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M. I AMPE AND P. M. PLATzMAN

Bel/ Telephone Laboratorie, M'urray Bill, Sew Jersey
(Received 4 April 1966)

We have calculated (using a simple theory) the paramagnetic-resonance absorption by conduction
electrons in a thin metallic sample, thus extending the earlier work of Dyson. Our results are for a metal
sample of arbitrary thickness, with a static magnetic Geld $/0 at arbitrary angle with respect to the sample
surface, and under either classical or anomalous skin-e6ect conditions. The electromagnetic field is assumed
to be incident normally on both sides of the sample, but the relative phase and/or amplitude on the two
sides can be arbitrary (asymmetric excitations). Under anomalous skin-eftect conditions, as the field F0 is
rotated from parallel to normal, the shape of the spin-resonance line is modified. For asymmetric boundary
conditions on the electromagnetic Geld, the line decreases in intensity (to zero under certain conditions).
For a symmetric excitation, or when the electromagnetic Geld is incident on one side only, the line shows a
slight decrease in intensity and a slight narrowing as the field is rotated. Numerical results are presented.

I. mTRODUCTrom

~ ~

HEN electromagnetic (EM) radiation is incident
on a metallic sample the quantity of experimental

interest is generally the power absorbed by the metal
as a function of some external parameter; for example,
an applied static magnetic field. For Rat plate-like
samples, and for frequencies much below the plasma
frequency, it is easy to show that when the EM wave is
incident on one side of the sample the power absorbed
by the specimen (for samples thick compared to a skin
depth) is proportional to the real part of the surface
impedance, Z(0).' The quantity

4~I [E(0)yH(0)j
Z(0) =-

c iH(0) i'

~here E(0) and H(0) are the values of the electromag-
netic E and K fields at the front surface of the specimen
and R is the unit vector normal to the face of the sample.
Dyson' has calculated the paramagnetic contribution
to the surface impedance Z in the neighborhood of con-
duction-electron spin resonance (CESR), i.e., near

tos=—2tt )Seo)/l't=ro

Here p, is the eRective electron magnetic moment, $CO

is the external static magnetic Geld, and co is the applied
microwave frequency.

In making his calculation, Dyson made three simplify-
ing assumptions: (1) The conduction electrons were
taken to be an isotropic gas of noninteracting electrons
colliding with impurities and moving under the in-
fluence of the applied electric and magnetic fields. (2)
The Geld $CO was assumed normal to the surface of the
sample. (3) Normal skin-effect conditions prevail. s

*Permanent address: Physics Department, University of
California, Berkeley, California.' M. Born and E. Wolf, Priwejples of Optics (Pergamon Press,
Inc., New York, 1959), pp. 617-619.' F. J. Dyson, Phys. Rev. 98, 349 (1953).

3 In general, normal-skin-eBect conditions imply that the dis-
tance over which the EM field varies is large compared to dis-
tances over which the electrons (due to their orbital motion)
may carry current information, AVe will be concerned with experi-
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Azbel' et a/. 4 have made a more general calculation
dropping the above restrictions. However, they as-
sumed that the exciting electromagnetic field was only
incident on one side of the sample. Their calculation is
suKciently general and sufficiently complicated that
much of the physics is not easily extracted. Line shapes
or widths for CESR are not shown or discussed. In the
present paper we present a simple calculation of CESR
dropping restrictions 2 and 3, keeping 1, but allowing
for the fact that the exciting fields may be incident from
both sides of the slab samples with arbitrary symmetry.

Under so-called "anomalous conditions, '" in the
presence of a static magnetic field, it is not in general
possible to write down a closed form expression for
the surface impedance of a metal. This problem has in
fact been solved only approximately. For the magnetic
field parallel to the surface of the sample (the so-called
Azbel'-Kaner geometry), Azbel' and Kaner' have given
approximate expressions for the surface impedance in
the neighborhood of cyclotron resonance. Despite our
inability to solve the skin-eRect problem, it is still
possible to Gnd the eRect of the electronic spin on the
surface impedance of the metal in terms of the surface
impedance Zo, in the absence of any spin contribution.
The quantity Zo plays the role of an unknown complex
number, which enters the theory in a simple way, i.e.,
as an over-all multiplicative factor. Our solution is
aR'ected because of the fact that the magnetization in-

duced by the fields internal to the metal is small. To
lowest order in the electronic susceptibility it can be
calculated using the EM Gelds prescribed by the solu-
tion to the skin-eRect problem. In the skin-e6'ect

ments in the microwave regime with a static magnetic field
present. Since the cyclotron frequency co, =e~Ko~/mc the applied
frequency u and the spin-resonance frequency are all approxi-
mately equal. It is easily shown that the condition for the skin
eGect to be normal reduces to the condition co,~&(1.

