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To1nasch Effect as a Probe of the Disyersion Relation
of Electrons in "Gayless" Suyerconductors*
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The recent theory of McMillan and Anderson is used to discuss the eBect of nonmagnetic impurities and
depairing mechanisms on the period and damping of the Tomasch oscillations. These oscillations in the
density of states seem to provide a unique way of directly measuring the dispersion relation of electronic
excitations in superconductors Lce versus Re(co' —P)'/2 cc pseudomomentum h*, where co and A are the usual
renormalized diagonal and off-diagonal self-energiesj. We shall discuss the theoretical dispersion curves
for films with a small concentration of magnetic impurities and for dirty films (l«)0) in the presence of a
parallel magnetic field. The two situations lead to quite diferent dispersion curves at small values of k*, for
the same value of the depairing parameter. Using the Tomasch eGect to plot out the dispersion curves be-
comes more ditiicult as co decreases, since the damping of the oscillations LccIm(cu' —a')'/'g increases.
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ERY recently, Tomasch observed' small peri-
odic oscillations in the quasiparticle tunneling

current between two superconductors, one of which
was relatively thick (d&10' A). McMillan and Ander-
son' (MA) have suggested that this oscillatory de-

pendence on the applied voltage results from the
interference of particle-like (or hole-like) excitations
being scattered oB the back surface of the thick film

with hole-like (or particle-like) excitations at the front
tunneling surface. The e6ect depends critically on the
surface scattering being oG-diagonal, as from a localized

change in the order parameter. McMillan and Anderson
have noted that a careful measurement of the period
of the Tomasch oscillations provides a seemingly unique

way of determining the renormalization parameter
Z(co), which modifies the quasiparticle spectrum in a
nontrivial way in strong-coupling metals (like Pb).

In the present note, we use MA's theory to consider
the effect of nonmagnetic impurities and pair-breaking
perturbations (such as paramagnetic impurities or a
parallel magnetic field) on the period and damping of
the Tomasch oscillations. As will become more apparent
later on, the period of these oscillations enables one to
plot out the dispersion relation of electronic excitations
in superconductors, ' gapless or otherwise. Apart from
a remark at the end, we shall limit ourselves to isotropic,
weak-coupling superconductors for simplicity.

The impurity averaged Green's function (in 2&&2

Nambu space) is

G„'(R)= — exp (iQ(co)R/2/p)
2+2
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where Q(co)=—(co2—As)'/2, R is the relative coordinate,
and fs= 1. Finally, co and 6 are the renormalized energy
and order parameter, respectively, being given by
coupled equations. For magnetic impurities, we have

i u
co =co+— 1+—i,

2r (u' —1)'/'
(2)

where

i 1 2us+1)
A'= 6+— 1+i (Ar)-

2r (u2 1)i/2 2u' —1l

Actually, in the presence of a vector potential A(x),
the Green's function is given by

RA 8 a
G„(R)= 1—ii )

—+ . . G„'(R) .
E2mc~ R BR Bco

The anisotropic correction is of order (rA)'/2, but the
effect on the Tom.asch oscillations can be shown to be
order rA and hence negligible.

We might note that in both cases, one has a formally
identical equation for I, namely

co/d, = u(1 ii'(u2 1—) '/')— —
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Here u=—co/5, r is the normal-state relaxation time due
to nonmagnetic impurities, and r, is that from spin-
exchange scattering (in Born approximation). For a
parallel magnetic 6eld H, we find' to lowest order in
rh that

u 3 I
c =I+—

i 1+i(hr)
2r (222 1)1/2( 2Q —1



TOM ASCH EFFECT

Ttuizz I.This is a summary of the asymptotic behavior of the k/I*= Re(N' —ZI)'/I/vp and k/I' = Im(pvp —ZI)'/I/vp for the two types of
"gapless" superconductors: A stands for paramagnetic impurities and B for magnetic Gelds or currents. In the latter case, we have
f'=r(vIE)2/6A, where Eis th'e center-of-mass momentum of the Cooper pairs. We have introduced the abbreviations g—c'/A and
gp—=ci,'0/A = (1—f I/8)8/I. The high-frequency results are correct to order (88/A) ', and to lowest nonvanishing order in i'

High
frequency

1) co&co()

Re (pvp —ZI) '/I/A

*(1—Ig '—(0 —Ifp)g ')
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For magnetic fields the depairing parameter i is given
by (4), while for magnetic impurities, we have
f= (r, /), ) '. As is well known, typical equilibrium
properties depend only on I, and not on co and 5
separately. Transport properties, on the other hand,
involve a generalized frequency-dependent mean free
path' defined by 1(o1)= vp/2 ImQ(o/).

