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Ferromagnetic Hall Effect with Electron-Phonon Interactions*
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A theoretical analysis, based on Kubo s formalism of current correlation functions, is made for the ferro-

magnetic Hall e8ect in the case of transport limited by electron-phonon scattering. The antisymmetric,
off-diagonal conductivity is, to erst order in the magnetization, found to be of order zero in the electron-

phonon interaction (assumed to be weak) and, to this order, is equivalent to Karplus and Luttinger's results.

Several corrections are analyzed and found to be of higher order in the scattering potential. The analysis is
carried through for monocrystalline iron by using Wood's dispersion curves. It is found that R,=+0.55X10 "
0 cm/G at T=293'K, which has the correct sign and is smaller, by a factor of roughly —'„ than Dheer's ex-

perimental values for iron whiskers. Our temperature dependence of R, is almost entirely as p, which fails

to explain the temperature dependence of R, below 75'K in iron whiskers.

I. INTRODUCTION

LL existing theories of the ferromagnetic Hall

~

~ ~ ~

~ ~ ~ ~

effect seem to agree in attributing its origin to a
spin-orbit type of interaction, in the presence of a net
(magnetic) polarization of the electrons. Karplus and
Luttinger' (KL) gave a remarkable insight into the
problem by analyzing the modification (due to the
:spin-orbit force) of the acceleration by the electric
field, using a "modified" equilibrium density matrix.
In a later paper, ' Luttinger used an "exact" solution
of the equation of motion for the total density matrix,
to obtain the ferromagnetic Hall effect. He obtained,
besides KL's results, additional terms which could not
be derived from the Boltzmann transport equation.
Luttinger's results were limited to the scattering by
randomly located impurities. All other theories~'
have been based on the conventional transport equa-

tion, with the inherent repeated random phase ap-
proximation for the density matrix. Only one attempt, 3

based on the Boltzmann equation, has been made to
evaluate the effect numerically and to account for its
sign (positive for Fe, negative for Ni and temperature-
dependent for Co).

Our analysis will be directed towards obtaining the
ferromagnetic Hall coeKcient E„as defined in Eq.
(2.3), in the case that the electron transport is limited

by electron-phonon interactions. This limitation should
be the important one over a wide range of temperatures
and should provide a valuable comparison with Lut-
tinger's case of transport limited by impurity scatter-
ing. We shall make our analysis along entirely different
lines. Instead of using the Boltzmann equation or
solving in a particular representation the density-
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matrix equation of motion, we shall start from an
exact (within the linear approximation in the electric

field), formal solution of the transport problem pro-
vided by Kubo's theory. One advantage of this
formalism is its independence of the particular repre-
sentation. Considerable progress has been made in

the use of Kubo's formalism. " In the conductivity
problem, however, most efforts have been directed
towards obtaining the diagonal elements of the tensor.
In our problem, we are interested, of course, in the
off-diagonal, antisymmvetric part of the tensor. In
Sec. III, we give the actual perturbation expansion in
terms of the phonon-scattering potential, by using
Wick's theorem and Feynman's diagrams, along the
lines of Fujita and Abe's analysis of the diagonal con-

ductivity. We deal here, however, with Koch eigen-

states and with Fermi-Dirac statistics from the start.
A leading contribution is obtained for the transverse
conductivity cr„, and several corrections are analyzed
and found to be of higher order in the scattering poten-
tial. The leading term is then, in Sec. IV, explicitly
analyzed to first order in the spin-orbit interaction (or
the magnetization). The calculation is carried through
in Sec. V by using the electron dispersion curves (as
calculated by Wood) and the Fermi surfaces for bcc
iron.

~o=Qv &ov+v (tsvo= & or 3) (2 &)
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II. FORMULATION OF THE PROBLEM

It is well known~ that the p, 2 dependence of the
ferromagnetic Hall coeScient R, is simply the result

of inverting the conductivity tensor. Let x be the direc-
-tion of the current Govt, s the direction of the spon-
taneous magnetization M, and y that of the Hall
field. If we invert the relation



r F' R t~ O M A G iZ V T & C H .W ~ L F. F I E C r

with J„=0, we obtain for the Hall resistivity

prt =p"=&p/J. = rr"—/a*' (2 2)

under the condition (tr„',)'«(o.„)' (in a cubic crystal),
which will be found to

'

be true from our results. The
relation between pH and R, (for the strictly anomalous
part) is simply

where V(r) is the one-electron crystal potential energy
and lt = t't/(4m'c'). The last term in Hoo is the spin-orbit
coupling correction to the Hamiltonian, where e are
the Pauli spin matrices.

We consider normal processes only, in the inter-
action Hamiltonian. In the deformable potential
model "we write

ptr= R, (4srM, ) . (2.3)

The advantage of Eq. (2.2) is that we can concentrate
on the conductivity element 0;„„by standard many-
body techniques based on Kubo's formalism. ' The form
of Kubo's results most suitable for our problem is the
one obtained similar to Langer's, ' because it represents
the total conductivity tensor and not only its symmetric
part. This form is the following

tr„,= (V/ijt) tCt(LJ„J„(t)))

= (2 V/ j't) Jm tdt(J„J„(t)), (2.4)
0

2&iV,
lpl*(r)e' '«(r)

&&4 ( )&', (2 9)

In the occupation number space, it becomes

where e q is the polarization vector, E the number of
ions per unit volume, M the atomic mass, and 0 the
unit cell volume.

The current density operator is a sum of one-particle
operators:

e
(e)0) .

U

e
Jo 2 (&o)lpal ap ~

U zz'

(tl.) l = (1/&) (ti «/elk)

where J„ is the vth component of the .current density
operator, J„(t)= e'~' "Joe 'rI' ~' is in the Heisenberg
represe'ntation and V is the volume of the system.
(J„J„(t))=Tr/pJ„J„(t)jmeans, as usual, the equilibrium
ensemble average over a complete set of states, where p

The dia, onal matrix elements are

is the grand canonical density matrix

(2.10)

(2.11)

g—leP (Ittx—II)

&=&o+g%,

JJo=g stat at+a Ato, bo bo,
l q

(2.5)

(2.6)

Here, Z is the partition function, p, the chemical
potential, P= 1/ET, and E the number of conserved
particles (electrons). The complete set of states will
be here the set of all state vectors in occupation number
space for all integer values of the number of particles.

In the second-quantization representation, the
Hamiltonian of the system of electrons interacting with
the system of phonons will be written as J„""'(k)= w„k*(r) w„ l, (r) tf'r .

'f7 (9k p,

(2.13)

III. PERTURBATION EXPANSION IN THE
INTERACTION HAMILTONIAN

and the off-diagonal matrix elements, in Luttinger's
form, ' are

(o„)l p ——idol p (x„)l p
———co l l J„»'(k) 8(k,k'), (2.12)

(«&')

wh ere
toll = b (el el )

0ur aim is to adapt Fujita and Abe's technique of
interaction diagram representation and summation
(developed for the parallel conductivity of a system of
free electrons) to the analysis of the transverse con-
ductivity r„,= —r „of a system of electrons in a
ferromagnetic metal. The coupling parameter g is
assumed to be small.

The essential differences are:
(1) Fujita and Abe's conductivity formula is limited

to the symmetric part of the conductivity tensor,
whereas our expression (2.4) represents the total
conductivity tensor.

gJJr= gV 't' g &(k,k-'+q)(ytp, attapb,
Zl'q

+ripe*apt«b, '), (2.7')

where azt, uz are, respectively, the creation and destruc-
tion operator of an electron in state 1; E=pl attal
is the total (electron) number operator; b,t, b, are
the same for a phonon with wave vector q; Aor, is the
energy of the phonon with wave vector tl; l= (rt, k),
where e stands both for the band label and the spin
quantum number.

