ke use the familiar plane-wave ex-

pansion of the Green's function, with the plane waves in
this case normalized to the unit cell of volume 0, i.e.,'"
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%.4.el"e

4„*(r)4„(r)dr.

where the equality r=R should again be understood
only in the sense of approaching the surface of the
sphere as a limit. In practical applications, of course,
the set (18) is truncated. Slater's4 original boundary
condition on the wave function at the sphere radius is
that a single plane wave be continuous with a partial-
wave solution of the Schrodinger equation (5) or (9).
In our derivation, we shall translate this continuity
condition into an inhomogeneous boundary condition
satisfied by the "trial" wave function on the surface of
the sphere. That is, we can write for the condition of the
plane wave C„appea. ring in (18) the equation

ro' —R: @n(ro') = (fl) '" E—Cim6ti(E, R)'JJim(ro') . (19)
Z, m

Employing the familiar expa, nsion for the plane wave

exp(ik r) =4~ P iij&(kr)'JJi *(k)'JJt~(r), (20)
l, m

we can solve for the coeKcients C~, obtaining

j,(k„R)Ci„i' —— 'JJi *(k ).
64(E,R)

(21)

Substitution of (21) into (19) and then (19) into (18)
yields for the "trial" wave function and its normal
derivative on the sphere the respective expressions

rp'=R:
4'(ro')=(0) '~' g cY A„P i'ji(k~R)

Therefore, the functions X„have the properties we are
looking for in a basis set, i.e., they are plane waves out-
side the sphere and identica, lly zero inside. Moreover,
the set is complete for the solution outside the spheres
because the projection operator 8 defines the resolution
of the identity in this region. It is important to note the
linear dependence introduced between the original plane
waves C„ in this region. That is, Eq. (16) is also a
statement of the overcompleteness of the set of func-
tions C„(defined through the entire unit cell) if used
to expand the wave function only outside the spheres.

Let us now write for the "trial" wave function to be
used in Eqs. (6) and (8) the expansion

R&r&r': %(r) =Q A„.X„.= Q C„1V„„.A„., (18)
n, '

where the prime denotes radial differentiation. We can
also expand the plane waves C„*(ro) of the Green's func-
tion (10) in the series (20), obtaining for that function
and its normal derivative on the surface of the sphere

The direct substitution of expressions (22) through
(25) into the surface integral of Eq. (6) yields for the
wave function outside the spheres (after performing the
integration over the "source" coordinates and using the
completeness of the basis set X„)

R&r&r'. +(r)=P P„' '(k,E) exp(ik~ r) (26)

in which

(APW)(k E)— (E k 2)
—1

g3/2

X+.4„+ji(k.R)j,(k,:R)

-e.i'(E,R) ji'(k„.R)—
pi~*(k.)JJi~(k. ). (27)

6l.,(E,R) j,(k. R)

The quantities F„~"Pw&(k,E) are the Fourier components
of the exact wave function outside the spheres and are
determined once the coe@cients A„have been es-
tablished at the energy eigenvalues E=E(k). The latter
are calculated from the secular equations, which can be
generated by performing the same substitutions at those
carried out above in Eq. (8). The secular equations can
be written in the form

where

g L(k.'—E)Ã..+T.;(k,E)jA„=O,
n'

(28)

r) rp'= E:
C.„(r)

G(r, ro')= —(n)
—'i'4 P Q i 'j (k R)

n P2—gi, m

Xg,.(k.)y,.*(r, ), (24)

r) rp'=E. :

C-(r)
Ao VoG(r, ro') = —(0)-'~'4or Q Q i 'j i'(k—.R)

P„2—g ),m

X y,.(k.)g,.*(r"). (25)

and

7l, 7l

x 'JJ -*(k-)'JJ -( o') (22)
and

expLi(k —k„) rjdr (29)

rp

Ao Vo@(ro')=(0) 'i' Q lV„„A„
n n'

ji(k„R)
X p ii g, *(k„)e.,'(E,R)g,„(r.), (23)

(Ri(E,R)

(47')'R'
T (k,E)= Q ji(k„R)ji(k R)

Q L,m

-S.i'(E,R) ji'(k„R)
x — yi *(k.)g, (k. ). (30)

64(E,R) ji(k R)



ML''I HODS Ol' BAND THEORY

Expression (29) is easily integrated and yields

47rR' ji(Ik. —k„IR)
iV

Ik„—k„I
(31)

XP 2 ~ P(21+1)P((cos8 )ji(k„R)ji(k R)
n' l

-(Ri'(E,R) j('(k„R)
X — (32)

(a((E,R) j)(k..R)

4vrR'
2'„„(k,E) = P(2l+1)P)(cos8„„)

0

-(R)'(E,R) j((k„R)
X j&(k.R)j&(k. R) — . (33)

. (R)(E,R) j((k„.R)

The secular equations can now be written as

Q L(k„'—E)8„„.+I'„„.("Pw)(k,E))A„,=O (34)
n'

in which

I' ("Pw)(k E
j,(I k„,—k„IR)—(k. '—E)

Ik. —k„I

+P(2l+1)P&(cos8„„.)j&(k„R)j,(k„.R)

-(R('(E,R) j)'(k. R)
X

(R)(E,R) j)(k„R)
(35)

The determinant of the above matrix therefore agrees
exactly with that written in Eqs. (1) and (2) for the
APT method. Its zeros lead directly to the energy-band
eigenvalues E(k) and to the coeKcients A„of the aug-
mented plane waves.