Following MA, we obtain an additional contribution
to the usual density of states, which to lowest order in
(kpd) ' is given by (we neglect vertex corrections)

//m 'l ( I
iu I

E28r2~ (282—1

exp(iAy)
X dy (6)

Here A —=2(d—g)Q(o1)/vt and 36 is the magnitude of the
order parameter change at the back wall. That the
tunneling measurements only probe the x=0 surface
is, of course, implicit in treating the back surface (g= d)
perturbation to first order and neglecting any per-
turbation from the x=0 surface. In the oscillatory
region (~A ~&&1), we can use well-known asymptotic
expansions to rewrite (6) as

/m) e '/

3X(*=O,m) =~
(a,2+ay)i/I

I
Re~

~
cos(aa —tan —'(ar/aa))

&NI —1&

I—Im~
~
sin(an —tan-'(ar/an)), (7)

I NI- 1/

where A =a/8+iar= —(k/I*+ikr*—)2d =k*X2d Aglance.
at G„p(R) in Eq. (1) will show that it is natural to
regard kg* as a pseudomomentum, measured with

6 L. P. KadanoB and I.I. Falko, Phys. Rev. 136, A1170 (1964};
V. Ambegaokar and A. GriKn, ibid 137, A1151 (.1965).

respect to the Fermi momentum kg. The peaks in the
Tomasch oscillations occur approximately at or„corre-
sponding to k/I*=n(pr/d) Clear. ly kr~ is related to the
damping, and thus this interpretation of kg* breaks
down if k~~&kg*. The generalized mean free path
l(o1)—= 1/2kre also occurs in the thermal conductivity
and ultrasonic attenuation coeKcients' of bulk
materials.

Vsing k*= Z(282 —1)'/I/vp, we may easily find explicit
expressions for k~ for the two types of pair-breaking
mechanisms. Ke note that the two cases are quite
dQ'erenow for the same values of &u and i. In Table I,
we present some asymptotic expansions of kg* and kI*.
Figures 1 and 2 give some examples of dispersion curves,
these being essentially or versus k&*.' The straight lines
correspond to the dispersion curve for a normal metal,
o/= (k' —k82)/2m~v8k. The curves are really only
meaningful (and measurable using the Tomasch effect)
when k&*&&k&*.The qualitative behavior of the damping
(kr* versus o1) may be seen from the examples in Fig. 3.

As a special case useful for orientation, we note that
in the presence of nonmagnetic scattering alone,
ka*= (pps —A')'"/vp, kr*=1/2l (l=v/r), and 28=M/A
As a result, we may reduce (7) to

m ) ( o16
MV(@=0, o/) = ~bd,

~

22r / (o/I —QI

cos)2dkipa —tan —'(kra/kip*) )
X e "". (8)-

E( 2dkn) +I(dll)'1'"

As MA pointed out, the oscillations are strongly
damped when /&d.

From a practical point of view, observation of the
Tomasch oscillations in films containing paramagnetic

I P. G. de Gennes and G. Sarma PJ. Appl. Phys. 34, 1380 (1963)g
have used perturbation theory to construct the Bogoliubov-type
quasiparticles (of energy I/„) in a superconductor with magnetic
impurities in the extreme gapless region (|')&1). However, E
versus e„(where e~ is the energy of the single-particle state of the
alloy in the normal phase) has quite a diBerent meaning from the
dispersion relation we discuss here.
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long as we are in the dirty limit l«$o. This may be seen
from some recent work' on the nonlocal limit.

