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We have calculated (using a simple theory) the paramagnetic-resonance absorption by conduction
electrons in a thin metallic sample, thus extending the earlier work of Dyson. Our results are for a metal
sample of arbitrary thickness, with a static magnetic field 3Co at arbitrary angle with respect to the sample
surface, and under either classical or anomalous skin-effect conditions. The electromagnetic field is assumed
to be incident normally on both sides of the sample, but the relative phase and/or amplitude on the two
sides can be arbitrary (asymmetric excitations). Under anomalous skin-effect conditions, as the field 3Co is
rotated from parallel to normal, the shape of the spin-resonance line is modified. For asymmetric boundary
conditions on the electromagnetic field, the line decreases in intensity (to zero under certain conditions).
For a symmetric excitation, or when the electromagnetic field is incident on one side only, the line shows a
slight decrease in intensity and a slight narrowing as the field is rotated. Numerical results are presented.

I. INTRODUCTION

HEN electromagnetic (EM) radiation is incident

on a metallic sample the quantity of experimental
interest is generally the power absorbed by the metal
as a function of some external parameter; for example,
an applied static magnetic field. For flat plate-like
samples, and for frequencies much below the plasma
frequency, it is easy to show that when the EM wave is
incident on one side of the sample the power absorbed
by the specimen (for samples thick compared to a skin
depth) is proportional to the real part of the surface
impedance, Z(0).! The quantity
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where E(0) and H(0) are the values of the electromag-
netic E and 3¢ fields at the front surface of the specimen
and 7 is the unit vector normal to the face of the sample.
Dyson? has calculated the paramagnetic contribution
to the surface impedance Z in the neighborhood of con-
duction-electron spin resonance (CESR), i.e., near

ws=2u|3|/h=w. )

Here u is the effective electron magnetic moment, 3o
is the external static magnetic field, and w is the applied
microwave frequency.

In making his calculation, Dyson made three simplify-
ing assumptions: (1) The conduction electrons were
taken to be an isotropic gas of noninteracting electrons
colliding with impurities and moving under the in-
fluence of the applied electric and magnetic fields. (2)
The field 3¢, was assumed normal to the surface of the
sample. (3) Normal skin-effect conditions prevail.3
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1 M. Born and E. Wolf, Principles of Optics (Pergamon Press,
Inc., New York, 1959), pp. 617-619.

2 F. J. Dyson, Phys. Rev. 98, 349 (1953).

3In general, normal-skin-effect conditions imply that the dis-
tance over which the EM field varies is large compared to dis-
tances over which the electrons (due to their orbital motion)
may carry current information. We will be concerned with experi-
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Azbel’ et al* have made a more general calculation
dropping the above restrictions. However, they as-
sumed that the exciting electromagnetic field was only
incident on one side of the sample. Their calculation is
sufficiently general and sufficiently complicated that
much of the physics is not easily extracted. Line shapes
or widths for CESR are not shown or discussed. In the
present paper we present a simple calculation of CESR
dropping restrictions 2 and 3, keeping 1, but allowing
for the fact that the exciting fields may be incident from
both sides of the slab samples with arbitrary symmetry.

Under so-called “anomalous conditions,”® in the
presence of a static magnetic field, it is not in general
possible to write down a closed form expression for
the surface impedance of a metal. This problem has in
fact been solved only approximately. For the magnetic
field parallel to the surface of the sample (the so-called
Azbel’-Kaner geometry), Azbel’ and Kaner® have given
approximate expressions for the surface impedance in
the neighborhood of cyclotron resonance. Despite our
inability to solve the skin-effect problem, it is still
possible to find the effect of the electronic spin on the
surface impedance of the metal in terms of the surface
impedance Zo, in the absence of any spin contribution.
The quantity Z, plays the role of an unknown complex
number, which enters the theory in a simple way, i.e.,
as an over-all multiplicative factor. Our solution is
affected because of the fact that the magnetization in-
duced by the fields internal to the metal is small. To
lowest order in the electronic susceptibility it can be
calculated using the EM fields prescribed by the solu-
tion to the skin-effect problem. In the skin-effect

ments in the microwave regime with a static magnetic field
present. Since the cyclotron frequency w.=e|§Co|/mc the applied
frequency w and the spin-resonance frequency are all approxi-
mately equal. It is easily shown that the condition for the skin
effect to be normal reduces to the condition w.r<1.