Fourier Series Technique

I.et us return to the original question as to the choice
of basis functions for expanding the APW wave func-
tion. Our adoption of the set X„, which are plane waves
outside and zero inside the spheres, is not only com-
patible with Slater's' original definition of the aug-
mented plane wave, but also with the fact that the wave
function as represented by the integral equation (6) is
formally zero within the spheres. Suppose we choose to
expand the wave function directly in the set C„, i.e.,

R&r&r'. +(r)=P B„C„, (36)

apply the same boundary condition (19) and the same

Both the Fourier coefficients (27) and the matrix ele-
ments (30) can be simplified by using the addition
theorem for spherical harmonics. The new expressions
are

4m.E.'
(APW) (k E)— (E k 2)

—i
g3/2

4xE.'
s.(k,E)=—(E—k.')-'

q3/2

&(Q 8„.Q(2l+1)P)(cos8 )ji(k R) j&(k R)
n' l

-(R&'(E,R) j&'(k R)
(38)

, (n, (E,R) j,(k„.R)

However, the secular equations leading to the eigen-
values and to the coefficients 8„ take the form

g I
(k„'—E)8„„+I'„„(k,E)j8„=0, (39)

with

4mB'
I'„„(k,E)=— P(21+1)P((cos8„„)j((k„R)

Q

-e.,'(E,R) j,'(k..R)-
Xj,(k. R) —,(40)

(R((E,R) j((k. R)

which differ from Eqs. (34) and (35), respectively, of the
APW ~method in that the ji(lk —k IR)/Ik .—k„
term is missing. This term, of course, appears only when
the basis set for expanding the wave function is restricted
to the region outside the spheres.

We should expect the secular problem described by
Eqs. (39) and (40) to suffer from convergence difhculties
for the very reasons stated earlier. The set 4 defined
over the whole cell is improper and overcomplete for
expanding a wave function which is plane-wave like
only outside the spheres. The only way we can ensure
that such a set is proper is to require that the wave func-
tion be a solution of the ordinary wave equation (4) inside
as well as outside the sphere, and that it be reasonably
continuous at the sphere radius. The full significance of
this statement will be brought out more clearly in our
discussion below of the KKR-Z representation. Thus the
presence of the ji(Ik„—k„IR)/Ik, „.—k„I term in the
APW matrix element must be directly connected with
the fact that the APW method is the most rapidly con-
vergent description of the plane-wave nature of the wave
function outside the spheres.

We can arrive at this convergence property also from
the point of view of fitting a Fourier series. It is well
known that the expansion of an arbitrary function in a

Green's-function expansions (24) and (25), and sub-
stitute all this in the integral equations (6) and (8), as be-
fore. We then find that the wave function and its Fourier
components are identical to those of Eqs. (26) and (32),
except for the substitution of the coe%cients 8„ for
3„,i.e.,

R&r&r~: e(r) =P 5 (k,E) exp(ik„r), (37)
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Fourier series, e.g. ,

f(x) =Q B„exp(ik x) (41)

m

lim
I f(x)—P B„exp(i k„x) I

'dx=0, (42)

should be understood as an equality in the sense of the
space norm

vanishing of the off-diagonal matrix elements in the
nearly-free-electron limit is related to the near vanishing
of each i-dependent term in the suinmation of (45).
However, the convergence of this sum for more general
behavior of the energy bands is not as evident because
of the explicit appea, rance of the wave vectors in the
logarithmic derivatives of the Bessel functions. This
brings us quite naturally to the KKR-Z representation
of the energy-band problem.

the integral being over the domain of f Let .us there-
fore try to fit the exact wave function outside the
spheres, as described by Eqs. (37) and (38), by a Fourier
series. This can be accomplished by choosing for a
"trial" function a, finite series of the plane waves
Cj'„, i.e,

e(r)= Z a„C'„(r), (43)

111ini111iZing t}1e noriIl

m

I +(r)—2 ~.c-(r) I'«
—0s

n=l
(44)

over the volume 0—0, outside the sphere, and taking
the limit as m goes to infinity. The substitution of ex-
pressions (37) and (38) for %(r) into (44) and the varia-
tion with respect to the coe%cients of the trial function
(43) then lead directly to the set of secular equations
(34) and (35) for the APW method. This proves that the
APW representation yields the "best" or most rapidly
convergent plane-wave expansion of the wave function
outside the "muon-tin" spheres.

