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Below the Verwey transition the Fe'+ and Fe'+ ions on B sites in magnetite are magnetically coupled to
A-site ions by different exchange constants. We calculate the six-sublattice spin-wave spectrum of this
ordered orthorhombic structure, for arbitrary spin quantum numbers and for arbitrary ferrimagnetic
nearest-neighbor exchange interactions coupling A ions with two different kinds of 8-site ions. Inelastic
neutron scattering by Verwey-ordered magnetite, which has not been studied, will allow evaluation of the
two exchange constants and of the dynamics of their averaging through the transition. In spite of differences
of the exchange constants and of the numbers of nearest neighbors (an A-site ion has twice as many nearest
neighbors as does a B-site ion), we show that all sublattices and the net moment have the same temperature
dependence, in the spin-wave region, apart from their proportionality to their O'K value. This holds also if
intrasublattice exchange, which we ignore, is included, and for other symmetries. Besides sublattice mag-
netizations we also calculate the ferrimagnetic-resonance g factor and specihc heat, both above and below the
Verwey transition. The observed Mossbauer spectrum is explained, but many other experiments remain
unexplained.

I. INTRODUCTION
' AGNETITE undergoes an electronic ordering

transition at 119'K.' Below that temperature
the octahedral (8-site) Fe'+ and Fe'+ ions, which are
randomly distributed above the transition, arrange
themselves on alternate (001) planes. Bickford' showed
that if a magnetite crystal is cooled in a magnetic field
along a cube edge, the ordered planes lie perpendicular
to the field direction. If the field is then rotated to a
different symmetry axis the ordering will slowly follow
the field. An orthorhombic distortion accompanies the
transition. There is a net moment both above and below
the Verwey transition, the spins forming a Neel
structure, with the orthorhombic c axis easy. The
octahedral ferric ions lie in rows along the orthorhombic
u axis and the ferrous ions in rows along the shorter b

axis, the cubic face diagonals. Pressure along a cubic
L110] removes twinning in the orthorhombic phase. In
a paper with extensive references, Hamilton, ' by means
of neutron diffraction, directly confirmed the Verwey
structure, which had first been inferred from a resistiv-

'E. J. Verwey and E. L. Hailmann, J. Chem. Phys, 15, 174
(1947); E. J. W. Verwey, P. H. Haayman, and F. C. Romeijn,
ibid. 15, 181 (1947).' L. R. Bickford, Jr») Rev. Mod. Phys. 25, 75 (1953).' Waiter C. Hamilton, Phys. Rev. 110, 1050 (1958}.

ity jump. Crystal distortion should stabilize this order-
ing, which shall herein be approximated as complete
below the transition.

Specific heat, ' ferrimagnetic resonance, " inelastic
neutron scattering, ' nuclear magnetic resonance
(NMR), '' moment measurements'" and the Moss-
bauer spectrum" "have all been studied on magnetite,
and considerable theoretical analysis" " has been

4 J. S. Kouvel, Phys. Rev. 102, 1489 (1956).' L. R. Bickford, Phys. Rev. 76, 137 (1949).
6D. B.Bonstrom, A. H. Morrish, and L. A. K. Watt, J. Appl.

Phys. 32, 272S (1961).
'H. Watanabe and B. N. Brockhouse, Phys. Letters 1, 189

8 E. L. Boyd, Phys. Rev. 129, 1961 (1963).
~ S. Ogawa and S. Morimoto, J. Phys. Soc. Japan 17, 654

(1962); S. Ogawa, S. Morimoto, and Y. Kimura, ibid. 17, 1671
(1962).

"A. H. Eschenfelder (private communication)."I.Solomon, Compt. Rend. 251, 2675 {1960)."R. Bauminger, S. G. Cohen, A. Marinov, S. Ofer, and E.
Segal, Phys. Rev. 122, 1447 (1961)."K.Ono, Y. Ishikawa, A. Ito, and E. Hirahara, J. Phys. Soc.
Japan 17, Suppl. B-1, 125 {1962);A. Ito, K. Ono and Y. Ishikawa,
ibid. 18, 1465 (1963)."J, S. Kouvel, Technical Report 210, Cruft Laboratory,
Harvard, 1955 (unpublished)."F.J. Milford and M. L. Glasser, Phys. Letters 2, 248 (1962);
M. Lawrence Glasser and Frederick J. Milford, Phys. Rev. 130,
1783 (1963).

"Richard P. Kenan, M. Lawrence Glasser, and Frederick J.
Milford, Phys. Rev. 132, 47 (1963).
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&2'Ã= (sAsa)'"Js~(5'+1)
2v3

With s~ ——2s'~ ——12, S=~, we 6nd

J /k=45'K. (1.2)

Now consider magnetite. We take it that sufficiently
above the Verwey transition electron exchange between
8 sites is so rapid that these sites are effectively
occupied by a single ionic species, of spin 8, AB ex-
change constant J and g factor g. As a zeroth approx-
imation (we shall not get to first) we may even at times
consider that

s (+B(2)++B( ))8

J =-,'(Js+Js),
g=-', (gs+gs),

(1.3a)

(1.3b)

(1.3c)

although the implications of these latter assumptions
are not the substance of this paper. Here S~(2) is the
spin of Fe'+, and S~(3) that of the Fe'+ ion. J2 is the
exchange constant between Fe'+ on a 8 site and Fe'+
on A. Prom the Neel temperature of magnetite,
Tz ——855'K, and molecular field theory we then find

J/k =37.5'K (1.4a)

and, from Eqs. (1.2) and (1.3b),

Js/k=30 K. (1.4b)

So one wonders what are the implications of diferent
AB exchange constants for Fe'+ and Fe'+ 8-site ions.