4 M. Ya Azbel’, V. I. Gerasimenko, and I. M. Lifschitz, Zh.
Eksperim. i Teor. Fiz. 35, 691 (1958) [English transl.: Soviet
Phys.—JETP 8, 480 (1959)7].

SA. B. Pippard, in Low-Temperature Physics, edited by C.
DeWitt (Gordon and Breach, Science Publishers, New York, 1962),
pp. 58 and 129.

6 M. Ya Azbel’ and E. A. Kaner, Zh. Eksperim. i Teor. Fiz. 30,
811 (1956) [English transl.: Soviet Phys.—JETP 3, 772 (1956)].
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problem the current is not small and is produced by
fields which must be computed self-consistently.

A further simplification comes about because the
spin relaxation time is extremely long (compared to
transport mean free times). Since the spin “lives” for
a long time, it is intuitively clear that the induced mag-
netization will vary on a scale of distance much greater
than the scale of distance over which the EM fields
vary. The detailed variation of the fields over the
cyclotron orbits of the electrons is unimportant. The
magnetic properties of the medium in the long spin-
relaxation-time limit depends only on certain integrals
of the field which can be simply related to the impedance
Zo. From the same considerations it is clear that the
electron motion may still be thought of as a diffusion.

We will show that to a good approximation anomalous
conditions® (w,7>1) introduce two essential modifica-
tions of the usual CESR results. The unknown surface
impedance Z, acts only as a complex multiplicative
factor which mixes in amounts of the real and imaginary
parts of the function characterizing the spin contribu-
tion to the magnetization. In addition, the diffusion
constant describing the electron motion is anisotropic
with respect to the direction of the field, %¢,. The
effective thickness of the sample will depend on the
orientation of J€ with respect to the surface of the
sample.

This calculation was motivated by a desire to under-
stand the CESR line shape observed by Walsh? in
experiments on extremely pure thin samples of potas-
sium at low temperatures (w.7>>1). In these experi-
ments the sample enclosed in an insulating container is
placed against the wall of a cavity. It is, in effect, ex-
cited by a microwave field which may be either sym-
metric or asymmetric. As the static magnetic field 3¢
was tilted away from the plane of the sample, Walsh
observed an over-all decrease in line intensity. In
addition, for small tilt angles, he found a shoulder de-
veloping on the line. For thin samples, we will show that
as the field 3¢, is rotated from parallel to normal, the
shape of the CESR is modified. For completely anti-
symmetric boundary conditions on the EM field, the
line rapidly decreases and broadens very slightly. For
symmetric and/or one-sided excitations the line shows
a slight decrease in intensity and a slight narrowing.
These features agree qualitatively with the experimental
results. However, we find, within the framework of this
model, no evidence for the shoulder found in the experi-
mental data.

Recently there have been a series of transmission
experiments which study the CESR.® These experi-
ments, by Schultz and co-workers, have only been
analyzed under normal-skin-effect conditions. Our
results show that their analysis, with a very slight

7W. M. Walsh, Jr., L. W. Rupp, Jr., and P. H. Schmidt,
Phys. Rev. 142, 414 (1966).
8 S. Schultz and C. Latham, Phys. Rev. Letters 15, 148 (1965).
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reinterpretation, is applicable in the anomalous regime
as well.