The states l are the eigenstates, with eigenvalues ez

and Bloch eigenfunctions Pt(r) = e'a'w„, l,(r), of the
one-electron Hamiltonian

Hoo= p'/2m+ V(r)+P, Lo && lp'V(r)] p,

"J.M. Ziman, I'teetrons and Phonons (Clarendon Press, Ltd. ,
Oxford, 1960), Chap. 5, pp. 188—190.

(2.8) ls S. Fnjita, J. Math. Phys. 3, 1246 (1962).
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(2) The basic electron states are not free-particle
states, but Bloch states, described by the quantum
numbers l= (—n, k).

(3) Hs and J do not commute; J has interband
matrix elements.

These differences will show up mainly in the labeling
of electron states in the propagators. The necessary
extensions of Fujita's work will be covered briefly here.

We write the current correlation function (in the
interaction representation) as

(3.1)

zero (at time t) corresponds to the state t' (to the state
if//)

(3) The velocity matrix elements in (3.1) are diagonal
in k, so the states l and t' are labeled by the same wave
vector and similarly for /" and I'".

The mathematical contribution from each inter-
action diagram to the ensemble average (3.3) is ob-
tained by using Fujita's rule to obtain the time-
ordered integrals of products of contra, cted pairs )where
the G functions in our case are given by Eq. (3.4)].
Finally, these time-ordered integrals are to be multiplied

by

(—1)"(/g/h)"V "/sb(l' to)

where

g(t) —eius t/Ae /H t/I—
X (av S'(t)«"t(t)av-(t)S(t) ait)s,

=1+P (—ig/h)" dti dt2 dt Hi(ti)

XHr(ts) Hi(t ) . (3.2)

The subscript zero in Eq. (3.1) indicates the use of the
density matrix ps

——e~/&+ ~'/Tre~l/'N ~'i instead of p.
this is only correct when one considers the class of
interaction diagrams proportional to (g't)".

The perturbation expansion of the ensemble average

U(u't"t"'; t) =(«.5/(t)ai. .t(t)a,-.(t)S(t)Sit), (3.3)

is performed by using Bloch and de Dominicis'" ex-

tension of Wick's theorem. The nonvanishing con-
tracted pairs, in our case, are

(«'(r)«(r'))o= &(V')f« "" '""
=G (r', r; l)S(l,l'),

(«(r')«'(r))o= &(V')(1 f/)e ""—'"'"
=G+(r', r; l) 8(t,l'),

(3.4)

where

fi P+e//(~/ s)j i- — —

The contracted pairs of boson operators are the same
as Fujita's. '0

The representation by a Feynman diagram of each
possible complete contraction in Eq. (3.3) will be made
according to Fujita's prescriptioos, where electron and
phonon states are represented by oriented lines and
interactions by vertices. In our case, the labeling of the
states of the electron lines is simpli6ed by the following
remarks:

(1) The electron line leaving the point at time zero

(at time t) corresponds to the state t= (n, k) (to th—e
state t").

(2) The electron line entering the point at time

phonon
lines

and the result is to be summed over all intermediate
phonon and electron states. In this expression, m is the
number of interaction vertices, lt is the state of the
electron line entering the point at time t, and lo is
that of the line entering time zero. y,„„*corresponds
to the creation of a phonon q, with ni(ns) the band
label of the incoming (outgoing) electron, p»„,q cor-
responds to the absorption of a phonon q, with n4(ns)
the band label of the incoming (outgoing) electron.
For ease of notation, we shall write only the band
label of the electrons involved in an interaction.

The sign for a particular diagram in (3.5) is written
as (—1)" in our rules. h is the number of interaction
vertices above the boundary in the corresponding 0
diagram, and not for the diagram itself. (The sign rule
given by Fujita and Abe' is incorrect for Fermi-
Dirac statistics. ) We define the 0 diagram, correspond-

(a)

(c)

(c)

"C. Bloch and C. de Dominicis, Nucl. Phys. 7, 459 (1958). FIG. 1. The second-order linked 0 diagrams.



VERROMAGXETrC HALL ErrECT

ing to a particular interaction diagram, as the diagram
obtained by placing all vertices, on the electron lines
running from zero to t (from t to zero), above (below)
the boundary between S(t) and S+(t). The only ex-
ception to our rule is for the multidentate diagrams
(i.e., diagrams which have vertices with leaving and
entering electron lines all on the right or all on the le t
of the vertex), but this does not matter since the
summed contribution of these diagrams is zero, as
asserted by Fujita in his theorem on multidentate
structures. "

In the perturba, tion expansion, we shall omit all
vacuum subdiagrams (i.e., those which do not contain
the fixed points at times zero and t), because these
vacuum parts can be shown' to contribute to the cor-
relation function (3.1) a factor (S+(t)S(t))o=1 I

since
S(t) is unitary].

Also, unlinked diagrams containing the points at
time zero and t are eliminated, because their contribu-
tion to Eq. (3.1) can be shown to be (in the interaction
representation)

L~"(t)]-- '. ~ = ((~.S+(t)J.(t)S(t)& )-)'. ~

=(~S+(t)S(t)) (S+(t)~.(t)S(t)&o
= (J.&o(S+(t)~.(t)S(t)&o= o,

since the equilibrium average of the current J„must be
zero.

We shall proceed now with the analysis of linked
diagrams. To order g, there is one linked diagram,
from which the contribution is

8(l,l"')8(l",l')(1—fi)(1—fp)e'"&'&'. (3.6)

To order g', there are 6 linked 0 diagrams, as shown
in Fig. 1. Each 0 diagram will include implicitly the
contribution from all diagrams obtained from the 0
diagram by depressing (by raising) one or more vertices
of the line from zero to t (from t to zero) below (above)
the boundary line.

The 0 diagrams (e) and (f) in Fig. 1 are rnultidentate
diagrams and their total contribution is zero. This is
shown, for instance for the four diagrams corresponding
to the 0 diagram in Fig. 1(e), by writing down the
statistical factors, for each diagram, a6ected by the
exact sign (as determined by the parity of the permuta-
tion for the corresponding perturbation term. ) The
time-dependent factors are the same for all four dia-
grams, for the same phonon-line orientation. These
four contributions are easily seen to cancel each other.

Our analysis will be concentrated on the following
contributions:

(1) Only symmetric transitions will be considered.
(A transition is a combination of phonon emission and
absorption. ) By symmetric transition, we mean one in
which the electron states are the same before and after
the transition occurs on the same electron trajectory

h llrunning from zero to t (or from t to zero). We sha
show later that the total contribution of asymmetric

Fio. 2. Definition of the electron propagator S+'&'i(l).

transitions is of a higher order in g than the symmetric
ones.

(2) Only the leading time dependence (for t large)
of the time-ordered integrals will be considered, i.e.,
in the general case (for 2k ordered interaction vertices),

dt2

&2Ie-1

't c 1( f 1 t 2)g't e 2 ( 8 3 f4)

X ~z ale ( t2k-1 t 2Ie)

&& ~+(e~)+0(t" '), (3 7)

where
l)„(e)= b(e) Wi/irP(1/e) .

Equation (3.7) is equivalent to the asymptotic ex-
pressions used by Van Hove and many ot„ers. ~14 7,9,10

This corresponds to the analysis of the leading terms
when a diagram contribution is inserted in the final
time integral (2.4). The corrections to the asymptotic
formula (3.7), when summed, can be shown again to

9correspond to higher orders in g for 0„,.
With these simplifications, we obtain, for instance,

the total contribution of the diagrams represented by
the 0 diagram in Fig. 1(a), as follows:

—te'" ' '8(l, l"')8(l', l")(1—f )(1—f )1' (l), (3.9)

(3.8)

where

'4 L. Van Hove, Physica 21, 517 (1955).