4 M. Ya Azbel', V. I. Gerasimenko, and I. M. Lifschitz, Zh.
Eksperim. i Teor. Fiz. 35, 691 (1958) LEnglish transl. : Soviet
Phys. —JETP 8, 480 (1959)g.

'A. B. Pippard, in Jodo-Temperatgre Physics, edited by C.
DeWitt (Gordon and Breach, Science Publishers, New York, 1962),
pp. 58 and 129.

M. Ya Azbel' and E.A. K.aner, Zh. Ek.sperim. i Teor. Fiz. 30,
811 (1956) PEngHsh transl. ; Soviet Phys. —JETP 3, 7'j2 (1956)$.
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problem the current is not small and is produced by
Gelds which must be computed self-consistently.

A further simplification comes about because the
spin relaxation time is extremely long (compared to
transport mean free times). Since the spin "lives" for
a long time, it is intuitively clear that the induced mag-
netization will vary on a scale of distance much greater
than the scale of distance over which the EM Gelds

vary. The detailed variation of the Gelds over the
cyclotron orbits of the electrons is unimportant. The
magnetic properties of the medium in the long spin-
relaxation-time limit depends only on certain integrals
of the field which can be simply related to the impedance
Zo. From the same considerations it is clear that the
electron motion may still be thought of as a diffusion.

We will show that to a good approximation anomalous
conditions (&o,r) 1) introduce two essential modifica-
tions of the usual CESR results. The unknow'n surface
impedance Zo acts only as a complex multiplicative
factor which mixes in amounts of the real and imaginary
parts of the function characterizing the spin contribu-
tion to the magnetization. In addition, the diftusion
constant describing the electron motion is anisotropic
with respect to the direction of the Geld, $CO. The
eftective thickness of the sample will depend on the
orientation of Ko with respect to the surface of the
sample.

This calculation was motivated by a desire to under-
stand the CKSR line shape observed by Walsh~ in
experiments on extremely pure thin samples of potas-
sium at low temperatures (a),r&)1). In these experi-
ments the sample enclosed in an insulating container is
placed against the wall of a cavity. It is, in effect, ex-
cited by a microwave Geld which may be either sym-
metric or asymmetric. As the static magnetic field $00
was tilted away from the plane of the sample, %'alsh
observed an over-all decrease in line intensity. In
addition, for small tilt angles, he found a shoulder de-
veloping on the line. For thin samples, we will show that
as the Geld SCO is rotated from parallel to normal, the
shape of the CESR is modified. For completely anti-
symmetric boundary conditions on the KM Geld, the
line rapidly decreases and broadens very slightly. For
symmetric and/or one-sided excitations the line shows
a slight decrease in intensity and a slight narrowing.
These features agree qualitatively with the experimental
results. However, we find, within the framework of this
model, no evidence for the shoulder found in the experi-
mental data.

Recently there have been a series of transmission
experiments which study the CESR. These experi-
ments, by Schultz and co-workers, have only been
analyzed under normal-skin-eGect conditions. Our
results show that their analysis, with a very slight

TW. M. Walsh, Jr., L. W. Rupp, Jr., and P. H. Schmidt,
Phys. Rev. 142, 414 (1966).' S. Schultz and C. Latham, Phys. Rev. Letters 15, 148 (1965).

H=B—4 M,
4n.

vXH=—~XB—4~v XM=—j,
C

~XE=ico/cB.