II. CALCULATION

The Maxwell equations for the field inside the sample
(assuming a time dependence of the form e~#t) are

H=B—4rM, (3a)
4
vXH=vXB—4rvXM=—j, (3b)
c
vXE=1iw/cB. 3o)

At metallic densities and microwave frequencies the
neglect of the displacement current is well justified.
For weak rf fields there will be a linear nonlocal relation-
ship between M and H of the form

M@= /Xij(r,r')Hj(r')d”r'. ()]

The magnitude of |M/H|=2X is small. All expressions
will only be accurate to lowest order in this quantity.
The function X;;(r,») is the nonlocal susceptibility
which will in general depend on the shape of the sample.
The scale of distance over which it varies is character-
ized by the lifetime of the spins and the typical velocity
with which the electrons move. That is to say,

oM 1

—_—
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M, ©)

with 8ua, of the order of Vg (Tr)!2, where T is a
phenomenological spin lattice relaxation time, 7 a
transport mean free time, and Vp is the Fermi velocity
of the carriers.

The scale of distance over which the rf magnetic
field varies is of the order of the skin depth 8. Under
classical skin-effect conditions

8=8.= (c/wp) (1/wr)*?, (©)

where w, is the electron plasma frequency. Under
anomalous skin-effect conditions, in the absence of

magnetic field,
025 213713 , (7)

where A is an electron mean free path. In all cases of
experimental interest even in the presence of magnetic
fields 8/8magK1. This fact allows us to analyze the
finite-slab problem. Terms of order X(8/dmag) Will be
dropped. ’IF})ms we may neglect VXM in Eq. (3b) and
the set of Maxwell equations written in terms of B are
independent of the magnetization.

If Ho(z)=Bo(2) is the magnetic field for spinless
electrons, then H=H,—4rM, and B(z)=B.(2)
4O (X8/8Mag). Substituting into Eq. (1) we find that

H*(0)-M (0)) 7

20=2(thae— ®)
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where
47 #- (E(0) X Ho*(0))

Zo='_' ) 9
4 lHo(O)[2 ( )

is the surface impedance for spinless electrons.

For an EM field varying only in a direction perpen-
dicular to the surface of a slab-like sample (the z
direction) the high-frequency magnetization M(z) is
given by [see Dyson, Eq. (20)]

,i 0 L
M (2) =—Xws / eIt / G t),
0 Jo

2

X[s-Ho(z') ]s*etietdz’ . (10)
The quantity a=w—wgs, L is the slab thickness and
s=(u;| 0| us). The states | u1,2) are the usual free-electron
spin eigenstates, parallel and antiparallel to the field
3¢, and ¢ is the set of 2)X2 Pauli matrices.® G(z,7',t) is
the Green’s function which characterizes the orbital
motion of the electrons in the static magnetic field Co.
It is precisely the probability that an electron at
z=g" at t=0 will have arrived at z at time ¢.

Because of the exponentially decaying factor in the
time integration it is clear that the main contribution to
the integral in Eq. (10) comes from times of the order
of T, the magnetic relaxation time. Since 7>>7 we can
think of the motion of the electrons (even for the case
w,>1) as a diffusion. When w,7>>1 there is a well-
defined cyclotron motion about a guiding center and a
diffusion of the guiding center itself. The field Ho(z’) in
Eq. (10) is evaluated at a point on the electron’s orbit.
In practice, since the scale of spatial variation of
G(z,%,t') is of the order of dmag We can evaluate 2’ at
the orbit center, making errors at most of the order of
7¢/0mag&K1. These small terms will be dropped. In the
experimentally interesting regime we can think of G as
the Green’s function for the one-dimensional diffusion
equation as in the Dyson case even for w.7>>1. In the
large wer limit it is really a diffusion of the guiding
centers.