In this paper we calculate the six-sublattice spin-wave
spectrum of ordered magnetite, for arbitrary spin
quantum numbers and for arbitrary ferrimagnetic
nearest-neighbor exchange interactions coupling A ions
with two kinds of 8-site ions. We then calculate the
sublattice magnetizations, and show that all sublattices
and the net moment have the same temperature
dependence in the low-temperature region, apart from
a proportionality to their magnitudes at O'K. This
result applies even if intrasublattice exchange constants

applied to their interpretation. However, serious
discrepancies exist, both qualitative and numerical.
For example, the Mossbauer spectrum below the
Verwey transition consists of but two sets of lines, one
from Fe'+ ions, and one from Pe'+ ions on both tetra-
hedral and octahedral sites; it had been expected that,
corresponding to the three types of sites, three sets of
lines would be observed. As for quantitative analysis
every observation appears to suggest diRerent exchange
constants.

It was consideration of exchange interactions that
motivated the present work. Lithium ferrite, Fe'+-
LI i'+o. s Fe'+s.s]04, has a Neel temperature of 953'K.
From molecular field theory, with 4 of the 8 sites
eRective,

J~~ and J~I. are included, and holds also in other
symmetries, a1though we shall ignore intrasublattice
exchange because it has been shown experimentally to
be small, " and shall consider only the spinel structure.
Af ter presenting equations for the ferrimagnetic
resonance g factor and specific heat of the ordered
structure, we give the simple formulas relevant well
above the Verwey transition, when electrons on 8 sites
hop around so rapidly that these sites may be considered
to be populated with a single ionic species of some
unspecified "average" nature. In the final section we
compare calculations of the magnetic properties of
both ordered and disordered states with experiment.

II. SPIN-WAVE SPECTRUM OF THE
ORDERED STRUCTURE

K=Js Q S,~ S, (')+Jr' S," Si (')
('L)

(2.1)

S; is the spin operator for an octahedral ion, S; &" is
the spin operator for a nearest-neighbor tetrahedral ion
of species B(2), coupled to ion i with exchange constant
Js. Ionic species B(3) populates B sites, labeled l. The
six magnetic atoms in a primitive unit cell are shown in
Fig. 1.The two types of A sites are labeled by an index
n=1,2 while index /= 1,3 goes over the two B(2) sites

PQt

yU..

r
ao

FIG. 1. The sites in a primitive unit cell of the spinel structure.
o=A sites; ~ g and 0 =B(2); ~ Co and 0 =B(3) sites.
(Oxygen not shown. ) The primitive translations of the rhombo-
hedral unit cell are shown as a1, a2, and a3. Considerably after
T. A. Kaplan, Phys. Rev. 109, 782 (1958).

'7 T. A. Kaplan, Phys. Rev. 109, 782 (1958).

The magnetization is taken along the s axis, with the
ordered layers in (001) planes. Because the magnetic
properties are rather insensitive to structure, we ignore
the eRect of noncubic crystal distortion on the spin-wave
spectrum (through ys), although the orthorhombic
magnetic structure will indeed be apparent in our
results. The method and notation follow closely those
of Kaplan. " Kouvel" has also considered the eRect
of ordering.

The Hamiltonian is
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+ (2S )1/2(3

S,.-= (2SA)'/2;. t,
S; '=5~—a; ta;,

&=1) 2 (2.2a)

and P'=2,4 covers the 8(3) sites. Within linear spin-
wave theory the Holstein-Primakoff spin operators for
the six-sublattices are then

with

f' p(k)=f p'(k)+if' p'(k) (2.8)

(2 and p (or p'), the three vectors from an (3 site to the
nearest-neighbor p (or p') sites.

The 1 p(k) can be decomposed into even and odd
parts relative to the inversion operation k —4 —k:

S,p+ ——(2SB(2))'"b,p,
S,p

—= (2Sp(»)'"b, p,

S,p'= SB(2—)+b,p b,p,

P=1, 3 (2.2b) and

f'lp'(k) =i 2p'(k)

|lp'(k) =—f 2p'(k).