7r 2

1'+(l) = 2 I ~- .I 'I:(1+~.—f~-."')4(ei'"')
h P' q, n1

+ (n,+f), »)8~(e,™i)] (3.10)
alld

'"'=A '( (
—e "'—Ao) )

e '"'= A '(e(—et. ,"i+A(d,) . (3.11)

In the weak coupling and large system approxima-
tions, we obtain easily, by analogy with the free elec-
tron Boltzmann statistics case, ' the expressions for

7 7

the electron propagators. For instance, with
above the boundary, the propagator defined in Fig. 2,

ii (l) i2(1 fi)e—(ii—im) ('(.i+r (i)) (3 12)+
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Similarly, the electron propagator in Fig. 3(a)

(2(/) —(1 f))a
—(&s--&a) (~~&+r+(()1 (3 13)

For the two remaining cases, we obtain

$, (/) =g &1 (/)
—

f&a
—(&i—&a) h~(+r+0)] (3 14)

with the exception that, if t~
——0, the factor fi is to be

replaced by (1—fi).
In the reverse time direction, we define and obtain

for the case of Fig. 3(b)

~-1,(,(/) = (1—fi)e"' ""'" "-""=~-" () (3 15)

or to an accidental degeneracy. In either case, the
velocity matrix elements (2.12) are zero. So, the
integral in k space in an infinitesimal volume around
the degenerate symmetry axis or around an accidental
degeneracy point will go to zero.

The only terms contributing to Eq. (3.18) are the
ones for which orp~WO. Evaluating the time integral
in Eq. (3.18), we obtain

fi(1—fi )

Finally

&1&2(/) —g &2(/) = f&a(&1 &2) ((~) r (—()]— (3 16)

2g2

Im p p J ""'(k)J "™(k)fi(1—fp)/](k, k')
n~n' V,X'

2/2
I

&/MV
=

hV
Im 2 (1' )» (a )1 ifi(1—f1 )

id/ exp{/[i(op) I"+(/) —I' (t')]), (3.18)

where we have used

aP( (1))f—i) =a8(n 1)/[1+a—P(u &)]=fi—

We first note that the time integral in Eq. (3.18)
always converges since Re[i'~(/)]&0 and Re[i' (l')]&0
as can be seen easily from Kq. (3.10). Second, we note
that the velocity matrix elements (2.11) and (2.12) are
always diagonal in k. So, in Kq. (3.18), the sum over
states l and l' will be restricted to k'= k.

We consider first the following special terms in Eq.
(3.18), when (d) 1=0: (1) N=m, ', hence l=/': the con-
tribution of these terms to 0„„' is zero, since every
factor in the summand is real and I" (l)=[I'+(l)]*.
This is consistent with the free electron case' " and
single-band conduction model, ' where it is known that
o- has no terms of order g

4 in the interaction, which
would result from Eq. (3.19) with /=l'. (2) The other
cases where ~p)=0, with k=k' and e&e': these cor-
respond either to a degeneracy due to crystal symmetry

Fro. 3. Two examples of
electron propagators.

(b)

with the exception that, if t&
——0, f1 is replaced by

(1—fi).
We can now evaluate the total contribution to Eq.

(3.3) from the multiple symmetric transitions. Using Eqs.
(3.12) and (3.15), we obtain for the propagator dia, gram
in Fig. 4.

U, (tt't"t"', t) = ()(t,t"')/](t', /") (1—fi) (1—fp)
X exp([ice) 1

—I'+(l) —I' (l')]t) . (3.17)

Through the relations (3.1) and (2.4), the corresponding

I',(t)+ I (t')--2
X (3.19)

where we have used the expression (2.1.2).
We further reduce Eq. (3.19) by analyzing

perturbation effect of the magnetization through the
spin-orbit coupling correction to the one-electron
Hamiltonian (2.8). In first-order perturbation (i.e. ,
first-order in magnetization), the reality properties
developed by I.uttinger' (his Appendix B) and based
on space and time inversion symmetry give the follow-
ing results: (1) The eigenvalues e& of Hop are independent
of the magnetization. (2) The square modulus of the
interaction matrix element g'

~ y„„„~' is independent of
magnetization, as seen from Eq. (2.9).

The only first-order dependence on the magnetiza-
tion in Eq. (3.19) is to be found in

J nn'J n'n J (0)nn'J (1)n'n+ J (1)nn'J (O)n'n

(J nn J '
)n4nJ nn'J n'n (3.20)

To zero order in ](, (J„""'J„"'")is real.
To first order in the magnetization and for small g,

we write Eq. (3.19) as

I',(/)+ r (l')
XRe 1+2 +

M
/](k k~)[j nn' J n'n J nn' J n'n]

Qv non' v, x'

I'g(/) —I'2(t')
Xf1(1—fp) 1+2 +, (3.21)

where the superscript in parentheses indicates the order
in ). Using the reality properties, we show easily that
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FIG. 4. Simplest linked propagator
diagram.

where we used the following properties:

(J 'n)n+ — J n'n and (J nn' J n' )n@ J nn'J n'n

(since the velocity operator is Hermitian);
F~(&)= F&(l)+iF2(l), where Fi(l) and F2(t) are real.
Equation (3.21) leads to the following conclusions:

(1) The transverse conductivity 0„„(hi/i) starts with
order g0 in the electron-phonon interaction, only in the
presence of magnetization; in the absence of magnetiza-
tion, J,""'Jn"'" is real, 0„„(hiWv) starts with order g'
in the interaction and is symmetric in hi and i. (2) The
transverse conductivity (3.21) obeys Onsager's rela-
tion o.„„(M)=o„„(—M), where M is the magnetization,
since it is to first order in M. Actually this is only a
check of a known result, since Kubo's original ex-
pressions' satisfy Onsager's relations.

Equation (3.19) leads to another interesting result
for the e8ect of interband velocity transitions on the

diagonal part of the conductivity tensor. For p, =u and
small values of I F+(l)+F (t)'I/~pi, Eq. (3.19) becomes

28
2 2 ~(k,k')fh(1 —f~ ) I J.""'I'

hU ~ '»'
F.(t)+F (t')

XIm 1+2 +
4e2

P P b(k, k')f&IJ„""'I'
Pg U n~n »~

X[F (t)+F (t')]/cv ~, (3.22)

where Fi(l) =Re[F~(l)] depends only on real (energy-
conserving) collisions.

The result (3.22) leads to the following conclusion:
the diagonal conductivity 0», due to the interband
velocity transitions, starts with order g' in the scattering
potential, whereas it is sell known~ ' ' that o-», in a
single-band or free-electron conduction model, starts
with order g

—'. Only in the limit of weak electron-phonon
interactions is the conductivity due to interband ve-
locities small compared to the intraband conductivity.

We now evaluate the contribution to a„„of the
propagator diagrams in Fig. 5. Through the use of
Eqs. (3.12)—(3.16):

2e g
OQ

0„,"= Im P (v.)&p(e„)&"&- f&(1—f~ ) P y„n".,*y„.„-,b(k"',k q)(1+v, —fp") td—t
It3U2 g gi pic c

Xexp(h[icopl ~«I —F~(l"')—F (t")]} dt, dh2 exp(it&ei'"") exp( —it26i )

Xexp( hi[F (t ) F (t")]}exp( h2[F+(t) F+(t«')]} (3 23)

The time-ordered integral is transformed by changing variables to T= (ti+t&)/2 and 8= ti—t2.