Since the scale of variation of H,(2’) is the skin depth
8, we may rewrite Eq. (10) dropping terms of order
5/ 6Mag as,

0

P
M) =-Xwg f dt' et 1T G (2,0,t')
2

0

L
X/ dz's-Ho(z')s*. (11)
0

The sample thickness is always large compared to
8, so that the integral on 2’ in Eq. (11) is given by

L ic
/ Ho(z')dz' =—(nX E((0)). (12)

9 We have dropped an off-resonance term in Eq. (10) since it
will not contribute near the center of the CESR line.
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Since

c
E00=—*ZoH00 13
n X Eo(0) . (0) (13)

we may rewrite Eq. (11) as

M(z)= _§_<ﬁ>ZOX8, Hy(0)s*

TN\ W

% / it @HIG(2,0,4)d . (14)
0

The Green’s function G(z,3t) for the one-dimensional
diffusion equation with boundary condition

G (3,7 ,t)
— 70

(15)
9z

at z=0and g=L is

1
G2 ,t) =E > cos(unz) cos(unz’)e t3vrdun?t’

n=—

(16)

with
wn=nw/L.

The boundary condition Eq. (15) specifies that there
be no net electron current at the surface z=0 and z= L.

The Green’s function G(z,2’,t’) is still the correct one
for an electron moving in a magnetic field 3¢, which
makes an angle 7/2— 6 with respect to the z axis. Now,
the Green’s function is to be interpreted as the prob-
ability of finding the electron’s guiding center at z at
¢ if it started out at 2’ at time {=0. However, one must
take for the mean free path A in the z direction an
effective mean free path'®

1
A2=Ao2|:sin20+—-—~———cos20:| . an
[1+ (wc'r)2]
The quantity

Ao=Vpr (18)

is the mean free path in the absence of a magnetic field.
For large w.r and for propagation perpendicular to the
magnetic field, A=z, where 7, is the cyclotron orbit.

Inserting Eq. (16) in Eq. (14) performing the integral
on ' and using the fact that

w 1 1
2 ————=—cotd, (19)
n=—wo A2—722 A
4o (—1)® cscd cot(4/2)—cotd
) = = ,  (20)

e A2 A A

10 For a complete discussion of the diffusion of particles in a
magnetic field see W. P. Allis, in Handbuch der Physik, edited by
S. Fliigge (Springer-Verlag, Berlin, 1956), Vol XXI, p. 395
(particularly Eqs. 13.7-13.8).



150

we find that,

M(0)=[N(cot2W)/WJs-Ho(0)s*, (21)
M(L)=[N (cotW—cot2W)/Ws-Ho(0)s*, (22)
where r
2\ fwg\ /a2
v=(G)E)G) 9
312 L2
a*= = ) (24)
2VFAT BzMag
and
W2=1a?(iTa—1). (25)

The transmission experiments of Schultz and Latham?®
measure M (L) directly, since

4
4 M (L_)I:—;Zo:|=H(L+). (26)

A brief derivation of this result is given in the Appendix.
A more detailed discussion of Eq. (26) will be presented
in a paper by Schultz and Dunnifer! who analyze the
transmission experiment in the classical skin-effect
regime. A brief discussion of this point is also given in
Ref. (12). The subscripts minus and plus indicate that
we evaluate things slightly to the left (—) or to the right
(4) of the right-hand boundary. The important point
to make is that anomalous conditions modify the
classical results in an extremely simple way. Only Z,
and A are changed, the functional form of the line is
unaltered.

In order to calculate the power absorbed for a
one-sided excilation we have only to substitute Eq. (24)
into the real part of Eq. (8). For samples thick com-
pared to a skin depth & but not necessarily thick com-
pared to duag, the value of M(L) is irrelevant. There is
no magnetic field at L to couple to. If we excite from the
other side of the sample as well, then an H field exists
in the skin at L and there is a contribution to the
absorption of the form M(Z)-H(ZL).

If the two incident fields are similarly polarized so
that

Ho(L)=—bH,(0)

for some scalar b, then the power absorbed in the CESR
line is, using Eqgs. (21) and (22), proportional to

¢ yT
P=|H0)] (44‘_)2<—L->a X
(14-0)2 cot2W—2b cotW
XRe[Zo2{ . }] (27)
where
_ l S HQ(O) |2
[Ho(0)|?