(2.9a)

(2.9b)

Slp+= (2SB(3 )'"blp

Slp ——(2SB(3))'"Alp,

sip' SB(3)+blp' blp' ~

p'=-2, 4
We shall be interested in the eigenvalues only up to

(2.2c) quadratic terms in k. Then

f',p' ——3—(11/128)k2(332—(2)x p=))—(2)x p, (2.10)

((J/a~(J4'a' ) =&4('~aa'
y (2 3)

while operators for different sites commute.
With a periodic region of X primitive rhombohedral

cells, w'e transform to the momentum representation:
and

These all satisfy the boson commutation relations, for with
example,

xli = —(5/32) (lp2 (k,k„+k„k.+k,k,),
xl2= (5/32)(3p2(k, k„+k„k,—k,k,),
xl3= (5/32)(lp2( —k,k„+k„k,+k.k,),
xl4 ——(5/32) (3P2 (k,k p

—kpk, +k,k.), (2.11)

+—1/2 Q p
—42 ~ raa4(3

k

I //2 ~ jk .x»~B (2)$p
—— ~~ e kP)

k

(2.4a)

The odd functions are

$].P —X2P ~ (2.12)

—g—&/2 ~ elk. ~»p»P/— J'P' ~

k
(2.4c)

The inverse transforms, and transforms of the adjoint
operators are evident. These operators again all satisfy
the boson commutation relations, for example,

(bkp&bk'p ) bkk'bpp y

with operators for different momenta or sublattices
commuting. Following Kaplan, the Hamiltonian is
now reduced to

i ii'= 3(3p(ka+—k,—+k,) )

f »'= 3Bp(k.—k2+k.),
t „'=,'ap(k, +k„—k-.),
f,4' ,'ap( k,+kp——+—k,) .—

For succinctness, define

(sA/2) (J2SB(2)+J3SB(3))
8= S~J2Sg', 8'= SgJ3Sg
V= J2(SASB(2)); y'=- J3(SASB(3))'".

(2.13)

(2.14)

K 2~aA (J2SB(2)+J3SB (3))P (3ka (ika The symmetry of 1 p suggests transformations to
acoustic and optic combinations:

+BBJ2SA Z bkp'bkp+2BJ3SA Q bkp'bkp
kP kP'

+J,(SASB(»)' 'p D.p( k)(3k. b„p—
(3kl+(352 (3kl (3k2

Pljc- Qk5= —3
W2 v2

(2.15a)

+i.p(k)(3k.bkpf+ J3(SASB(3))'"

X P t i..p ( k)a..'b, p.t+i..p(k—)~,.b,p j. (2.6)

Here

4k2=

~k2 ~@4
A4=

v2

(2.15b)

(2.15c)

3

f-p(k)—= Z """ (2 &) The adjoints and inverses are obvious, and the boson
commutation relations are preserved;

The 24~„p"„ listed by Kaplan, are, for each particular. (4k Ak, ') =4k t)'4.
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The Hamiltonian becomes

X=+{A $m) tmi+4 iota) o]+Bgo)p) +(f)~2t(t)k2]+B'[r) tr)+4) 4 (k),]+2p[(q+ (5/64) a()'k.k„)(mat p) +m)p()

+ (5/64)ao (k„k,+k,k~) (m), (t)),2 +mk(t)), 2)+ (ao/8) (k~+k„) (pi;o pi2" +piopy2)+ (ap/8)k, (g)jo pyt+piop), )]
+2y'L()) —(5/64) apokgk„) (metr) 2+m)ri) —(5/64) ap'(k„k. —k,k,) (m), pi 4 +m)g)4)

—(ap/8) (k —k„) (g),-.otg), 42+&),og)4) —(ap/8)k, (g),pilrit+ P)ori)]) . (2.17)

2'g op 2g op
pp=cVp m"+ p+ r

8 8'

with normalization

(2.19a)

yo'=
SB(2)+SB(o) SA

and eigenvalue op=0;

2gop 2qoy
pit ——1Vi mt+ p+ r

B+&i B +pi—

(2.19b)

(2.19c)

(2.20a)

with normalization

and eigenvalue

t' &'Qo'Y
t

2'Qov

(
(B+El (8 +pl

A —8—8' 1
Ej = +— A '+2 (B'—B)

2 2

((2npv)' (2nov')')
xl — I+(B'—B)'

B B i
2 gpp 2'gpp

y,=X, mt+ p+

(2.20c)

(2.21a)

I'his can be diagonalized very easily by consideration
of the Hamiltonian at k=0:

Xp ——A (mmmm+(t)ot(ko)+B(PtP+(t)2t(I)2)+B'(rtr+(t), t(t)4)

+2/))p(mtPt+mP)+2y'2)p(mtrt+mr). (2.18)

go, &2, and p4 are optic modes with eigenvalues A, B,
and 8'. By the equations-of-motion method we find
the other three modes (at k=-0) to be

2S~——Sg. (2.23)

Diagonalizing the degenerate operators yields the
linear k dependence of the energy of the antiferro-
magnet. In the present case the result is similar but
less evident. For mode &2 to have zero energy we must
have 8=0, or J~——0, in which case sublattice 8(~) is
unmagnetized and SA=SB(2). For mode g4 the argu-
ment is similar. Mode $o has zero energy only in the
absence of any exchange interactions at all. For modes
Pi and/or go to be degenera, te with Pp at k=0, we must
have