E/2 2T

/2

2(t—T)

dR exp[iT(ei ci '")]exp{—T[F (l') —F (t")+F~(t)—F+(t'")]}

Eil'n" +Erin"' t

Xexp[i(E/2)(ei'""+ ~i'"'")]exp{—(E/2) [F (t') —I' (l")—F+(t)+F+(P")]}=m 8+ dT
2 0

Xexp[iT(e, 'n" —e, '""')]=2m'8 (~i'""+ei'"'")B„(ei'""—ei'""'),

where we have, as usual, neglected the terms in g' in the exponents and used the asymptotic formula:

lim e'*'dh= ~8 (x)
k~m

0

4m2e2g'
Im Z (vn)&v(v&)("v"f&(1 —f(.) Q ynn. ",*y„,n„,

It 3 V2 gi [ ---F.(t"')-F (t")]

b(k"', k—q)

With this asymptotic form for the time-ordered integral, we can rewrite Eq. (3.23), where we include now the
second phonon orientation.
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where we used the property p„„t qt*&„„t q&
=p„„q*y„„q.Similarly, we can add to (3.24) the contributions from

the 0 diagrams in Fig. 6. Then Eq. (3.24) becomes

4n-2e2g' tt(k", k—q)
trnv ™Q ( tv)lV( In)P'l'" fl(1 fl') 2 7 nn"'q 7n'n" q

h'V' it' q $itqp p" I—'+(l"')—I' (t")j'
&& L(1+nq —ft -)8 +( qt'""+ qtt"'") 8~(qt'""—qtt"'")+ (1+qtq —ft .) tt ( q'in"+qttn"') tt+(qi'n" —qttn'")

I.et us first consider the terms n"= qt"' in Eq. (3.25):

2~2e2g2 8(k", k—q)
trnv ' = Im P (& )tvt'(&t)pv'ft(1 ft') Q 'Ynn" q*'Yn'n" q ~p(tqvt)

tttqp'q tt't" [I' (t")]q

X [(1+nq ft-)t—'t(qt™~+ct )+(sq+fp )&(qq'""+ qq™')$. (3.26)

In order to obtain in Eq. (3.26) a first-order contribu-
tion in the magnetization, we must have n~e'. In
that case, (ttv)tt ynn. q*y„„"qis easily seen to be imagi-
nary, by using the same properties that led to Eq. (3.20).
As a consequence, in Eq. (3.26) we shall have to take
the Rett+(cqt t). The only contributions will come from
tqt t ——0 or, since n/tt' and k=k', from degeneracies
between the states l and l'. Since the matrix elements
(v„)tp between degenerate states are zero, the con-
tribution (3.26) to a„„ is zero, to first order in the
magnetization.

It is now evident that, if we exclude in Eq. (3.25) the
terms corresponding to cubi" i" ——0, whose total contribu-
tion is zero (to order X), o„„"will start with the order g'
in the electron-phonon interaction. Thus, the 0 dia-
grams in Figs. 5 and 6 are seen, in our case, to contribute
higher orders in g, to the general expression (2.4) for
o„„, when compared to the lowest order (gq) obtained
in Eq. (3.21).

The generalizations of the diagrams in Figs. 5 and 6
are the diagrams with tt cross-phonon lines (qt&~1),
also known as ladder diagrams. A general argument
about the nth-order ladder diagram can be made as
follows: the class of diagrams considered in the prop-

Fr o. 6. Propagator dia-
gram involving a cross-
phonon line.

agators (3.12) to (3.16) consisted of diagrams with
contributions proportional to (g't)", (qt)~ 0), in the
limit of large time t by using the expression (3.7). The
only way in which an eth-order ladder diagram is
going to give a contribution of the order (g't)" is by
each double vertex (on a rung of the ladder) giving a
contribution of the form

'rngnqq rntnvq expL qql (tl t2)j v

because for this form the approximation (3.7) applies.
However, in this case, the contribution to ov„„(tt/p)
will not contain a erst-order eGect in the magnetiza-
tion through the spin-orbit interaction, because of the
properties of the matrix elements exactly as used for
Eqs. (3.19) and (3.26). In general, an qtth order ladder
diagram will give a contribution of the order g'm(g't)t'

(a)

(b)

FrG. 5. Propagator diagrams involving a cross-phonon line. FrG. 7. Simplest pairs of asymmetric transitions.
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with 22=222+p, m&~1. However, this contribution cor-
responds to the class of diagrams neglected in this
diagram technique in the limit of small g, in com-
parison with the class of diagrams of order (gqt)2'.

Thus, a general ladder diagram (where the internal
lines are replaced by propagator lines), is expected to
contribute at least two orders in g higher (because
222&~1) than the lowest order (gq) obtained in Eq.
(3.21) by considering the class of diagrams of order
(gq() n

Let us now consider the effect of asymmetric transi-
tions which were neglected in the derivation of the

—(~i—&2) exp[ —i«('i —'2)](1—f~)~+(I)

where

(3.27)

propagators such as (3.12).Let us start with the simplest
possible pair of asymmetric transitions as represented
in Fig. 7(a) (the undirected phonon lines each have two
possible orientations). If we consider the subdiagram
in Fig. 7(a) to be an 0 subdiagram (i.e., we add to it all
similar diagrams obtained by depressing one or more
of the intermediate vertices below the boundary),
we obtain, by the same procedure as in Eq. (3.12), the
corresponding contribution

i7r2

&~(E)=g" 2 2 2'yniniq 'YnnlqYnnqq' 'Vninqq'(~lil) [I+qiq fa q)~+(q-i )+(qiq+fle q)~+—(q2 ')]
$4V2 an& q'n2 nZ

X[(1+~.—f2-'"2)&+(qi"'"2)+(~'+f~-'"2)h+(q2"'"2)] (3 2g)

In Eq. (3.28), the P„,' means the sum over the band
label ez, with nz/e.

In Eq. (3.27), we have again approximated the time-
ordered integrals by their leading time dependence.
For instance, with both phonon lines oriented right to
left, we write

t2f

I
&pv = (~.)«(~.)~ ~f~(1-fi)2/2

Img
hV «[i~, ,—I'+(t) —I (t')—a+(t) —a (t')]2

(3.32)

diagram in Fig. 4, using the corrected expressions
(3.30) and (3.31), we obtain for the corresponding
conductivity tensor

Ch2' itI'e 1 —i t2'e znlut4 e
Here again the case e=e' does not contribute anything
to Eq. (3.32). The asymmetric transitions in Fig. 7
are thus easily seen to affect 0-„„, only to order g4 in
the electron-phonon interaction.