We have thus far restricted our discussion of con-
vergence to the plane-wave aspect of the problem. How-
ever, each APW matrix element (35) involves a sum-

mation over the angular momentum quantum number

3, a summation which has heretofore been assumed
infinite. The convergence of this series is also very im-

portant, since it must be truncated at some l,„ in
actual band calculations. We may inquire, therefore,
whether the APW form of the secular problem has
optimum convergence in l. For example, it is well

known that in the case of nearly-free-electron behavior,
only a few plane waves should suKce to describe the
energies and the wave functions outside the spheres.
Since E—k„2 in this case, it would imply the near vanish-

ing of the matrix elements P„„&"Pw'(k,E), which would,
in turn, suggest some sort of cancellation of terms in

the summation

Q(21+1)Ei(cose„„.)ji(k„R)

-6tg'(E, ,R) j i'(k„R)
X ji(k R) — — . (45)

6ti(E,R) j,(k„R)

Slater' has already discussed in detail this aspect of the
APW representation and has shown how the nea, r

3. The KKR-Z Representation

Let us first see how we can derive this representationdi-
rectly from the integral equations (6) and (8). As Slater'
has pointed out, an important difference between the
APW and KKR-Z methods is that the wave functions of
the latter technique are solutions to the ordinary wave
equation (4) inside as well as outside the spheres. Thus
one must assume continuity of the wave function outside
the spheres not only with the partial-wave solutions of
the Schrodinger equation (5) or (9) on the surface of the
spheres, but also with the regular solutions of the wave
equation within the spheres. The latter solutions can
be written in the form

0&r(R: %(r)=p 8& j&(~r)'g& (r). (46)

This can be accomplished by calling on the expansion of
the "trial" wave function in plane waves inside as well
as outside the spheres, as in Eq. (36), and then invoking
the proper expansions of the Green's function plus the
proper inhomogeneous boundary conditions. Let us put
aside for the time being the convergence properties of
such a plane-wave expansion and attempt to arrive at
the KKR-Z secular problem.

The expansion of the Green's function and its normal
derivative given in Eqs. (24) and (25) are not the only
possible choices and, as we shall prove shortly, not the
optimum choices. Ham and Segall" originally suggested
that we use the fact that G(r, ro) satisfies the ordinary
homogeneous wave equation (4) in the unit cell for
0&roa r to expand it in a complete set of regular spherical
Bessel functions in the argument ~= (E)'Io, i.e.,

0&ro(r(r':
G(r,ro)=Z Gt (k; A'; r)ji(pro)'JJt (ro) (47)

The coef6cients G& are determined by simply identify-

ing (47) with the expansion (10) of G(r, ro) in plane

waves, and then expanding C„*(r,) according to the
identity (20). The result is given by

Gi„(k; F.; r)= —(0) '"4~i '

C,„(r) j((k„ro)
'S -(k.,) (48)

k.'—E j&(pro)

"F. S. Ham anfl B. Segall, Phys. Rev. 124, 1/86 (1961.).
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Off-hand, it might seem that these coefficients should
be an explicit function of the "source" point ro as well as
the "Geld" point r. However, this cannot be true if
G(r rp) is to be a solution of the wave equation. There is
a "hidden identity" (to quote Ziman') in expression
(48) which ensures tha, t these quantities will have the
same value regardless of the value of ro in the range
0&ro(r(r'. Let us choose the magnitude of ro as the
sphere radius E'. Thus we can write for the Green's
function and its normal derivative for the "source"
point on the sphere the respective expansions

r&r '=E.

yields for the exact wave function outside the spheres

R&r&rp: 4'(r) =Q F„(KKa z (k,E) exp(ik„r), (55)

where

4m''
S (K"a s)(k E)= (E—k ') ' Q 8 ~ Q(2&+1)

Q3~2

XP&(cose„„)j&(k R)j&(k„R)

-(R((E,R) j('(~R)
X — . (56)

(R&(E,R) j&(zR)
C„(r)

G(r, ro')= —(0) '('4' Q pi 'j((k„R)
n P„~—1&,m

The secular equations for the coefficients B„are obtained
by making the same substitutions in Eq. (8). They may
be written in the form

X 'JJ~ 'JJ(,.* ro',

on the surface of the sphere. Solving for the coe%cients
C~, we obtain

j((k„R)
C(„——(12)

—'(' Q 8 i' 'JJg *(k ) .
(R((E,R)

(52)

r&ro' ——R.
C „(r) j((k„R)

no VoG(r, ro')= —(ll) '('47r P — Q i '
7', (~R)

X 'JJ( (k.)j('(~R) 'JJ(„*(ro') . (50)

Relation (49) is identical to (24) because of the cancella-
tion ofj ((zR). However, relation (50), as compared with
(25), involves the 6rst derivatives of j&(pR) rather than
those of j((k„R).