(3a)

(3b)

(3c)

At metallic densities and microwave frequencies the
neglect of the displacement current is well justified.
For weak rf fields there will be a linear nonlocal relation-
ship between M and H of the form

M;(r) = Xg(r, r')H;(r')d'r'. (4)

The magnitude of ~M/H
~

—x is small. All expressions
will only be accurate to lowest order in this quantity.
The function x;;(r,r) is the nonlocal susceptibility
which will in general depend on the shape of the sample.
The scale of distance over which it varies is character-
ized by the lifetime of the spins and the typical velocity
with which the electrons move. That is to say,

BM 1
M,

Br

with 8~,p of the order of Vr(Tr)'I', where T is a
phenom enological spin lattice relaxation time, 7- a
transport mean free time, and Vp is the Fermi velocity
of the carriers.

The scale of distance over which the rf magnetic
Geld varies is of the order of the skin depth 8. Under
classical skin-effect conditions

8—=8,= (c/(v„)(1/a)r)'~' (6)

where ~„is the electron plasma frequency. Under
anomalous skin-effect conditions, in the absence of
magnetic Geld,

g~$ 2/3+1/3

where h. is an electron mean free path. In all cases of
experimental interest even in the presence of magnetic
fields 8/5M„&(1. This fact allows us to analyze the
finite-slab roblem. Terms of order x(b/8M„) will be
dropped. hus wemayneglectVXM in Eq. (3b) and
the set of Maxwell equations written in terms of 8 are
independent of the magnetization.

If Hp(s)—=Bp(s) is the magnetic field for spinless
electrons, then H=Hp —4m'M, and B(s)=Bp(s)
+O(x8/8M„). Substituting into Eq. (1) we find that

H, '(o) M(o)i
Z(O) =Zpi 1+4+

~ap(o)~p J'

reinterpretation, is applicable in the anomalous regime
as well.

II. CALCULATION

The Maxwell equations for the Geld inside the sample
(assuming a time dependence of the form e '"') are
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where

l&0(0)l'

41r 8 (E(0)XHO*(0))
g 0

C

Since
C

XE,(0)=—Z,H, (0)
4x

(13)

t CO

e t't(a+ /tT)G(s 0 ] )tf( (14)
0dt'e-"~M(s) =-~s

2

The Green's function G(s,s't) for the one-dimensional
diffusion equation with boundary condition

is the surface impedance for spinless electrons. we may rewrite Eq. 11 as
For an KM field varying only in a direction perpen-

dicular to the surface of a slab-like sample (the s C M

direction) the high-frequency magnetization M(s) is M(s) = ———Zones H0(0)s
'

given by Lsee Dyson, Eq. (20)] Sx

z
M(s) =—xcos

2
dt'e "Te' 'G(s 0 t')

The quantity o=~—co+, L is the slab thickness and
s= (ul l

tr
l u2). The states

l Ii,g) are the usual free-electron
spin eigenstates, parallel and antiparallel to the field
3!0 and tr is the set of 2X2 Pauli matrices. 9 G(s,s', f) is
the Green's function which characterizes the orbital
motion of the electrons in the static magnetic field Ko.
It is precisely the probability that an electron at
z= z' at t=0 will have arrived at z at time t.

Because of the exponentially decaying factor in the
time integration it is clear that the main contribution to
the integral in Eq. (10) comes from times of the order
of T, the magnetic relaxation time. Since T»7 we can.
think of the motion of the electrons (even for the case
&e,T))1) as a diffusion. When ce,T))1 there is a well-

defined cyclotron motion about a guiding center and a
diffusion of the guiding center itself. The field Ho(s ) in

Eq. (10) is evaluated at a point on the electron's orbit.
In practice, since the scale of spatial variation of
G(s,z', t') is of the order of 5M„,we can evaluate s' at
the orbit center, making errors at most of the order of
&./lIM g((1. These small terms will be dropped. In the
experimentally interesting regime we can think of G as
the Green s function for the one-dimensional diffusion
equation as in the Dyson case even for co,z» I. In the
large co,7. limit it is really a di6usion of the guiding
centers.

Since the scale of variation of Ho(s ) is the skin depth
b, we may rewrite Eq. (10) dropping terms of order
tl/8M, g as,

BG(s,s', t)
=0 (15)

at z=0 and z=L, is

The quantity
3,0——Vps

is the mean free path in the absence of a magnetic field.
For large ~.v. and for propagation perpendicular to the
magnetic field, A=r, where r, is the cyclotron orbit.