(A B B')'=A'+2—(B'—B)—

All three modes Po, Pi, and Po are acoustic, but go
precesses in the opposite sense from Pi, and has a higher
energy. All six modes satisfy the boson commutation
rela, tion

(2.22)

The six modes reduce to those of Kaplan when
8=8' and y= y', that is when there is only one species
of ion on the 8 sites with spin quantum number S~
and AB exchange constant J. We have ordered the
eigenvalues to conform to his sequence, but the triple
degeneracy of modes &2, g„and p4 of Kaplan's special
case is now removed. In Fig. 2 we show the dependence
of the eigenvalues on J2/Jo, for the case of interest in
magnetite, S~=S~(d) ——» S~(~)——2. There is a crossing
of levels a,t J2/J&=0.67, a,nd the triple degeneracy is
apparent a.t J2/Jo ——1.

An interesting question a,rises concerning the "anti-
ferromagnetic" condition (although the spinel differs
from a true antiferromagnet in that the several sites are
crystallographically distinct). In the case of a single

type of ion on the 8 sites the condition for the degen-
eracy of two levels at k =0 and e =0 is that

with normalization

and eigenvalue

A+B+B' 1—
+- A'+2(B' —B)

2 2
63=

(2nov)' (2n v')'i
x — —— I+ (B'—B)'

B

- r/2

p 2qpq i2 i 2qpq' i2--'
~.'= —1+I — I+I,(B—.,i (2.21b)

(2.21c)

(2))pv)' (2no7')'
X ——+ (B'—B)' (2 24)

8 8'

SA SB(2)+SB(o)) (2.25)

the condition for "antiferromagnetism. "
To continue with the diagonalization of the Hamil-

tonian at nonzero k we must invert (2.19a), (2.20a),
and (2.21a) and substitute into Eq. (2.17). It is profit-

Substitution from (2.14) (recall that 2) p ——3) leads,
irrespective of j~ and J3 to
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/5

FIG. 2. Energies {divided by J&) of
the six spin-wave modes, at k=0,
as functions of Jo/Jo. Sg=S))(o)=s,
Sg(2) =2.

.2 I.2

apk,
fatso=&o Iso+ (vd —v'g)As'

4Amt= c(to+other terms,
p=dtto+other terms,
r= g()(p+other terms.

(2.26) ap'k, '
Xo'=1+ (Vd —V'g)',

16A2
(2.29b)

Algebra produces

able to anticipate that our attention is confined to the This is again diagonalized by the rhythm method or
low-temperature approximation, with only the small-k the Bogoliubov transformation, with the result
region of the lowest branch populated. We are thus
interested in the projections of mt, p, and r only on Qp.

Let 2.29a

Sg 1/2

C= —Sp=—
5))+5()—S)

~B(2)
d=

S))(o)+S~(o)—S~
(2.27)

and

o( o Soap —k + ) pap k kzc(7d ')/ g)—
ap'k, '

(yd —y'g)'. (2.29c)
16A

~B(3)

Sa(s)+ Ss(s)—Sg

To obtain the energy of the lowest branch up to at most
second-order terms in k, only very few terms in Eq.
(2.17) need be retained. Off-diagonal terms between
branches other than (top can be dropped. Terms in
which P&p occurs only once can contribute only if the
coupling is linear in k. Main-diagonal terms in PsptPsp

can be second order in k. Concentrating attention on the
lowest branch, the relevant terms in Eq. (2.17) reduce to

The hrst term on the right of Eq. (2.29c) is the isotropic
term in k' which reduces to Kaplan's result. The third
term shows a dependence of the energy on k,', which
exists because the 8-site atoms are layered in (001)
planes. The orthorhombic symmetry of the spin-wave
spectrum which comes from the arrangement of B(2)
and 8(3) ions in L1107 lines, and which is closely
related to the orthorhombic lattice distortion, is made
more manifest in the second term of Eq. (2.29c) by
rotation of coordinates around s by —s-/4:

X=Z P)oao'k'+ , pap k,k„c(Vd y'g) 7—(t)sptpso— k$ kg
k,=-, kg=

V2
(2.30)

ap
+~4 ss'ass+ —k*(Vd V'g)—Then the energy of the lowest branch of the spin-wave

spectrum becomes
X ((t)sotq4st+(t swiss) . (2 28)

osp ——S 'pap+kX),ao'(kso —k„')—X)(aook,', (2.31a)
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with

11 Sg
coO (J3SB(3)+J2SB(2)) &

32 Sa(2)+Sa(3)—SA

A. Sublattice Magnetizations

From Eq. (2.2a) the average s component of spin per
(2 31b) molecule unit, of the A sublattice is

5 Sg
+3 (J3SB(3) J2SB(2)) )

32 Sa(2)+Sa(3)—SA
(2.31c)

(S ')=-'(S '+S ') =S — Z((3* (3' )
2Q ie

(S ')=S ——-g(
(J3SB(3) J2SB(2))Sg

X)(t—
96 Sa(2)+Sa(3)—SA J3SB(3)+J2SB(2)

(2.31d)
and from (2.15a), (3.1a), and (3.1d),

Note that when J2SB(2)——J3SB(3), both $3 and S) (S .)
vanish and cubic symmetry is restored. Note also that

P()('33'P.o)—
21V Sa(2)+Sa(3&—SA 3 2$

and

0~&
i n(i/no(1, (2.32a) SB(2)+SB(3) (30 +l

X E k.'(43oVoo) (3.2)
Sa(2)+SB(3) SA

0& &)/&o(1, (2.32b) The average s component of spin per molecule unit,
of the B(2) ions is

so that the excitation energy of the Neel structure is
non-negative and the structure is stable.