Let us expand the "trial" wave function in a series of
plane waves identical to (36) and introduce the inhomo-
geneous boundary condition that the wave function
equal

ro'=R: %(rp') = P C~ (R~(E,R)'JJ( (rp') (51)

Q ((k '—E)b +I' ( " -
&(k,E)$8 =0 (57)

in which

4xE'
, (KKR- z) (l P(2i+ 1)

0

XP&(cose„„.)jp(k„R)jp(k„.R)

-(R('(E,R) j((~R)
x — . (58)

(Rt(E,R) j((aR)

These matrix elements agree exactly with those (3) for
the pseudopotential representation of the KKR method
discussed by Ziman, ' Lloyd, ' and Slater. ~

We can now reply to the question raised above con-
cerning the convergence properties of the summation
over l which appears in each element. The explicit
occurrence of x= (E)'(' in the arguments of the logarith-
mic derivatives of the Bessel functions allows us to
quickly analyze the l dependence of the individual
pseudopotential components

Thus we obtain for the "trial" wave function and its
normal derivative on the sphere the expressions

-(R('(E,R) j('(aR)

(R&(E,R) j&(~R)
(59)

ro

+(ro') =(fl) "'Z 8- Z ~'i (k-R)

X 'JJ~ *(k.) JJ~ (ro') (53)

j&(k.R)
no Vp@(ro')=(0) '('Q 8.pi' 'g& *(k )

n (m(R((E,R),

X(R~'(E,R)gi.(r ). (54)

The substitution of Eqs. (49), (50), (53), and (54)
directly into the surface integral of Eq. (6) and the sub-
sequent integration over the surface of the sphere

Zeros in this quantity imply continuity of the logarith-
mic derivatives of the radial wave functions with those
of the regular spherical Bessel functions at the sphere
radius. This is analogous to the Ramsauer effect'"
observed in the scattering of slow electrons from inert
gas atoms, in that it corresponds to zero scattering
amplitude or perfectly free-electron behavior of the lth
partial-wave component of the wave function. In other
words, the most important contributions to the sum-
mation over l in the pseudopotential matrix elements
arise only from those partial-wave components which
are appreciably different from free-electron behavior.

"C. IXamsauer, Ann. Phys. (N. Y.) 64, 513 (1921); 66, 545
(1921l; 72, 345 (1923).
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For example, the distortion of the energy bands from
free-electron parabolas in a transition or noble metal
when a d band "hybridizes" or intersects the conduction
band is predominantly due to the l= 2 component of the
pseudopotential. For energies in the vicinity of the
atomic eigenvalue for a d level, the radial part R2 of the
l=2 partial wave is very much like that for an atomic
bound d state. Its amplitude can be vanishingly small

compared with its derivative E2' at the sphere radius
due to the "tailing off" of the wave function characteris-
tic of a bound state. Thus the logarithmic deriva, tive of
the radial wave function can blow up relative to that of
the Bessel function, and then one speaks of a "d-band
resonance" of the pseudopotential component (59).

Such "resonances" can also occur, of course, with the
pseudopotential elements (45) which describe the APW
method. However, the cancellation of the logarithmic
derivatives for the higher l components cannot take
place as readily or over as wide an energy range in the

APW form because of the occurrence of the wave vec-

tors k„, rather than f(:, in the logarithmic derivatives of

the Bessel functions. Therefore, we would expect the

convergence in the summation over l to be somewhat

poorer in general for the APW technique than for the
KKR-Z method. There is a fair amount of direct com-

putational evidence that this is indeed true, as a result
of comparing the convergence in / of the presently used

APW and KKR techniques. We shall discuss this evi-

dence in the last section of the paper. No practical
applications of the KKR-Z representation have yet been

reported. In the case of very nearly-free-electron be-

havior, the convergence in the number of plane waves

and the convergence in / should be very much the same

for both the APW and KKR-Z schemes, because then

it takes only a few plane waves to describe the wave

function outside the spheres, and k„2—A=I(.'.

C. Other APW Reyresentations

While the KKR-Z representation should be very

rapidly convergent in I,, it does not lead to the most

rapidly convergent plane-wave expansion of the wave

function outside the spheres in general cases. As we have

stressed in part A of this section, the APW form of the

secular equations, where the plane-wave expansion of

the wave function is confined to the region outside the

spheres, requires the fewest number of plane waves to
describe the exact solution in this region. This theorem

also implies that any APW calculational scheme, re-

gardless of the exact form of its secular equations, must

have the same one-to-one plane wave convergence, al-

though the convergence in / may vary from one version

to another.
To illustrate this point let us first consider Slater's4 "

original formulation of the APg~ secular problem, Its

matrix elements are

4~X'
, (0- wl(k R) — (k .k, g~)

j,(~ k„.—k„~R)
X + P(2t+ 1)&i(cose..)j~(k.R)

)k„.—k„f

,'(E,R.)
x j,(k.,R) . (60)

(Ri(E,R)