Before closing this section, we want to outline the
correspondence between our many-body perturbation
treatment and the more familiar ones based on Matsu-
bara's Green's functions. The first approximation in
Eq. (3.17) corresponds to the Hartree-Fock approxima-
tion for the two-particle Green's function relevant to the
current correlation function in Eq. (3.1) (in the weak
coupling limit). In this approximation, the propagators
(3.12) to (3.16) are the equivalent of the one-particle
Green's function as determined from Dyson's equation,
where the irreducible self-energy part is a single sym-
metric transition. In Eqs. (3.27) to (3.32), we consider
essentially the equivalent of an asymmetric self-
energy. The diagrams in Figs. 5 and 6 correspond to
the one-ladder exchange diagrams for the two-particle
Green's function (the direct one-ladder diagrams vanish
by the conservation of pseudomomentum for the
external lines).

iqr28 (qinin2) 6 (qi~ 1)
Xgst3 &1 I 2g—'it& &1 2

~ s nn ~ i ln +

X (ti—(2). (3.29)

Ke now introduce the fourth-order subdiagram of
Fig. 7(a) as a basic component in the propagator (3.12),
to be combined to all orders with the diagrams in
(3.12). The final result is found to be, similar to Eq.
(3.12),

= (1—f() exp{—(ti —t2) [iq(+I'~(l)+6+(l)]) .
(3.30)

Similarly, we can introduce the 0 subdiagram of Fig.
7(b), as a basic component in 5,,~, (t) or (3.15). The
result is readily found to be

~-, .(1)= (1—fi)
Xexp{(ti—$2)[iq~—I' (t)—6 (l) J), (3.31)

where 6 (l) = [+(l)]*.
If we evaluate now the contribution of the Iiropagator

IV. THE TRANSVERSE CONDUCTIVITY TO THE
LOWEST ORDER IN THE ELECTRON

PHONON INTERACTION

The main contribution to 0„„(yWv) was found in
Eq. (3.21) to be of order zero in the electron-phonon
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interaction. To this order, we write We introduce now, explicitly, as a perturbation the spin-
orbit operator from (2.8)

M
(01 p g(ir 1 ~)LJ nnr J n'n J nn'J n'n]

AU «'
H.,=XLtr)&VV(r)] p. (4.4)

&&fi(1—fi )

P f P Ljnn'J n'n J nn'Jn'n]
hV z n'

We write for the periodic part of the Bloch functions
(to first order in H„)

&~'1 IH,.I
~1 &

to„i(r) =I i.(r)+P'u i,(r) . (4.5)
n' ~ma —~n a

+ p g(ling&)f f,p nn'J n'n J n. n J n'n] (4 1)
PzV zz'

The second part in Eq. (4.1) is clearly zero, since the
indices I and P are interchangeable. The first part is
transformed by using the completeness relation to
write' J nn(P) 2g—1 P&

n' m~» 2
(4.6)

Here N„i(r) is the periodic part of the wave function in
the absence of spin-orbit interaction. Using Eq. (4.5)
and the reality properties of the matrix elements, '
we obtain, like Karplus and Luttinger, ' to first order
in B„,

B
p J (ltn) nJ '

(nln)
—tJ nn(k) + dsr to

n' Bk„ V

and also

B na
With Eq. (4.6), or~, tel of (4.3) becomes in the limit of
large volu

dfi (eIH„Ie'&
B B

p Lj nn'J n'n J nn', J n'n] — J nn J nn (4 2)Bk„Bk,
The introduction of Eq. (4.2) in Eq. (4.1) yields

4m'mIt2 ~ ~'

diaz

Go

Bcz
x &I'I p. I

~&— &~'I p„l ~& . (4.7)
Bk„ Bk

(0)—
pv

g2 B
Pf Jnn J nn

AV z Bk„Bk,
ie' 8fi elfiJnn J nn

hV z Bk~ Bk,

Bfi Bei fl«
Jnn J nn

ItV z Be) Bk„Bk„

(4.3)

Equation (4.7) is the explicit form for the transverse
conductivity, to zero order in the electron-phonon
interaction operator and to first order in the magnetiza-
tion. We notice that:

(1) o.„,'+ is antisymmetric, as required by the
Onsager relations;

(2) the main contributions to o.„ t'& will come from.
bands close to the Fermi energy: the bands labeled by



150 FERROMAGNETIC HALL EFFECT

FIG. 9. Two cross-sections of the
Fermi surface for spin-up e1ectrons
in bcc iron.

n are required to be so by the behavior of df~/de~
and the bands labeled by e' are required to be close to
the n bands by the energy separation factor or„„

(3) the bands n and n' vill correspond to the same
spin states, since p is diagonal in these states.

V. APPLICATION TO MONOCRYSTALLINE
bee IRON

In order to apply the results of Sec. IV to mono-
crystalline bcc iron, we refer to Kood's dispersion
curves and tabulated eigenvalues in k space. "Taking
account, in a simple way, of the exchange coupling,
we shall follow Wood and split the "nonmagnetic"
Fermi surface (FS) into two separate ones (for spin-up
and spin-down electrons), such that the difference
between the two corresponds to 2 Bohr magnetons per
atom. The energies, from Wood's density-of-states
curves, are p+

——0.83 Ry and p, =0.69 Ry. Kith these
two Fermi levels and Wood's dispersion curves re-

produced in Fig. 8, we constructed the FS for spin-up
(Fig. 9) and spin-down (Fig. 10) electrons.

Accidental band crossings, which occur on symmetry
axes, do not in general exist o6 these axes. A consistent
way to label bands is to label them, for each k, by order
of increasing energies. Thus, we label the energy bands
of Fig. 8 as follows:

band 1 = XgI"gH pe'4, band 2 =E21 2g'H pe'4,.

band 3=Eg'I"2g'H25'E4, band 4=Egr pg'B25'P3,

band 5 =E4I'~~H25V 3, band 6=E3I'~2H~5P4.

We now need approximate wave functions to describe
electrons in the bands of interest near the Fermi energy
in iron. We need to know them as functions of k as well
as r. ("Real" wave functions could, in principle, be
obtained when one makes band energy calculations.
But, even if they were available, their accuracy wouM

be doubtful and their complexity would make them
almost useless. )

The wave functions used are presented in the
Appendix and have the following properties:

(1) These functions are written for a single Wigner-
Seitz cell. The quantitative features are contained in
radial functions of r.

(2) All symmetry requirements, on the axes and
planes of the Brillouin zone, will be satisfied (as long
as they are compatible) by the angular part of the
wave function for each band. These angular functions,
for different bands and the same k, are chosen to be
orthogonal combinations of "Kubic" harmonics. "

Let us now investigate in Eq. (4.7) the case n=6+
(spm-up): this part of the FS 1s going to give an im-
portant contribution to 0-„,& ', because, for the values
of k describing it, the energy separation from the lower
lying bands n'=5+, 4+, etc., is fairly small and so
the effect of the spin-orbit perturbation in (4.7) is
going to be large (if the matrix elements do not vanish
by selection rules). The FS corresponding to band 6+
is given in Fig. 9; it is very nearly spherical about F
(the maximum deviation in radius is about 11%%uo).

I et us first calculate the matrix elements of y. In
general, between Bloch states, we have (for n'4n):

(n'k
~ p„~ nk) =- d'r e-"'zz„,,* (e"'zz„„)

z ~Sv

D3

&v
(5.1)

We calculate the matrix elements (5.1) for n=6+,
and n'=5+, 4+, 2+, with the wave functions
(A2) to (A6). The results are as follows:

(n'y~ p, ~6+)=zV(5) '~'b, f *B„.*
X (I„z—J.z)1".z'(k), (5.2)

"J,H. Wood, Phys. Rev. 126, 517 (1962). "See, for instance, D. G. Be&), Rev. Mod. Phys. 26, 311 (1954).
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Fxo. 10. Two cross sections of the
I"ermi surface for spin-down electrons
in bcc iron.

where

rp

r2dr o.„.*—0.„, J„.„=
dr

rp

rdr n„.*n„; (5.3)

ro is the Wigner-Seitz radius; k= k/k;

F g'(k)=kyk (3k ~ 1)' F46*(k)=kyk (ky2 k 2)

X(k 2—2k 2—2k 2) ~

F38*(k)=kx(k. '—1)(kk.'3—Lk 'k. '3) . (5 4)

F26'(k) = (2/v3) k, (k '—k ')

where L= r && y and &r„=~1 is the spin quantum number
of the state (n,k). The spin quantization direction 0,
is allowed to be different from the direction 0, (of
the average spin magnetic moment) in different
domains, to describe a departure from saturation
conditions. At saturation, the two directions should
become identical. We write a,P for the polar coordinates
of 0, in the x.y, 2 system. If we average over all
unit cells in the crystal, we should obtain:

(sinn cosp)„=0= (sinp sinp), ;
(cosa),„=—5K= M,/M, (T)—. (5.6)

The square bracket notation represents the sum of three
terms obtained by cyclic permutation of k, k„, k, .