By algebra identical to that culminating in Eq.
(2.31), all six branches of the spin-wave spectrum are

easily obtained to order k2.

III. STATISTICAL MECHANICS OF THE
ORDERED STRUCTURE

Having reduced the Hamiltonian to number operators
in the lowest modes, inversion of transformations (2.26)
and (2.29a) gives

( SA f (33'4'S))
(m.tm„) =

i i
1+

&SB(2)jSB(3) SA—
XQ oooo'), (3.1a)

( Sa(2& ) (2o'k.2$&&

(P"P )=i I
1+

(SB(2)+Sa (3)
—SAj A j

X(Ao'Ao), (3.1b)

(SB(2) ) 2(SB(2)1 +SB(2)3 )
1

= —S ()+
2E ke

and from (2.15b), (3.1b), and (3.1e),

SB(2)1
(Sa(2)') = —SB(2)+SB(2)+——

2+ SB(2)+SB(3) SA

1
XQ(4'33 "&&('ko)+

2$ Sa(2)+SB(3) SA A—
~B (2) Qp X)i

XQ k, 'Q -oft, ,), (3.4)

XZQ otto)+
k 2& Sa(2)+Sa(3)—SA

Cp X)i

and similarly

~B(3)
(SB(3) ) SB(3)+BB(3}+

2S Sa(2)+Sa(,)
—SA

SB(3) ( Qo kg X))'&(

(33'23) =
i 11+
&Sa(2)+Sa(3)—SA E A j

XQ 3o'$3o),

ap2k, 2X))

k5 k5 kp kp

xg k,ogootg»). (3.5)

The three quantities 5, are the small zero-point sub-
lattice reductions, which we shall not calculate. The
statistical average of the occupation number is of
course the Bose distribution function, and converting

(3 1d) the summation to an integral,

&co'

(yo4 A4) =Qg, 2 432)=0„ (3.1e) Z(tt oot&)t oo) = dk.
k 4.(23r) 3 eo~oo

(3.6)

vrhen only modes of the lowest branch are thermally The integral is to extend over a Brillouin zone corre-
Qxcltecl. . sponding to the rhombohedral unit cell. The integra-
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tion can be performed in a fashion described by Ke6er." we have finally
Expand the Bose factor as

I(,'0 ko

(exp(Pe») —17 '= Z exp( —PPe»)
@~1

(3.7) J)/(kT) "2

68.21(no+ n, )'"(no—n,)'"(np —ml)'"
(3.8)

As the three terms in eko which depend upon X)~kg',

X)~k„', and S~k,' are small compared to Sok', from
(2.32), expand the former as

1
exp ( pp—'L),aosk22) = Q —(—pp X),ao'k(2) ',

i=0 $!

00

exp(PPn, aook„2) = P —(pPx), apok„2) ",
mmr

1
exp(ppS)aook, o) = Q —(ppS(aook, 2) ".

~et

There is also the summation

P k,'Q oo'italo)

in Eqs. (3.2) to (3.5), but it will be evident that such a
summation, which can be performed from the integra-
tion culminating in (3.8) above by differentiation, will
contain an addition factor of k T, and is therefore beyond
the present approximation.

Neglecting the small zero-point reductions, and
substituting (3.8) into (3.2) to (3.5), the sublattice
magnetizations are simply

(SA')/SA ——1 aT2)2— (3.9)
These are all then substituted into (3.6), the inte-
gration can be restricted to the first octant of the
Brillouin zone by symmetry, and extended out to
infinity. The integral factors into three integrals, in
kp, k„and k,. Employing

a=k"2L136.4(SB(2)+SB(2)—SA) (X)o+S,)'(2
X (X)o—X)l)"'(So—53))'('$ '. (3.10)

Likewise

we have

(2I+ I ) I I i
8 S dS=

2)+1 II(22(+(

(SB(»')

SB(2)

and the reduced net magnetization is

M(T)/M(0) =1 aT2)2, —

(3.11)

(3 12)
ko ko

32 (orPSo) 2)2,

and as

P P-»2=t-(2') =2.612=
p=l

~3/2

2.1315

(222—1)!!b " 1(a+»-"= Z (-».
n=o

The summation on p is the zeta function

where the zero-degree moment per molecule unit is

~(0) PB(gB(2)SB(2)+gB(2)SB(2) gASA) ~ (3 13)

p~ is the Bohr magneton and g the g factor. Equation
(3.9) reduces to that of Heeger and Houston" and
Eq. (3.12) to that of Kaplanoo when the appropriate
simplifications to a single type of ion on the 8 sites
are made.