This version is the one presently programmed and the
one which has been used almost exclusively in actual
band calculations. It is related to the APW matrix
elements (2) or (35), which we have emphasized in this

paper, by the Bessel function identity

j,(~k,—k, ~R) j,(~kr —k, ~R)
(ki ks) kg

f
ki —ks/ [kr—k,

/

+P(2l+1)P&(cose») j~'(krR) ji(k&R) . (61)

The secular problem based on the elements (60) is

easier to program than that based on the elements (2),
because the former are symmetric in the wave-vector
indices and do not require the computation of the first
derivatives of the Bessel function. However, the identity

(61), which relates the two versions, is exact only if the
summation over / in this expression is carried to infinity.
Hence, there is no reason to expect that the convergence
in l for (60) will bc exactly the same as that we have dis-

cussed above for (2).
We should also mention several other modifications of

the APW method. A revised approach wa, s suggested by
Slater" and extended by Saffren and Slater. " How-

ever, Sa6ren20 studied the practicality of program-

ming the revised method and came to the conclusion

that Slater's4 original version is simpler to use. A

technique called the "wave-variational method" pro-

posed by Schlosser and Marcus" has also proven to
be basically the same as the original APW method,
when the perturbation due to nonspherical components
of the potential outside the spheres is treated in the
latter approach.

I.et us now derive an even further modification of the
AP W representation using the Green's-function method.
We shall adopt the restricted basis set X to describe
the "trial" wave function, as in Sec. IIA Lsee Eq. (18)j,
but employ the Green's-function expansion (47) instead
of (24). Carrying out the substitutions into the integral
equations (6) and (8), essentially as in Sec. IIA, we find

that the wave function outside the spheres and the

"J.C. Slater, Phys. Rev. 92, 603 (1953).
'1' M. M. Saffren and J. C. Slater, Phys. Rev. 92, 1126 (1953).
"M. M. Saffren, Ph.D. thesis, Massachusetts Institute of

Technology, 1959 (unpublished).
~' H. Schlosser and P, M, Marcus& Phys. Rev. 131, 2529 (1963),
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secular equations assume the respective forms:

E&r&rb:

4'(r) =g F„(M-"Pw'(k,E) exp(ik r); (62)

gressive solutions in the Bloch form

E.&r.

e(r)=Q exp(ik. R )

4~8'
5' (I-"Pw'(k E)= (E—h ') 'Q A„Q(2l+1)

n3~2 n'

XE,(cos8„„)j,(h„R)j,(h„R)

(R((E-,R) j t'(»R)
X

(Itt(E,R) j t(»R)—
(63)

Xg &t ht"'(»~r —R.~)'gt (r—R.), (66)
Z, m,

where R„ is a principal translation vector of the direct
lattice and hz"' is a spherical Hankel function of the
first kind. To generate such a solution directly from the
integral equation (6), we shall make use of an altern-
ative form of the Green's function, namely'

1 exp(i»
~

r—rp —R.
~ )2 L(hn' E)&en'+Pe~' (k)E)j~~'=Oi (64) G(r, rp) = ——P exp(ik ~ R„) . (67)

4~ )r—ro —R
t

, (M-APw) (k E)
j,(( k„—k„)R)—(h„'—E)

fk„—k.
f

This is just a generalization of the familiar free-space
Green's function"

+P(2l+1)Et(cos8„„.)jt(h„R)jt(h„R)

-(Rt'(E,R) j t'(»R)
X

(Rt(E,R) j t(»R)

These expressions are identical to Eqs. (26), (32), (34),
and (35) for the APW method, except for the occurrence
of »= (E)'t' rather than the wave vector in the logarith-
mic derivatives of the Bessel functions. This representa-
tion can also be generated from the KKR-Z method by
fitting the minimum number of plane waves to the
KKR-Z form of the exact wave function outside the
spheres using the Fourier series technique described in
Sec. IIA.

The modified AP W matrix elements above are related
formally to the original APW matrix elements (2) or
(35) by the same unitary transformation which takes
the representation (47) for the Green's function into the
original representation (24). However, in the present
form the matrix elements combine the best features of
the original APW and the KKR-Z elements, namely
the rapid convergence of both the plane-wave expansion
of the wave function outside the spheres and the sum-
mation over /.