The matrix elements of p„and p, are simply ob-
tained from (5.2) by cyclic permutation of k„k„,
t|,'„because of cubic symmetry.

Ke now evaluate the matrix elements of H„ in
Eq. (4.4). Since H,„ is treated as a perturbation, we
shall make the usual assumption that, in a unit cell
V(r)= V(r). fn reality, of course, V(r) is a sum of
spherically symmetric potentials centered on each ion.
But, in a particular cell, we suppose the potential of
neighboring ions to be negligible as an approximation
for the spin-orbit perturbation. Thus, in a unit cell
and between states of the same spin direction )according
to Eq. (4.7)j, we write

( ku~ II~n', k)=P(e, k~ U'(r)r '(e L) ~n', k)
(5 5)='Ao.„(e,k~ V'(r)r —'L; ~e',k),

Indeed, the average spin magnetic moment is in the s
direction. The average (cosn), is written as the ratio
of the actual magnetization (M,) over the saturation
magnetization at temperature T(M, (T)). The minus
sign is introduced because, according to Fig. 8, we
introduced a majority of spin-up electrons which would
produce a magnetization in the —s direction; in (5.6),
we have assigned the positive spin quantization direc-
tion such that at saturation (cosn), = —1. Then, as
an average over all unit cells, we shall write

I;= (sinn cosP)„L,+ (sina sinP), L„
+(cosa),„L,= 5RL, ,

—

and Eq. (5.5) becomes

(u, l
~
a,.

~

u', k) = —~m~„(N, k~ r V'(r)L,
~

u', k). -(5.7)

For Bloch states:

k ( 8 8)
(ek[r 'V'(r)L, )u', k)= dlr e —'"'u

A,.
*r 'V'(r)~ x——y—~e'~'u .A;= (4s/3)'~'kk dlr u„q*V'(r)

o k Bg BX)

&((k„rp. k, (p„)u„ I,+ d'r u—„g*r 'V'(r) L,u„.g. (5.,8).
0
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We consider now the cases where zz=6+ and zz' labels
the lower bands (with spin-up). In this case, it is easy
to see that the second part of Eq. (5.8), i.e.,

dzr zz„2*r 'V'(r)L. N. k,

will not contribute to these matrix elements, since I.,
belongs to the F~5' representation and thus does not
belong to the product representation made of the wave
functions.

The evaluation of Eq. (5.8) is now a straightforward
integration:

(6+ ~II.6~22'+)=(5) "9hMkb6*b. B„.E6„.G„.6(k),
(5.9)

where

rp

r'dr U'o.„*o.„.,

G:6(k)=k, (k.2—k22);

G46(k) =k.{2k.'(k.2+k„')+k,zk„2(k,2+k„')

emax d g

d«k ~„„. 'd-n, (e( e..(
I')

dc~

X (k„(zz'
~
p, ~

zz) k,(—zz'
~ p„~ zz)), (5.12)

where dQ~ is an infinitesimal solid angle in k space.
In Eq. (5.12), we assumed that cv ' is a function of k

only, i.e., it will be replaced by a suitable average
over all directions in k space. If we substitute in Eq.
(5.12) the expressions (5.2) and (5.9) for the ma, trix
elements, we obtain for rz'= 5+, , 2+:

shall calculate (4.7) in the cases rz=6+, zz'=5+, 4+,
2+. The Fermi surface of band 6+ is given in

Fig. 9: it is very nearly a spherical surface. Since the
contribution to Eq. (4.7) will come mainly from. energies
~g around the Fermi energy, we shall suppose the con-
stant energy surfaces for rz=6+, to be spherical.
In that case, we write

/
grad261

f
'(861/Bk, ) =k„.

For rz=6+, the integral in Eq. (4.7) becomes

—2(k '+k ')—2k 'k 2k, 2};

G,(k) =k.k„(k,'—k„')([k.']—[k„zk,zj);

i&3'K
I,.= —K6„(I„6—J„6)

20m'c'

emax

de k'

G26(k) = ——k.k„(3k,2—1) .
v3

(5.11)
d

X—
f
b ['fb„['666„-' dQ /81~

/

'

We now calculate explicitly the transverse conduc-
tivity given by Eq. (4.7). We change integration
variables by the relation

d'k=
~grad&«

~

where d5 is an infinitesimal element of a constant-
energy (6&) surface (in k space) for the rzth band. We

X{k„F„(k)—k.j"; '(k)}G. (k), (5.13)

where e„„„and e, are the limits of the energy range
for band zz=6+.

In Eq. (5.13), the angular integral, in k space, is an
elementary integral and yields a numerical coeKcient
only. By using the expressions (5.4) and (5.11), we ob-
tain the following expressions (we write x, y, s instead
of k.„k„,k„since there should be no confusion):

s2(g2 y2)2
dQI, = dQ =0.320m. (2z'= 5+)

7[@'j—3[x'j+6x'y's'

22{3+2y2s2 2s4(1 22) &2y2+2 (2 6+y6) }2

dQ —=0.865zr (n' =4+)
3&2y222[y2s2) 3[+4y4j+4[2 61 4[+101 2&2y222P4j

2.2y2(2. 2 y2)2
dQ =0.415zr (rz'=3+) (5.14)

&2y2(3s2 1)2
=4 da — =0.593~(~'=2+).

(3"—1)2+3(~2—y2)2

The integrals above were evaluated numerirglly.
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The c integral in Eq. (5.13) has the well-known form'7 TAsLK I. Energy bands parameters and corresponding results
for the top conduction band n=6+ (at Fermi surface).

min

de F(e)
Band e'

collar (d/dk)&n' Xu (d~/dk2)'ca~ Xu~ ' F(p) XN '
(Ry) (Ry) (Ry) m+/m (Ry 2) A 22r

d2F~=—F(u)+ (K—r)'
I
+", (s.ls)

6 de'I, =„

6+
5+
4+
3+
2+

0.067
0.087
0.201
0.257

0.509.
0.121
0.091
0.134

—0.269

0.45
0.055
0.062
1.52
0.51

3.0
24.5
21.8
0.89
2.6

23.6
14.0
2.62
1.60

~ ~ ~

1.77 X10 8

0.876 X10-s
0.280 X10 8

0.140X10 &...

smax

de F(e)—= —F(p)[1+A„.T2j,

with
min

~2K2 ( dk 2 1 d2F
A. =-=. ..„). , (-...).„

(s.16)

(1/F)(d'F/dk') depends on the toe„'s and their first
and second derivatives with respect to k. We summarize
in Table I values of these quantities a,t the Fermi sur-
face for band 6+, i.e., at kr=0.473u (u=22r/a). The
values were obtained from Wood's results" a,nd are
averages over the symmetry axes 6, h. , and P (weighted
by the number of each type of axis). The curvature
(d'/dk') e„&&us is compared with the free-electron value
which is u'=1.35 a.u. (where a=5.406 a.u.). This
comparison gives the ratio of the "isotropic" effective
mass m* to the free electron rest mass m.

The sign of the contribution (5.13) to the transverse
conductivity o.„, clearly depends on the following
integrals:

where F( e) = ks
I bs

I

2
I b„

I
2(~ 2 ) '. The approximation

in Eq. (5.15) requires KT«e,„e„„„,—e;„(l2(e,„,„
and (KT)4(d4F/de4), =„«F(12). These conditions are
realized in our case, for all temperatures below the
Curie temperature.