1S, Schultz and J. Dunnifer (to be published).
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Equations (21)-(22) and (26) are the principal results
of this calculation. The one-side result 5 — 0 is

cot2W
Pos~ . (28)
The symmetric case b=—1 is
cotW
Por(=) (29)
w

Equations (27)-(28) along with the definitions Egs. (24)
and (25) are identical with Dysons results Egs.
(71)-(77) if one neglects terms of order §/dmqg-

It is clear from Egs. (27) and (28) that the sym-
metric case with thickness L is equivalent to the one-
sided case with thickness L. Physically this must be
so since the electromagnetic field is the same in both
cases in the region <L (small skin depth) and the
diffusion in the symmetric case is unchanged if the
region to the right is replaced by a boundary (reflecting
wall at z=1L).

The general case can be regarded as a mixture of
terms due to thickness L and thickness 1L. For ¢>4,
i.e., large imaginary W in the neighborhood of the
resonance cot W approaches an asymptotic value of —1.
It is independent of W so that the thickness does not
enter. For ¢ 1 the boundary conditions, the tilt of the
field, and the anomalous skin effect all influence the
shape of the line.

In Fig. 1 we show a series of curves of the derivative
of power absorption for an antisymmetric field excita-
tion. These figures are plotted with a ratio of sample
thickness to spin diffusion distance in the absence of a
field, i.e., (3L2/2V pAoT)'72, of 4. This ratio is denoted by

T 1 T T 1 T I T T
7L 3,=0.5
WeT=10

6 b=1 -

5 —
&
z 4 N
o
< 3l _
o 8 =0°

2 -

1~ -

30°
= N———
-1 | i ! 1 1 | | 1 ! -

-5 -4 -3 -2 -1 o 1 2 3 4 5
X

Fi1G. 1. Plot of the derivative of relative power absorbed by the
spin system in the vicinity of CESR as a function of magnetic
field x where x=(ws/w—1). The power absorbed is plotted in
arbitrary units. The microwave field is incident antisymmetrically
(b=1). The impedance Zo=4/7. The ratio of sample thickness to
spin diffusion distance in the absence of a field is ao=0.5 and
w7 =10. The curves are for various angles of field tilt relative to
the surface.
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Fi1G. 2. Plot of the derivative of relative power absorbed to the
spin system in the vicinity of CESR. All parameters are the same
as in Fig. 1 except for Z¢?, which now is assumed to have equal
real and imaginary parts.

ao in the figures. We choose the surface impedance so
that Z¢? is pure imaginary and assume an w.r of 10. In
order to compute a series of figures corresponding to
field rotation we have assumed that Z, is independent of
field orientation. 4 prior: this need not be true. Experi-
mentally, however, the changes in Z, in the neighbor-
hood of CESR in isotropic materials like potassium are
thought to be considerably less than 19,.12 As the field
is rotated from the plane of the sample out to 90° the
line decreases in intensity and broadens drastically.
The effective sample thickness relative to the diffusion
distance changes, as we rotate the field. For angles
larger than about 30° the line intensity is almost zero.
This is the point at which the effective diffusion dis-
tance becomes equal to the sample thickness. For fields
in the plane the electrons are held in the skin and the
intensity is large. For tilted fields they escape into the

D POWER

-1 | | ! i | ! | 1 I
-5 -4 -3 -2 -1 o 1 2 3 4 S

F16. 3. Plot of the derivative of relative power absorbed to the
spin system in the vicinity of CESR. All parameters are the same
as in Fig. 1 except now the microwave field is incident
symmetrically.

2 W. Walsh and S. Schultz (private communication).
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bulk and then over to the other side of the sample and
the line intensity decreases rapidly. In effect power is
going into the spin system at one side of the sample and
because of the opposite phase of the field this power is
reradiated back into the field at the other side.

In Fig. 2 all parameters are kept the same except for
the surface impedance squared, taken to have equal
real and imaginary parts. The line shape is changed (we
now have a dispersion mixed in with the absorption) but
the decrease in intensity and broadening of the line
occurs as in the previous sequence of figures.