III. THE OUTGOING-SPHERICAL-WAVE
REPRESENTATION

Let us now take up the problem of describing the
wave function outside the spheres in terms of partial
waves or outgoing spherical waves. As we have pointed
out in the beginning of the paper, the integral equation
(6) is a statement of the fact that the wave function out-
side the spheres is a solution of the ordinary wave equa-
tion (4) and that these solutions can be considered to be
"waves" emanating from suitably chosen "sources" on
the surface of the spheres. Thus one can write these pro-

1 exp(i»lr —rpI
Gt, (r, rp) = ——

4~ fr —rpf
(68)

for the free-space Green's function directly in (67). Thus
we can write for the Green's function and its normal
derivative on the surface of the sphere the respective
expressions

r) rp'=R:

G(r, rp')= i» P exp(ik R„)P ht "—&(»~r—R„~)
Z&m

X jt(»R) (ft„(r—R„,) (it„*(rp ), (70)
r)rp'= g:

np VoG(r, rp') = i» P exp(ik R„)P ht'"(—»~r —R„~)
Z, m

xj '( R)'9-( —R.)% -*( o'). (»)

As usual, the solutions outside the sphere are required
to be continuous with the solution to the Schrodinger
problem (5) or (9) at the sphere radius. We write this
condition in the form of the inhomogeneous boundary
values obeyed, respectively, by the "trial" wave function

"G. Goertzel and N. Tralli, Some 3Eatltematsoal 3Iethods of
Physics {McGraw-Hill Book Company, Inc. , New York, 1960),
p. 179.

to include the translational symmetry of the lattice.
Furthermore, we can make use of the expansion"

0&rp(r:

1 exp(i»lr —rol)

47r ~r—r,

i» Q—ht('&(»r) jt(»ro)'JJt (r)'JJt~*(ro) (69)
Z, m
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rp'= E: +(ro') = Z Ci„6Ii(E,R)gi (ro'),

and its normal derivative on the sphere, namely

(72)

derive the following expression for the exact wave func-
tion in plane waves outside the spheres:

R(r(ro: @(r)=P F„IK a&(k,E) exp(ik„r), (77)
rp' ——R: Rp Vp@(rp')=Q Ci tRi'(E, R)'JJi (rp). (73)

Substituting expressions (70) through (73) into the
surface integral of Eq. (6) and performing the integra-
tion leads to the following expression for the wave func-
tion outside the spheres:

R(r: +(r) = iir—R' Q exp(ik R )P Ci j&(i')
L,m

-6Ii'(E,R) ji'(sR)
XIR,(E,R)

e.&(E,R) j&(i~R)

Xh&"'(K~r —R ~)'JJt (r—R ). (74)

Direct comparison of (74) with (66) shows that the
coefficients 3& are related to those C& by the identity

A i ———ii~R'C& ji(sR)
-(Ri'(E,R) ji'(irR)

X6I,(E,R)
(Ri(E,R) ji(i~R)

(75)

As has been pointed out in the literature several times,
the coefficients A~ are determined from the secular
equations originally set up by Korringa, while the co-
efficients Ct are determined from the secular equations
originally set up by Kohn and Rostoker. ' Although
Kohn and Rostoker' and Segall" have discussed the
relationship between these two secular problems, in
particular the connection between Korringa's "structure
constants" and those of Kohn and Rostoker, the very
useful identity (75) has not heretofore been presented.

Let us further remark that the KKR wave function
(66) or (74) is related to the KKR-Z wave function (55)
essentially by Fourier transform. This can be shown by
first noting that the Green's function expansion in plane
waves, Eq. (10), is the Fourier transform of the expan-
sion (67) in spherical waves. The fundainental connect-
ing relation is the well-known integral representation'

1 exp(i»
(
r —rp

~ )

4ir
/
r—rp/

=lim
' ' (2ir)'

expLiK (r—rp)]
dK (76)E'—(s'+ ie)

2' B. Segall, Phys. Rev. 105, j.08 (1957).

for an "outgoing" spherical wave in terms of a plane
wave of wave vector K. Therefore by substituting the
Green's-function expansions (49) and (50) (which are
based on the plane-wave expansion) into the surface
integral of Eq. (6), but using the "trial" wave function
and its deriva, tive in the forms (72) and (73), we can

hit'&(irr) 'JJi„(r)= i "JJi„(V„)hp&'&(i~r) .

Using the identity

(79)

exp(ii~r) 1 exp(iK r)
hp&" (sr) = =lim — dK, (80)'"' 2s-'a E' (a'+is)—

which is essentially the same as (76), we can immedi-

ately relate each multipole component of the "outgoing"
spherical wave to the plane-wave representation.

We now have two basic expressions for the exact
wave function outside the spheres, Eqs. (55) and (66) in
plane waves and spherical waves, respectively, plus the
expression (72) for the wave function. which is a solu-
tion to the true Schrodinger equation (5) or (9) inside
and on the surfaces of the spheres, all based upon the
KKR calculational scheme. Korringa's' secular equa-
tions allow a determination of the coefficients A~

appearing in (66). The secular equations of Kohn and
Rostoker' lead to the coefficients Ci of expression (72).
The KKR-Z pseudopotential yields the coefFicients 8„
appearing in (55). All three versions should eventually
converge to the same energy eigenvalues and wave func-

'4R. Nozavra, Quantum Chemistry Group for Research in
Atomic, Molecular and Solid-State Theory, Uppsala University,
Uppsala, Sweden, 1965, Report No. 159, p. 9 (unpubIished}.