In Eq. (5.15), the functions IbsI' and
I
b„ I' of k

contribute mainly through their value at the Fermi
energy. We recall from the Appendix that the wave
functions are expanded in terms of functions of dif-
ferent symmetries appropriate to the point H and that
the b„(k)'s are the coefficients corresponding to the
symmetry believed to be dominant in the wave func-
tions. We now ignore other symmetries and take
IbsI'= Ib- I'=1 We obtain

of the d radial wave function (t=2) gives a good
qualitative picture of the equivalent radial wave func-
tion [C(r) in Wood's notation) in the crystal. For l= 2
(leading term), there is some variation in the wave
functions between the top (compact, atomic-like func-
tion) and the bottom of the d band (more diffuse
function). But, in our case, because of the
factor in (5.13), we know that the largest contributions
will come from m' bands close to the top of the "d
band", which correspond well to atomic-like functions.
We use for the rt' bands the tabulated 3d function of
Herman and Skillman" for the 3d'4s' con6guration of
atomic iron. The top band 6 will probably have, be-
sides l= 2, contributions from other angular momentum
values, l=0 and 1. In the picture that considers elec-
trons in transition elements in a broad s-p band and a
narrow d band, band 6 would correspond largely to the
upper part of the s-p band. We used both 3d and 4s
atomic functions for ns(r) and obtained in each case
the same sign for the contribution to the transverse
conductivity o.„, and thus the Hall resistivity p&
in Eq. (2.2). The results for the integrals (5.17) are as
follows, where P(r) =rn(r) and re= (3/82r)'ls a=2.662
atomic units (a.u. )

dU
dr P3a Pad=6~ ~ a u j

dr

d (Pss)
«Ps~r' —

I

—
I

= —2 56 a u. (5 18)
dr& r' J

dV
dr P4, P3d =0.359 a.u. ;

dr

K „(I„—J„,)=
rp

0

dU
dr(ms) (rn„.)

dr

P4
dr P3dr'— = —0.31.8 a.u.

o dr r2

rp

—~ 0

r (ns
dr(rn„)r' —I—

dr& r
(5.17)

by using Eqs. (5.3) and (5.10). The bands labeled by
n'=5+, , 2+ fall into what is conventionally re-
garded as the d band in iron. From Wood's calcula-
tions, ' we know that, for this "d band, " the behavior

We neglect in Eq. (5.18) the change in normalization
due to integrating only up to ro. This change is very
small since both [P4,j' and [Ps&]2 are very close to
zero for r=ro.

We have novr all elements necessary to evaluate the
contribution to Eq. (4.7) of the part of the Fermi sur-
face corresponding to the band 22=6+. We consider

' J. M, Ziman, Electrons and Ehonons (Clarendon Press, Ltd. , '9 F. Herman and S. Skillman, Atomic Structure Calculations
Oxford, England, 1960), Chap. 2, pp. 103—104. (Prentice-Hall, Inc. , englewood Clips, New Jersey, 1963),"J. H. VVood, Phys. Rev. 117, 714 (1960). Qhaps 6, pp. 6—35,
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this contribution to be the major one to 0,„~ & of
Eq. (4.7).Let us, indeed, look at the contributions from
other parts of the Fermi surface, with the help of
Figs. 8, 9, and 10:

(1) For band v=5+, the interbarid contributions
will be small, both because of large energy separation
(toss = —0.37 Ry along A, ross ———0.54 Ry along F—=HP),
when compared to the co's in Table E and because the
operator p cannot connect two functions of symmetry
H»' (which is the symmetry of bands 5, 4, 3 close to H).

(2) For bands 4+, 3+, the same arguments as in
(1) hold.

(3) For band 4—,the main part of the FS is con-
centrated around j. where the adjoining bands have
all F»' or I'» symmetry; thus, the matrix elements
of y are zero between these bands.

(4) For band 3—,we use the same arguments as in (1)
to neglect these contributions.

Let us thus evaluate the major contribution to
o„,ts' of Eq. (4.7), namely, that corresponding to the
Fermi surface of band 1=6+. If we insert in Eq.
(5.13) the numerical results obtained in Eqs. (5.14),
(5.16), in Table I and in Eq. (5.18), if we keep in mind
that Table I and the results (5.18) are in atomic units
and if we sum over e'=5+, , 2+, we obtain for
the transverse conductivity

Xe2h' 2.IVY(1—J)
~y.&'& =m X

mscsas 2.1791X10 "(52915X 10 ')'

X(1+1.12X10 sT')

=ORE(I—J)X1.8996X10"(1+1.12X10 'Ts) esu

=ORE(I—J)X0.211(1+1.12X10 sT') mho/cm.

(5.19)

For E(1 J) of Eq. (5.17—), we shall take, for each
integral, a weighted average of the results (5.18).
Since we consider the 1=2 or 3d radial function to be
predominant for band 6 (for energies near the top of
the "d band""), we shall adopt weighting factors of —,

'
for /=2(Pss) and s for l=0(P~,) Thus, we .adopt

E(1 J)= —49.4X2.0= —9—9 a.u.

We obtain the ferromagnetic Hall coefhcient R,
from Eqs. (2.2), (2.3), (5.19), and from BR=M, /M, (T),

0y~
2pox

4m%,
(5.20)

20.9
p„'L1+1.12X10 'T'j 0 cm/G.

4 M.(T')

At T= 293'K, we use 47rM, (T)= 21580 G's and

R. M. Bozorth, Ferromagnetism (D, Van Nostrand Com-
pany, Inc., 1951), Chap. 3, p. 54.

p =2.382)(10 ' 0 cm, which is the value determined
by Dheer" for monocrystalline iron whiskers. We then
obtain for R, at T=293'K:

R,=+0.550X10 "0 cm/G. (5.21)

Dheer" has measured R, in rnonocrystalline iron
whiskers, and particularly in whiskers grown along
the L100] direction, where the magnetization and
current Bow directions are along the cube edges. This
corresponds to the situation considered in our numerical
evaluation. At T= 293'K, he obtained E,=+1.82
X10 "0 cm/G. This is within a factor of 4 of our
theoretical result (5.21).

"P.N, Dheer (private communication, and to be published).
". N. V. Volkenshtein .and G. V. Fedorov, Zh. Eksperim. i

Teor. Fiz. 36, 64 (1960) /English trsnsl. : Soviet Phys. —JETP 11,
48 (1960)g.

VI. CONCLUSIONS

(1) The expression (5.20) gives for E, the cor-
rect"" positive sign in iron and values which are
smaller, by a factor of » than the experimental values"
for monocrystalline iron, between temperatures of
75'K and room temperature. Equation (5.20) does not
explain the complicated temperature behavior" of R,
in iron whiskers below 75'K.

(2) The temperature dependence of (5.20) is mainly
as p„' and this is also borne out by experiment (at
least between T=75'K and room temperature). "
The T' correction term in Eq. (5.20), namely 1.12
X10 sT', is negligible at all temperatures (even at the
Curie 9=1043'K, the correction is only 1%). It is
smaller than the correction term found by Strachan
and Murray' for Ni, namely 8.9)(1.0 'T', however,
their correction term was obtained in the effective
mass approximation, whereas ours is not based on
this approximation, but on the actual values of co,

d~/dk, and d'ce/dk' as determined from

Wood�'s

dispersion curves for iron.