In the case of strong-coupling superconductors with
nonmagnetic impurities, one may easily check' that

kg*= ReLN'Z'(M) —y'(M) J"'/5 p

&r~= (1/2I)+Im(~'Z (~)—y'(~))' /vz
and

0
0 1.0

—'Re d~'-P,d

2.0 3.0

Here Z(&o) and q (&u) are the usual renormalization and

gap parameters of the pure material. This assumes that
the phonon spectrum changes are negligible. The im-

purities in a strong-coupling superconductor simply
change the amplitude of the Tomasch oscillations by
a frequency-independent factor of e "" if kz*))kz~
Lsee Eq. (7)].

FIG. 1. The "dispersion relation" for electrons in a supercon-
ducting film with paramagnetic impurities. Here the depairing
parameter is g = (v,A) ' (where ~, is the exchange scattering time)
and Re(N' —~')'I'/u~=—kg* is the pseudomomentum. 1.0

f= 2.0

I

PARAMAGNETIC IMPURITIES

impurities is probably dificult when f is appreciable.
The addition of these impurities automatically entails
the shortening of the total electronic free path, and
hence increased damping (see Fig. 3). On the other
hand, the effect of strong depairing due to a magnetic
field seems more accessible to study using the Tomasch
effect. At high enough frequencies (~&d,) we have
kr* 1/2/, no matter what f is. Actually, the original
work' of one of the authors (KM) was in the local limit
l(&d. However, calculation shows that the results of
this note will not be altered very much when /&d, as
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Fxo. 3. The attenuation coefBcient of electronic states as a
function of their energy co, for both kinds of "gapless"
superconductor.
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For simplicity, we have taken
~
h(r) l

to be position-
independent. ' This is only strictly true when d« (tol)'I',
and is certainly not correct for the thicker films of
interest (d 10'A). This fact will further complicate
the study of the dispersion relation at low energies
using the Tomasch oscillations.

While we do not want to critically discuss MA' s
calculation, two comments might be made. Instead
of a delta function, we could have used a step-function
perturbation, with 8h= —6 for x)d. The end result
is similar to that given by (7), with Re| u/(u' —1)j
and Imtu/(u' —1)$ replaced by —ImLu/(u' —1)) and

Fro. 2. The "dispersion relation" for electrons in a dirty super-
conducting film to which is applied a parallel magnetic field H.
Here g =~ (ev~/c)md'II'/186, where d is the thickness of the film.

R. S. Thompson and A. Barato6, Phys. Rev. Letters 15, 971
(1965).

II T. Tsuneto, Progr. Theoret. Phys. (Kyoto) 28, 857 (1962).See
also Appendix.
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ReI u/(I' —1)g, respectively. In the second place, one
might argue about the correctness of treating the change
in the order parameter at the back wall as a small
perturbation. In this connection, we note that even if
we work to higher order, M, always enters in the com-
bination 86 exp( —2dkr*). Thus, it would appear that
a lowest order scattering-type calculation is valid if
2dkl*&1. The case 2dkl~&&1 seems more complicated.

We have discussed only one part of the excitation
spectrum of a superconductor, corresponding to k*(co)0)
=+ (u' 5—')'~'/ni Fo. r energies below ei (a&(0), the
corresponding branch is given by k*(~(0)=k*(—~).
Finally there are branches corresponding to k*(cu)
= —(~'—5')'~'/op.

I
It is useful to recall the BCS super-

conductor as a familiar example. g We note that the
existence of two momenta &ReQ(co)/w~ for a given
energy or is the basis of the description' of a super-
conducting excitation as a coherent mixture of particles
and holes. The significance of the anomalous "switch-
back" in the case of magnetic 6elds (see Fig. 2) is that
the solutions &ReQ(cv)/vp can no longer be simply
distinguished as being larger or smaller than kp. More-
over, we see in this case that if we study the spectral
density as a function of eo for a fixed snzall value of
momentum k&*, one may have three peaks for ~&0 and
three for co&0. As kg*~kg, two of the peaks merge
while the third approaches the energy gap (op (for &o(0,
at —&oo). Of course, the relative weights of these various
resonances (or branches of the excitation spectrum)
are quite diferent, depending especially on whether
kg*~&kg and co &&0.