-61&'(E,R) ji'(~R)—
X 5ti(E,R)

(Ri(E,R) ji(aR)

X'JJi-(k-) (78)

The Fourier coefficients here involve the partial-wave
coefficients C~, and are identical to expressions origi-
nally derived by Ham and Segall" /see their Eq. (4.11)].
However, by requiring that the partial-wave expansion
(72) be continuous with a series of plane waves of the
form (36) at the sphere radius, we are led to expression
(52), which relates the coefficients Ci to the coefFicients
B„ofthe plane waves. Substitution of (52) directly into
(78) then leads to the previously obtained expression
(56) for the Fourier coefficients of the KKR-Z repre-
sentation. Thus the KKR-Z form of the exact wave
function outside the spheres is the Fourier transform of
the KKR form of the wave function expressed in
"outgoing" spherical waves. We could have shown this
also by Fourier transforming the wave function (66)
or (74) directly. The products of the spherical Hankel
function and spherical harmonic can be put in the
form' "'4
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tions outside the spheres, so that once we have decided
to adopt one of the methods, we can solve for its energies
and coefFicients, and then establish the other two sets
of coefficients from the identities (52) and (75).

While the original KKR technique is very rapidly
convergent in its angular-momentum representation of
the wave function, we have already shown that the
KKR-Z approach does not lead to as rapidly convergent
a representation of the wave function in plane waves
outside the spheres as does the APW technique. The
APW wave function in this region must also be a proper
solution for the "scattering" of a Bloch wave by the
"muon-tin" potential, since it is an exact solution to the
ordinary wave equation (4) or (6). In Slater's' original
derivation of the APW method, only the continuity
of the wave function of the sphere radius was assumed
at the outset, and this assumption was based on the use
of infinite sums over the angular momentum l. It is

evident now from first principles that in an actual band
calculation by the APW scheme, continuity of the wave
function is approximately achieved only if enough l
values are included in the summations. Furthermore,
continuity in the first derivative of the wave function
is also practically achieved by combining a sufficient
number of plane waves "fitted" to the exact wave func-
tion outside the spheres. Continuity in both the wave
function and its first derivative therefore leads to the
proper "scattered-wave" nature of the wave function.
There is direct evidence in support of these statements
obtained recently by Rudge" in the form of computer
studies of APW wave functions.

Suppose in a given application we have already de-

termined the energy bands by the KKR approach and
have computed the coeScients C~ or A E for the partial-
wave description of the composite wave function.
By-passing the K3:R-Z form of the plane-wave repre-
sentation, it is possible for one to arrive at the APW
representation of the wave function outside the spheres
directly in terms of the coefFicients C& or 3& . This can
be accomplished by fitting the minimum number of
plane waves to the KKR expression (74) of the exact
wave function in this region using the method of Fourier
series described in Sec. IIA. The coefficients of these
plane waves A are determined from the set of equations

where p~„„ is the integral defined in expressions (29)
and (31). These equations were originally derived by
Ham and Segalp' Lsee their expression (4.14)g, but the
connection with the AP%'method was not pointed out.

"W. E. Rudge, Quarterly Progress Report, Solid-State and
Molecular Theory Group, Massachusetts Institute of Technology,
Cambridge, Massachusetts, i966, No. 59, p. 8 (unpublished).

IV. SUMMARY AND CONCLUSIONS

It has been shown that both the KKR-Z and APYV

pseudopotentials can be generated from the same
"scattered-wave" or Green's-function approach used to
develop the original KKR scheme. The relationship
between these three band-theoretical formulations is
now quite clear. The KKR-Z secular problem is just
the plane-wave counterpart or Fourier transform of the
KKR angular momentum representation, agreeing with
Ziman's' II-matrix and algebraic arguments. While the
KKR method provides the "best" partial- or spherical-
wave description of the exact composite wave function
in the "mufFin-tin" model, the APT technique leads
to the "best least-squares" plane-wave description of
the exact wave function outside the spheres. Both
techniques converge rapidly to the correct energy bands
E(k) when carried out carefully. In comparing KKR and
APW calculations on the same crystal for identical
potentials, we should therefore not find it unusual that
the resulting energy-band profiles and theoretical Fermi
surfaces agree so well.

If we confine our interest in a particular application
primarily to the bands and not the wave functions, the
decision of which method to employ is largely arbitrary.
The results of specific calculations and the computer ex-
periments of Rudge" indicate that in the presently
programmed APW method [described by the matrix
elements (60)], the summations over l must be carried
to at least l, =6 in order to reduce the error in the
energy eigenvalues to &0.001 Ry. The convergence in
1 might be improved to agree with that 1, =2 char-
acteristic of the KKR method by programming the
APW matrix elements in the form (65). The explicit
separation of the KKR secular problem into the "struc-
ture constants, "which depend only on the lattice struc-
ture, and the "phase shifts, "which depend only on the
nature of the potential, is of particular advantage when
one has the structure constants available and wishes to
carry out a band calculation fairly quickly and accur-
ately at a desk calculator. However, the structure con-
stants themselves, even in the improved Ewald form of
Morse' or Ham and Segall, "require a large-scale com-
puter of about the same speed and capacity as that used
in present APW calculations. Therefore, as far as
automating the band calculation is concerned, there is
no significant advantage to using one method rather
than the other. The only exception to this statement
arises in the case of nearly-free-electron behavior. Here
many of the off-diagonal matrix elements of the KKR-Z
or APW pseudopotential naturally become very small or
vanish, so that either of these representations is to be
preferred over the KKR method, for which the struc-
ture constants actually are singular at the free-electron
energies E=k„2.