The contrast between these results and molecular
field theory may justify emphasis. In the molecular-
field approximation the A -sublattice magnetization
falls more slowly with increasing temperature than that
of the 8 sublattices because of the greater number of
nearest neighbors of an A ion; z~=2s~. This is not
true of the leading term in spin-wave theory. Further,
although the 8 ions are magnetically coupled to the A
ions by diferent exchange constants, J2 and J3, all the

and 8 sublattices have the same temperature
dependence apart from the proportionality to the
intrinsic spin S~, S~(2) or S~(3). Although we have
demonstrated the calculation only for AB interactions
and for the spinel structure these conclusions are

'8 Frederic Eever, in Hundbuch der Physzk, edited by S. Flugge,
(Springer-Verlag, Berlin, to be published), Vol. 18.

"A. J.Heeger and T.W. Houston, Phys. Rev. 135, A661 (1964).
2' H. Kaplan, Phys. Rev. 86, 121 (1952).
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unaltered even if there are AA and 88 exchange
interactions, and for other symmetries, so long as only
acoustic modes, which produce the T'" magnetization
law, are excited.

B. Ferrimagnetic-Resonance g Factor

According to the Wangsness" —Tsuya" formula, , the
effective g factor is

gs(2)l(Ss(2)*)l+gs(2)l( s(2) &I Al(S~ &l

gef f . (3.14)
I
(Ss(2)') I+ I

(Ss(2)'&
I

—
I
(S~'&

I

In the case of magnetite, in which S~=S~(3) and
Eqs. (3.9) and (3.11) require (S~'&=

~
(Si)(2)') ~,

formula (3.14) predicts a temperature-independent g,(r.
This badly fails to reproduce the observed strong
temperature dependence, as will be discussed later in a
section on such comparisons.

C. Specific Heat

11 J8Sg
(&o)-=—

16 28—S~

(~1)-=(~1)..=o

(4.1)

(4.2)

Assuming the same plausible ordering of levels suggested
by Kaplan, '~ the energies of the two lowest levels are

IV. ABOVE THE TRANSITION

At temperatures above 119'K, magnetite disorders
and cubic symmetry is restored. As the Verwey temper-
a,ture is only about 13% of the Neel temperature, we
might hope that the leading T"' term of spin-wave
theory should still suffice. We assume that suKciently
above the transition the 8-site electron hopping rate is
rapid enough that we can consider there to be a single

type of 8-site ion with spin 8, exchange constant J
and g factor g. These need not necessarily be related to
the individual low-temperature ionic constants by the
zeroth approximation of Eqs. (1.3).

From Eq. (2.31) we have at once

The internal energy per molecule unit is

and

eko ( So)avGO k (4.3a)

Cp

Q eeoc'sorest'/, o) = dk . (3.15)
2X o 8(22r)' ee'"o—1

cot =6J(28—S~)+(&o),(2O'/o'.

The coefficient a of Eq. (3.10) reduces to

(4.3b)

The procedure described following Eq. (3.6) is again
employed, and the additional factor of ego in Eq. (3.15)
is introduced by differentiation. This creates a factor of
(-,') (Pp) ' leading to the T' ' dependence of the magnetic
energy, and converts the f' function to f'(2)=1.341.
Differentiation with respect to the temperature, to
find the specific heat, introduces a factor of —',, and thus
the magnetic specific heat per mole is

0.01378 (k T)"'
C) = erg/mole 'K.

(g) +5) )1/2(~ ~ )1/2(~ ~ )1/2

~(S ) ~/Si=1 aTO/2— (4.5)

in analogy with (3.9) to (3.12). The moment per
molecule unit "normalizing" Eq. (3.13) is

M("0")= /is(2g8 g~S~—) . —(4.6)

k'/2 Po/2 (28 S )1/2

(4.4)
136.4(28—Sg)(X)o). '" 77.8(J8Sg)'"

and the sublattice magnetizations and reduced moment
al e

E. is the gas constant per mole. The specific heat can
be related to the magnetizations through the coeKcient
a defined in (3.10):

2(7 l(8'&
I

—g~(S~'&
geff

2 I(8 ) I

—(S,*)
(4.7)

(3.17)
From Eq. (3.16) the molar specific hea, t is

on of Cv ——0.01378(kT/(So) )"'

Cv=1.87 (Sa(2)+S/2(2) Sz)&(22'/—

The specific heat measures the same combinati
exchange constants as does the sublattice Inagnetiza-
tions. When there is only a single intersublattice
exchange constant, J2= Js, our formula (3.16) reduces
to the expression given by Kouvel, 4 who employs an
exchange constant 2 that defined in Eq. (2.1). Compar-
ison with Kouvel's experimental specific heat is deferred
until Sec. V.