The main purpose of this paper has been to point out
what seems to be the natural excitation spectrum in a
general class of superconductors (those in which the
self-energies are momentum-independent). Even though
the Tomasch oscillations may only give us the relatively
high-frequency part of the co versus kg* curves, the
deviation from the BCS result is still of interest. Most
measurable properties of superconductors with depair-
ing perturbations are quite insensitive to the detailed
nature of the excitation spectruili, insofar as the re-
markable differences shown in Figs. 1 and 2 have no
effect."The Tomasch effect is a much more delicate
probe of the electronic states, and thus this similarity
between depairing mechanisms breaks down. Moreover,
the sensitive dependence of the oscillations on bulk
impurity scattering may provide a nice way of studying
the strength of the electron-impurity interaction.

APPENDIX

A very successful theory of isotropic strong-coupling
superconductors has been developed in the last few
years. "In this Appendix we wish to brieQy discuss the

"K.Maki and P. I'ulde, Phys. Rev. 140, A1586 (1965)."See, for example, J.R. SchrieBer, Theory of Superconductivity
(W. A. Benjamin, Jnc., New York, 1964), Chap. T.

straightforward extension needed to include the e6'ect
of paramagnetic impurities. The Nambu Green's func-
tion is given by

where ari im——(2l+1)/P, l=0, &1, ~2, The matrix
self-energy g(k,~i) is approximated by the three lowest
order self-energy diagrams arising from the electron-
electron repulsive interaction, the electron-phonon inter-
action, and the electron-magnetic impurity coupling,
respectively.

Introducing the renormalized Green's function

one Ands

~(~i)1+~a&3+~(~i) ri
G(k,coi) =

cv'((oi) —eg' —6'((oi)
(A2)

(A3')

where the kernel is related to the electron-electron and
electron-phonon interactions:

E(k,(ai) —= V„(k,(ui) 1Q I
V,„(k,li) I'Dg(k, (oi), (A5)

Di, (k,a&) being the usual phonon Green's function for
polarization X. In general, the momentum dependence
of this kernel is very weak. " To this approximation,
we have

Zi(kpp&i) = ~E(0)
P E(cvi —~i.)jp—

N(cubi. )

(u'(s), ,)—1)'I' 1
(A6)

with X(0) the normal-state density of states and
u(~i)—=cu(coi)/h(~i). Since the self-energies are inde-
pendent of k, it is once again appropriate to identify
Re(~'(~) —Z'(o&))'"/vi as the momentum of an excita-
tion with energy co Lcorresponding to a pole of (A2)j.

The coupled nonlinear integral equations (A3) and
(A3') must be solved numerically, even without im-

where we have assumed that the impurity potentials
are delta functions (s-wave scattering approximation).
The Fourier transform of (A2) for eq vp(k —k~) is given
by Eq. (1).The self-energies Z&,2(coi) are defined by

d '
iE(k—k', coi—a:i')

(2~)'
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purity scattering. To see how the latter affects the ratio
u(co&), we multiply (A3') by N(co&) and subtract the
resulting equation from (A3). One is left with an implicit
equation for N(~&), namely

CO i—Z i (Ni)

&2(~i)

This may be compared. with Eq. (5) for weak-coupling
superconductors (here the kernel E(k,ari) =—g, where
—g is the effective attractive interaction between elec-
trons). An examination of (A6) and (A7) indicates that
if the impurity scattering is nonmagnetic, then u(co&)

is unaffected. This is an explicit proof of Anderson's
theorem in strong coupling superconductors.

When 1/r, /0, one is faced with the task of solving
(A6) in conjunction with (A7). A few remarks about the
case of absolute zero might be useful. A finite amount

of depairing will quickly smear out the phonon-induced
structure" in the high-frequency part of the usual bulk
density of states ( ~ dI/d V),

p(co) =—Re
(+ (~i) &) raim&o —io+

(AS)

The effect should be similar to thermal smearing at
finite temperatures in the absence of depairing. The
first resonance in d'I/d V' should occur at co,~&oii+cu~,x,
where co& is the energy of the important phonons and
cv,„ is the energy at which p(&u) is largest. The sharp
threshold at the energy gap ~o Lwhere p(co) ~ (&o rao)'—12J
should give rise to a weaker structure in d'I/dV and
higher derivatives. This might provide a way of meas-
uring oro. More detailed calculations would be useful.

"D.J. Scalapino and P. %. Anderson, Phys. Rev. 133, A921
(&964).