It is only recently that band theorists have started to
carry out their calculations to self-consistency and have
attempted to compute accurate one-electron wave func-
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tions. In most applications, this requires going beyond
the "muffin-tin" model in order to correct for the e6ects
of the non-spherical components of the crystal potential
on the energy bands and wave functions. In many
cases, particularly the heavier elements, it also necessi-
tates the computation of spin-orbit and other relativis-
tic effects. Thus it may be worthwhile to examine in
greater detail whether initially determining the wave
functions by one technique rather than another leads
to a significant saving of computer time. For example,
if one is interested in obtaining that part of the com-
posite wave function which is the solution to the
Schrodinger equation within the spheres, there is no
doubt that the partial-wave representation of the KKR
method is the most rapidly convergent one. Moreover,
while the APW representation is the "best" way of de-
scribing the plane-wave nature of the wave function

outside the spheres, it may be more convenient in some
applications, e.g. , the calculation of certain types of
matrix elements, to use the KKR spherical-wave repre-
sentation of the wave function there. In any case, as we
have pointed out above, it is always possible to calculate
the augmented-plane-wave components directly from
the KKR partial-wave components by means of
expression (81).
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The lattice modulation in the long-period superlattice CuAu II is investigated on the basis of a theory
recently developed by Teramoto and the author to explain the origin of the long-period superlattice and the
phase transitions in the CuAu alloy. Prom a symmetry consideration, we 6nd that there are two types of
lattice modulations: one is uniform along the c axis and the other changes its sign alternately layer by layer
along the c axis. The calculated atomic displacements are in semiquantitative agreement with the experi-
mental results, if the repulsive interaction between atomic cores is considered as causing the lattice modula-
tions. In addition, these lattice modulations explain some peculiar properties of the x-ray diffraction patterns:
the asymmetry in the intensities of the split spots of the same order, and the intensities of the satellites
around the ordinary Bragg diR'raction spots.

I. INTRODUCTION
' 'N binary alloys, such as CuAu, Cu3Au, Cu3Pd, and
~ - Cu3Pt, having ordered structures with long periods,
experimental investigations have been made most ex-
tensively on CuAu. ' This alloy has three phases,
depending on the temperature. Below 380'C, the Cu
atom layers and the Au atom layers are alternately
stacked along the c axis of the face-centered lattice. This
phase is called CuAu I. In this phase the crystal lattice
is deformed tetragonally, and c/u is about 0.92.

In the temperature range between about 380'C and
410'C, the long-period superlattice is stable, and this
phase is called CuAu II.This structure is constructed by

~ Work supported in part by the National Science Foundation
and the U. S. OfIIce of Naval Research Nonr 233 (88).

f On leave from the Department of Physics, Osaka University,
Osaka, Japan.' See, for example, H. Sato, and R. S. Tot:h, in Long Period
SNperlattices in Alloys, in Alloying Belra~ior and E'sects in
Concentrated Solid Sonltions, edited by T. B. Massalski (Gordon
and Breach, Science Publishers, Inc. , New York, 1965).

shifting the crystal lattice of CuAu I by (a/2, 0, c/2) at
intervals of 5 lattice constants along the b axis as shown
in Fig. 1. The domain size, 5 lattice constants, changes
very little with temperature. In this phase the crystal
lattice is deformed orthorhombically and b/a is 1.003.
CuAuII makes a transition to the disordered state
at 410'C.

Sato and Toth' added Al, Ga, Ni, Pd, etc. to CuAu,
changing the number of conduction electrons, and they
observed changes of domain size. They found that there
is a close connection between the long periods and the
number of conduction electrons, and pointed out that
the conduction-electron contribution to the energy is
important for the long-period structure.

After that, Tachiki and Teramoto' made a theoretical
'H. Sato and R. S. Toth, Phys. Rev. 124, 1833 (1961); Phys.

Rev. Letters 8, 239 {1962). See, also, H. Sato and R. S. Toth,
Phys. Rev. 127, 469 (1962); J. Appl. Phys. 33, 3250 (1962);
Solid State Commun. 2, 249 (1964); Phys. Rev. 139, A1581
{1965).

'M. Tachiki and K. Teramoto, J. Phys. Chem. Solids 27, 335
(1966).