(3) A comparison of our theory, based on phonon
limited transport, with the results of Luttinger's2
impurity scattering theory yields some interesting con-
clusions. Our results )Eq. (4.3)j obtained to the
lowest order (gs) in the electron-phonon interaction is
equivalent to the velocity term pp obtained by Lut-
tinger. (Luttinger's result is based on an effective mass
approximation which we have not required. ) This effect
is independent of scattering mechanism and cannot be
obtained' by conventional transport theory (Boltz-
mann equation). In addition to this term, Luttinger
found a velocity term est'" of order (—1) in the scat-
tering potential. There seems to be no counterpart of
this term in electron-phonon scattering, which can only
contribute to the average velocity in even powers of
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TABLE II. Summary of irreducible representations for each valence band in bcc iron, on some
symmetry elements of the Brillouin zone, for. k large (close to boundary of zone).

Band
At H

(22./a, 0,0)

H15
H25'
H25'
H2g'
H12
H12

On 6
(k2=k. =0)

On A
(k, =k„=k,)

A1
A.s
A3
Ag

Ag

(x,)

On Z
(k, =k„, k.=0)

(»)'
(~)
(~.)

(~.)

(110}planes
(k, =k„)

(100}planes
(k.=0)

a The parentheses indicate that some of the characters of the representation are incompatible with the characters of the representations for the other
symmetry elements.

the interaction. Finally, Luttinger s multiple-scattering
correction (sets') does not occur in our theory to order
go
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q 2=—(1'2 ' —1'~')
v2

2

q, =—(&i'+&4 '),
v2

z

q 2.=—(1'2'+ I'2 '),
V2

q *.——(1'2 ' —1'2')
V2

APPENDIX: CHOICE OF WAVE FUNCTIONS

As mentioned in Sec. V, our wave functions for the
different bands of bcc iron are written for a single
Wigner-Seitz cell. The quantitative features are con-
tained in radial functions of r. The point-group sym-
metry properties are included in an angular function
of r and k.

More specifically, the angular functions of r will be
made of Kubic harmonics. ' We shall choose also
Kubic harmonics of k=k/k as angular functions of k.
For each band, the combination of Kubic harmonics
in r and k space will be constructed so that it reduces to
the correct representation (from the dispersion curves)
at the point H and on the symmetry axes (A,A) and on
(110} and (100} planes of the Briilouin zone (over
the entire solid angle). The characters of the representa-
tion on 2 will be correct as long as they are compatible
with those of the representations on 6 and A.. Incom-
patibility may arise if the symmetry of a band changes
due to accidental degeneracies.

In Table II we summarize, for each valence band,
the correct representations on various symmetry ele-
ments of the zone, obtained from the dispersion curves
for the case k large (close to zone boundary). We dis-
tinguish the cases k large and k small, because each
band does not necessarily correspond to the same
representation (on a symmetry axis) close to P or
close to the zone boundary, because of accidental
degeneracies. We note that two bands which become
(symmetry) degenerate along a symmetry axis will
have to have indeterminate wave functions on that
axis (in k space), since it becomes impossible to dis-
tinguish the two degenerate states. We can make a

(A1)

q* =—(1' '—1'')
V2

1
qt 4 g — (jr 2+1 2 2)

v2
Paz' —r'= ~ 2 ~

Tr 0

With the above considerations, we obtained the
following orthogonal wave functions (for k large):

Qs 2(r) =e'"'ns(r; 2)bs(k)(k, q,+k„22„+k,q2,),

&4 2(r) = e' 'n;(r; 4)bs(k)B2(k)

XLk,(3k,2—1)q ,2+k(23k„2 1)q„—

(A2)

+k.(3k,'—1)&p.„], (A3)

y2 2(r) =e'2'n2(r; 4)b, (k)B,(k)

1
X —(3k,'—1)22.4 „*—(k '—k 2)222 *

(A6)

44,.(r) =e'"'n (r; .)b (k)B,(k) /k, (k„2—k, ')

X (k '—2k '—2k ')(p +ky(k '—k ')

X (k2' —2k42 —2k~') q gg+kg(kg' —k ')

X(k '—2k '—2k ')q ]. (A4)

y2, 2(r) =e'"'ns(r; 4)b2(k)B2(k)

X(kg4+k„4+k 4—k 'k '—k 'k '—k 'k ')

X$k„k,q„,+k,k.(p,.+k.k„42,„], (AS)
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41,2(r) =e"'rrt(r; e)bt(k)%(&)

where

1
(k '—k 2)(P ~ ~+—(3k,'—1)ysg2

V3

(AT)

7'P

r'dr
~
u„(r; e)

~

'= 1.

The functions b„(k) are left indeterminate. They
have a maximum absolute value of 1 at the point H,
since the Kubic harmonics involved are correct only

at H. We take 8„(k) to be the proper normaliza, tton
factor (in configuration space) for the angular pa«of
the wave function. For instance, we write

~
Bs(k)

~

'= Lk, '(3k.'—1)'+k„'(3k '—1)'
+k 2(3k 2 1)2)-1

which is singular on A. , so that the function (A3) is
indeterminate on h. (and this corresponds to the As

degeneracy). It is easy to see that the angular part of
the functions (A2) to (AT) satisfy all compatible
symmetry requirements of Table II, for all directions
in k space.
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Speci6c Heat of Gadolinium, Terbium, Dysprosium, Holmium, and
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The specific heat of gadolinium, terbium, dysprosium, holmium, and thulium metals has been measured
between 3 and 25'K using a germanium resistance thermometer. Anomalies, apparently associated with
magnetic transformations in the metals themselves, were found for terbium at 16'K and for holmium at
17.5'K. Low-temperature peaks, probably resulting from impurities, were observed for gadolinium, terbium,
and dysprosium. By assuming that. the sum of the lattice and electronic specific heats of all these metals is
given by the total C„of nonmagnetic lutetium and by calculating the nuclear contribution from previous
work below O'K, the magnetic specific heat C~ has been determined. For terbium and dysprosium- an ex-
ponential temperature dependence, C2r=36T ~' exp( —23.5/T) and C2r=107T2~2 exp( —31/T) (T in 'K,
Csr in m J/mole 'K), respectively, was found. The results are in accord with current theories that take into
account the strong basal anisotropy in the magnetic structure of these metals. For gadolinium CM =0.19T'-~
above 13'K, but the functional form of C~ is much less certain than for terbium and dysprosium. For
holmium C~ ——1.5T"represents the magnetic specific heat quite well below 8 K. There is theoretical justifi-
cation for a T' temperature dependence of C~ for both gadolinium and holmium. The magnetic specific
heat of thulium between 4 and 20 K can be given by C~=8.3T2 3; no theoretical predictions are available
for this metal. The observed behavior of C~ for most of these rare earths can be correlated with existing data
on magnetization and electrical resistivity.

I. INTRODUCTION

HE observed total specific heat C~ of the lantha-
nides is, in most cases, the sum of four distinct

components: the lattice specific heat Cl, , the electronic
specific heat C~, the magnetic specific heat C~, and
the nuclear specific heat C~. The component C~ is
caused by interactions between the localized 4f elec-
tronic spins, and C~ results from splitting of the nuclear
hyperfine levels by interaction with the 4f electrons.
'The heat capacity of most rare-earth metals has been

~ Work performed, in part, under the auspices of the U. S.
Atomic Energy Commission.

t On leave of absence from the Technical University of Helsinki,
Qtaniemi, Finland.

measured between 0.4 and O'K. ' Consequently, the
nuclear specific heat, which is the dominant contri-
bution below 1'K, has been accurately separated from
the other components of C„.Some information was also
obtained about CI, and C~.

Much less is known about the magnetic specific heat.
The reason is, at least partly, that the temperature
range from 4 to 15'K, which is important for studies of
C~, has been assiduously avoided by low-temperature
physicists. To correct this unfortunate situation, and
because a considerable amount of theoretical work has
recently been done on C~, a program for measuring the

'O. V. Lounasmaa, Phys. Rev. 134, A1620 {1964) and other
papers listed therein.