(4.8)

V. COMPAMSON WITH EXPERIMENT

A. Neutron Di8raction

We have mentioned that Hamilton' by means of
elastic neutron diffraction confirmed the Verwey
structure. Watanabe and Brockhouse' have studied
the spin-wave spectrum at room temperature by
inelastic neutron scattering. At small momentum

"R.K. Wsngsness, Phys. Rev. 86, 146 (1952).
"N. Tsuya, Progr. Theoret. Phys. (Kyoto) 7, 263 (1952).

From Eq. (3.14) the ferrimagnetic-resonance g factor3.16

becomes
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transfer the absorption corresponds closely to the
spectrum of Eqs. (4.1) to (4.3), with 8= 2.25 and

Jgh=56'K. (5.1)

This evaluation, which is not very sensitive to the
choice of 8 within the plausible range S&&sl (8(SQ(3),
is properly larger than the molecular-field Neel-tempera-
ture evaluation, of Eq. (1.4a), as will be shown in

Eq. (5.10). Note that from Eq. (2.1) our exchange
constant is defined to be twice that of Watanabe and
Brockhouse. Milford and Glasser" showed that the
important inclusion of terms in the spin-wave energies
of degree higher than k' bring the theoretical spectrum
into close agreement with the observations of Watanabe
and Brockhouse, and a nonessential inclusion of BB
exchange interaction with J~~= —0.1 J~~ brings
complete consonance.

Inelastic neutron scattering has not been studied on
the ordered structure; such observation, particularly of
an excited branch, would allow evaluation of J2 and
J3 separately. The form of "averaging" as electrons
begin to hop between 8 sites near the Verwey transition
is a very interesting question, bearing upon the NMR
linewidth. Perhaps the most unambiguous observation
relating to this question would be a neutron-diffraction
study of an excited branch of the spin-wave spectrum
through the transition region. The zeroth approxima-
tion, applied to (2.29c) and (4.3a), suggests that, up
to k', the curvature of the lowest branch will be un-

affected by the Verwey transition.

~ P. W. Anderson, University of Illinois Report AFOSR-TN
60-698, 1960, p. 39 (unpublishedl.

B. Mossbauer Syectrum

Following the suggestion" that Mossbauer absorption
should provide interesting information on the electronic
order-disorder transformation in magnetite, this spec-
trum was observed both above" " and below" " the
Verwey temperature. Above the transition, if the 8-site
electronic exchange is faster than the Larmor fre-
quencies of an iron nucleus in the hyperfine fields, there
should be an effective hyperfine field for 8-site ions,
different from the A-site hyperfine field, and hence
only two sets of lines should appear, as is in fact
observed.

Below the Verwey temperature three sets of lines
were expected, one from the A sites and one set each
from Fe'+ and from Fe'+ on 8 sites. This is not observed,
but rather, one set of lines from Fe+ ions and, at
approximately twice the intensity, another set of
lines from Fe'+ ions on both sites.""Through Eqs.
(3.9) and (3.11) we can understand this result if we
assume that, apart from the sublattice magnetization,
the hyperfine field at the nucleus of Fe'+ ions is the
same on both octahedral and tetrahedral sites, w'ithin

the Mossbauer resolution. For the hyperfine field is pro-

portional to the sublattice (S,') and since S~=Ss&@,
the two sublattice magnetizations should be equal. The
Fe'+ ion has both a different spin quantum number and
a different hyperfine field.

and
hv~ ——A g(S~') =A F5~$1 aT'~'], —

hvz=As(8m*) =A~8T1 aT'"]. —

(5.2a)

(5.2b)

Below the transition the possibilities are

hvar = A~(Sg') = A ge[1—aT'I'] (5.3a)

h»is) =A&(sl(S&is)') =A &is)S&is)r1 &T'"]i (5 3b)

hvnis) =A~(sl(Sn(s)*)=A~islS~(sl(1 —aT'"] (5 3c)

However, S~=S~~3), and from the Mossbauer evidence
we wish to believe that A~—A~(3~. So we should
expect only two lines sufFiciently below the transition,
or perhaps two Fe'+ lines close together, and Fe'+ reso-
nance well separated.

The reported shift in frequency of the "A" line can
be estimated from a comparison of the coefficients u

C. Nuclear Magnetic Resonance and Magnetization

Explanation of the Mossbauer spectrum is confronted
with the NMR evidence. Above the transition we expect
the hyperfine coupling constant and spin quantum
number of the "averaged" B sites to differ from those
for the A sites, so that two XMR absorption frequencies
should be observed. However, if only small-k acoustic
modes are excited, we expect from Eq. (4.5) that,
normalized by their extrapolated value at O'K, both
sublattice magnetizations and the net moment should
have the same slope on a T'" plot. This is not observed.
Boyd reports that both the A and 8 site NMR
frequencies, and the magnetization vary as T'", but
the slopes of his normalized curves differ and suggest
exchange constants J very different from that of
Watanabe and Brockhouse. ~ The moment data is in
agreement with that of Eschenfelder. '0 One would like
to escape by invoking higher energy modes in the spin-
wave spectrum at these elevated temperatures, but
excitation of such modes would cause deviations from
the T'~' law reported.