Inserting Eq. (16) in Eq. (14) performing the integral
on t' and using the fact that

00

G(s,s', f') = p—cos(y„s)cos(it„s')e—'"" "~"' (16)
+~00

with

IJ.„=nm/I. .

The boundary condition Eq. (15) specifies that there
be no net electron current at the surface z= 0 and z= L,.

The Green's function G(s,s', t') is still the correct one
for an electron moving in a magnetic field $CO, which
makes an angle Ir/2 —8 with respect to the 8 axis. Now,
the Green's function is to be interpreted as the prob-
ability of finding the electron's guiding center at z at
t' if it started out at z' at time t= 0. However, one must
take for the mean free path A in the z direction an
effective mean free path'o

ds's Ho(s') s*. (11)

The sample thickness is always large compared to
8, so that the integral on s' in Eq. (11) is given by

(12)

1
=—cotA,

~=~ A' —x'e'

+~ (—1)" cscA cot(A/2) —cotA

~--~ A~—vr'e~ A A

(19)

(20)

9 We have dropped an oR-resonance term in Eq. (10) since it
will not contribute near the center of the CESR line.

"For a complete discussion of the diffusion of particles in a
magnetic 6eld see W. P. Allis, in EImsdbuch der I'hysik, edited by
S. Flugge (Springer-Verlag, Berlin, 1956), Vol XXI, p. 395
(particularly Eqs. 13.7—13.8).
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(28)~OS~
where

we find that, Equations (21)—(22) and (26) are the principal results

M(O) = Pr(cot2W)/Wgs H, (0)s*,
of this calculation. The one-side result b ~ 0 is

M(L) =LE(cotw —cot2W)/Wgs Hp(0)sa, (22)

t'cp ) (rps) pasT)

&8~i(~il L)
3L2

(24)

(cotw)

&W)

(23) The symmetric case b= —1 is

and
W'= ', a'(i T-n 1).— (25)

The transmission experiments of Schultz and I.atham'
measure M(L) directly, since

4aM(L ) —Zp ——H(L+). (26)

A brief derivation of this result is given in the Appendix.
A more detailed discussion of Eq. (26) will be presented
in a paper by Schultz and Dunnifer" who analyze the
transmission experiment in the classical skin-effect
regime. A brief discussion of this point is also given in
Ref. (12). The subscripts minus and plus indicate that
we evaluate things slightly to the left (—) or to the right
(+) of the right-hand boundary. The important point
to make is that anomalous conditions modify the
classical results in an extremely simple way. Only Zo
and A are changed, the functional form of the line is
unaltered.

In order to calculate the power absorbed for a
one sided excitati-on we have only to substitute Eq (24).
into the real part of Eq. (8). For samples thick com-
pared to a skin depth 8 but not necessarily thick com-
pared to 8M„,the value of M(L) is irrelevant. There is
no magnetic field at L to couple to. If we excite from the
other side of the sample as well, then an H field exists
in the stun at L and there is a contribution to the
absorption of the form M(L). H(L).

If the two incident fields are similarly polarized so
that

Hp(L) =—bHp(0)

for some scalar b, then the power absorbed in the CESR
line is, using Eqs. (21) and (22), proportional to

Equations (27)—(28) along with the definitions Eqs. (24)
and (25) are identical with Dysons results Eqs.
(71)—(77) if one neglects terms of order b/bM„.

It is clear from Eqs. (27) and (28) that the sym-
metric case with thickness L is equivalent to the one-
sided case with thickness ;—. L. Physically this must be
so since the electromagnetic field is the same in both
cases in the region z&-.,'L (small skin depth) and the
diBusion in the symmetric case is unchanged if the
region to the right is replaced by a boundary (reflecting
wall at z= srL).

The general case can be regarded as a mixture of
terms due to thickness L and thickness 2L. Fol 8+4,
i.e., large imaginary 8' in the neighborhood of the
resonance cot 8' approaches an asymptotic value of —i.
It is independent of lV so that the thickness does not
enter. For u &1 the boundary conditions, the tilt of the
6eld, and the anomalous skin eGect all inQuence the
shape of the line.