Below the Verwey transition there is little evidence,
and that convicting. Boyd sees the two resonances
continuing unaffected by the transition down to 90 K,
where Mossbauer"" evidence and neutron diffraction'
indicates that the Verwey ordering is complete. Ogawa
et gl. See the 8-site resonance so broadened as to be
unobservable below the Verwey temperature, and the
A sublattice resonance frequency to increase appreci-
ably and discontinuously upon lowering the temperature
into the ordered domain.

From the zeroth approximation of Eqs. (1.3) we
can arrive at some qualitative estimate of what might
be expected. Above the transition we expect two NMR
resonances:
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and (T in Eqs. (5.2a) and (5.3a), (5.3b). From Eq. (4.4)
we have

a=1.36X10 '(k/J)3('.

From Eqs. (3.10), (2.31), and (1.3) we can evaluate a
as a function of J,/J3, and the zeroth approximation
then implies p~ continuous through the transition from
A site resonance to Fe'+ resonance. However, the 8-site
resonance should shift in frequency and decrease in
intensity in the transition to Fe'+ resonance.

Rushbrooke and %ood2' summarize the conclusions of
accurate high-temperature expansions for cubic lattices
by the empirical formula

kTc/JRw= (5(s—1)/192)L11S(S+1)—1$. (5.7)

Neglecting unity in comparison with 11S(S+1), we
find

Jaw=-(64s/55 (s—1))JMF, (5.8)

and considering s= (zAsB)'('=8.48, we estimate the
correct J by

J—1.3JMF (5.9)

geff gB (2)+ (gB (3) gA) (SA/SB (2)) ' (5.5)

Even apart from the fact that g~(3) =g~ = 2, we expect a
temperature-independent g factor, where the evidence'
is that the g factor rises from 2.2 at 4.2'K to 2.28 at
33'K. Equation (4.7) leads to the same difhculty well

above the transition. Boyd' has demonstrated that the
empirical g,~q, NMR frequencies and magnetization
are mutually badly inconsistent, but that if one ignores
the ferrimagnetic resonance data and considers the
electronic g factors to be temperature-independent, one
obtains reasonable agreement between NMR data and
the temperature-dependent magnetization. This obser-
vation, which is consistent with Eq. (5.5), suggests
that some other unaccounted-for eRect obscures the
experimental g,ff.

E. Syeci6c Heat

Here again we can diagnose only an "unaccounted-for
eRect." Kouvel4 found that his very large low-

temperature specific heat corresponded to an exchange
constant only about 25%%uo of that given in Eq. (1.4a),
from molecular field theory and the Neel temperature.
Pollack and Atkins" found the same result in many
other ferrites: The specific heat can be described
accurately by a spin-wave T'~' term and a lattice T'
term, but while the lattice contribution is the correct
size, the spin-wave contribution is 3 to 5 times larger
than other estimates of the exchange constant would

suggest.
This cannot be attributed to a shortcoming of

molecular field theory, which, although inaccurate, is
not that bad. With the exchange constant defined by
Eq. (2.1), the molecular-field-theory Curie temperature
1s

IfTc/JMF (s/3)S(S+1) . ——(5.6)

D. Ferrimagnetic-Resonance g Factor

Ferrimagnetic resonance has been observed both
below' and above' the Verwey temperature, in neither
case confirming our expectations. At su%ciently low

temperatures, where we would expect formula (3.14)
to hold, we have, from (3.9) and (3.11)

It will be noticed that, from the neutron-diRraction
estimate of Eq. (5.1) and the molecular field result of
Eq. (1.4a),

Jwa= &-5JMF (5.10)

which is of the correct size, considering that Eq. (5.7)
is derived for ferromagnets.

Nor can the small intrasublattice exchange interac-
tion be expected to account for a factor of 5 error in
J~~. Kenan, Glasser, and Milford" hoped to account
for the enormous discrepancy by a treatment of the
spin-wave energies which is accurate to higher orders
in spin-wave momentum, as it was observed that
derivations from k2 occur even at very small momenta. "
The hope was not fulfilled.

In this respect the present calculation is equally a
failure. One might think that invocation of two exchange
constants, J2 and J3, should allow resolution of the
difFiculty, with J2 small to cause a large specific heat
in the B(2) sublattice, and J3 large to cause a high Neel
temperature, and so it would in molecular field theory.
But in spin-wave theory, at low temperatures only the
acoustic modes are excited, all sublattices are locked
together, and only a complicated sum of exchange
constants matters.

Note added f'e proof Two co.incidental experimental
investigations of magnetite have just been reported.
Both confirm predictions of the present paper. T. Mizo-
guchi and M. lnoue $J. Phys. Soc. Japan 21, 1310
(1966)) repeating NMR studies, 6nd the A-site reso-
nance continuous through the transition, the Fe'+
8-site resonance only slightly shifted, and the Fe'+
separated. H. A. Alperin, O. Steinsvoll, R. Nathans,
and G. Shirane (to be published), using neutron diffrac-
tion find the lowest branch of the spin wave spectrum
to be unaffected by electron ordering.
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