In Fig. 1 we show a series of curves of the derivative
of power absorption for an antisymmetric field excita-
tion. These figures are plotted with a ratio of sample
thickness to spin diffusion distance in the absence of a
field, i.e., (3L'/2V gh pT)'I' of —,'. This ratio is denoted by

lal 4
0
G.

t3

c4 t'T
P= )Hp(0) )'

(

—a'fX
(4a-)'I L

(1+b)' cot2W —2b cotW
XRe Zo'

8"
where

(s Hp(0)i'

( Hp(0)i'

"S. Schultz and J. Dunnifer (to be published).

(27)

0 ——

I I

0 1

X

FIG. 1. Plot of the derivative of relative power absorbed by the
spin system in the vicinity of CESR as a function of magnetic
Geld x where a—= («&s/~ —t). The power absorbed is plotted in
arbitrary units. The microwave field is incident antisymmetrically
(b= 1).The impedance Zp ——gi The ratio of .sample thickness to
spin diffusion distance in the absence of a field is a0=0.5 and
co,v = 10. The curves are for various angles of field tilt relative to
the surface.
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APPENDIX

Consider the derivation of Eq. (26). The magnetiza-
tion produced by the field in the skin at s=0 will carry
along an rf magnetic field with it (very small electric
field). The continuity of the tangential components of
E and H at the second boundary will violate the out-
going wave boundary condition Li.e., E(L+)=II(L+))
for the transmitted wave. The way to 6x up the bound-
ary condition is to add to the slowly varying field,
associated with the magnetization, a rapidly varying
skin-eGect-like solution. This extra field will enable us
to satisfy the outgoing wave boundary condition. ""

Formally we can split our solutions up into a rapidly
varying part (skin effect) plus a slowly varying part
(magnetization wave). LIn this analysis all polariza-
tion factors which multiply things by constants of
order unity are left out.) The rapidly varying part
satisfies

4x
v X8&') =—&r. E&'&,

C

(A1)

problem along with the intermediate thickness may in
fact be necessary to explain the shape of this type of
line.
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where

E&')(L ) k ~=zp —I,
H&')(L ) koi

zp= ~(a)+ ~/r)—/&d, ',

(A9)

(A10)

and k is a typical wave vector characterizing the
spatial variation of the magnetization wave t see Eqs.
(14) and (10) in the text]. The quantity ko is the free-
space wavelength, &u/c. The ratio k /ko is of order one
and the quantity Z&'((1. The actual magnitude of
k„/ko is, as we will show, unimportant.

For the skin-effect field

local conductivity operator since the fields in (A3) and
(A4) are slowly varying.

The continuity conditions on E and H at the boundary
a=I. are

E('&(L, )+E&'&(L ) =E(I.+), (A5)

H&'&(L )+H&'&(L )=-H(L~). (A6)

The outgoing-wave boundary conditions imply E(L+)
= II(L+) so that (within unimportant polarization
factors)

E(')(L )+E(o)(L )=II(i)(L )+II(o)(L ). (A7)

For the slowly varying wave H(" it can be shown using
Eq. (A4) that

H&i)(L )=—4vrM(L ).
Using (A3) it is a simple matter to show that

QO

~g E(0)— H(o)
C

(A2)

jv(o) (L )=z.(
—')-=z. , (A11)

where e is the nonlocal conductivity operator. The where, as in the text, Zp is unknown but Zp'((1. Su

siowlyvaryingpartsatisfiestheinhomogeneousequation stituting (AS), (A9), and (A10) into (A7) we find that
(leaving out the arguments L )

4x
/ XH(1) —~.E(i)

C

v && E&» =—LH&» —4~M(r)),
C

(A3)

so that

ZPkp/k —1a(»= —JI(»
Zp 1

ZP (ko/km) —1
jrI (o)+II(i)—+(i)

Zp 1
(A13)

where M(r) is a prescribed function given by Eq. (22)
in the text. In Eq. (A3) 0 may be thought of as the =—H &'&Zo'=4m'(L )Zo' ——H(L~) .

i3 N s par&der pe&& aiiQ R T sdi&ini@c&Mr pcs Rev z ~tters This completes the derivation of Eq. (26) in the
12, 695 (1964). anomalous as well as the classical regime.