In Figs. 3 and 4 we show a similar set of figures with
symmetric boundary conditions on the EM fields. The
CESR line in this case decreases in intensity slightly.
In addition, there is a slight narrowing of the line.
The symmetric fields are equivalent to a one-side excita-
tion. When 3¢, is in the plane of the sample, the elec-
trons are ‘““tied” to the surface and the line intensity is

10 T T T T T T T T T
80=0.5

sl WeT =10
b=-1

D POWER

N
wh
FN =
&

-4 ! | 1 | | |
-5 -4 -3 -2 =1 o 1

Fi1G. 4. Plot of the derivative of relative power absorbed to the
spin system in the vicinity of CESR. All parameters are the same
as in Fig. 3 except for Z¢?, which now is assumed to have equal
real and imaginary parts.

relatively strong. As the field is tilted they can escape
from the surface and the line intensity decreases. How-
ever, once the spin mean free path gets larger than the
sample thickness (angles greater than 30°) the spins see
the field on the other side and there is no longer a
decrease in intensity.

III. CONCLUSIONS

We have extended the calculations of Dyson to
include realistic boundary conditions on the EM field.
These boundary conditions are critical in determining
the CESR line shapes for samples of intermediate
thickness. With the purity of materials now becoming
available, experiments involving parameters of the
order of those considered here are being done by Walsh?
and by Schultz and Latham.® The structure reported
by Walsh in the K CESR line does not show up in this
calculation. The inclusion of relaxation effects at the
boundary, i.e., the introduction of another time into the
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problem along with the intermediate thickness may in
fact be necessary to explain the shape of this type of
line.
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APPENDIX

Consider the derivation of Eq. (26). The magnetiza-
tion produced by the field in the skin at 2=0 will carry
along an rf magnetic field with it (very small electric
field). The continuity of the tangential components of
E and H at the second boundary will violate the out-
going wave boundary condition [i.e., E(L)=H(L,)]
for the transmitted wave. The way to fix up the bound-
ary condition is to add to the slowly varying field,
associated with the magnetization, a rapidly varying
skin-effect-like solution. This extra field will enable us
to satisfy the outgoing wave boundary condition.!13

Formally we can split our solutions up into a rapidly
varying part (skin effect) plus a slowly varying part
(magnetization wave). [In this analysis all polariza-
tion factors which multiply things by constants of
order unity are left out.] The rapidly varying part
satisfies

4
VXHO=—¢-E®
c

(A1)

w
VXEO=—H©O R
c

(A2)

where ¢ is the nonlocal conductivity operator. The
slowly varying part satisfies the inhomogeneous equation

4
VXHO=—¢g-E® |
c

(A3)

VXE®=—[HO—4zM(r)], (A4)
4

where M (7) is a prescribed function given by Eq. (22)
in the text. In Eq. (A3) o may be thought of as the

1 N. S. Vander Ven and R. T. Schumacher, Phys. Rev. Letters
12, 695 (1964).
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local conductivity operator since the fields in (A3) and
(A4) are slowly varying.

The continuity conditions on E and H at the boundary
z=1L are
EO(L)+EO(L)=E(Ly), (AS)

H®O(L)+HO(L)=H(L,). (A6)

The outgoing-wave boundary conditions imply E(L;)
=H(L,;) so that (within unimportant polarization
factors)

EO(L)+EO(L)=HM(L)F+HO(L_). (A7)

For the slowly varying wave H@ it can be shown using
Eq. (A4) that

HO(L)=—4xM(L_). (A8)
Using (A3) it is a simple matter to show that
EWO(L.) b
—-——-gz,2(~) , (49)
HO(L) ko
where
Zp=—w(wti/7)/wsl, (A10)

and k., is a typical wave vector characterizing the
spatial variation of the magnetization wave [see Egs.
(14) and (10) in the text]. The quantity ko is the free-
space wavelength, w/c. The ratio k,/ko is of order one
and the quantity Z2<1. The actual magnitude of
km/ko is, as we will show, unimportant.

For the skin-effect field

BV )y

gor) N/ 7"

(A11)

where, as in the text, Zp is unknown but Zy'<<1. Sub-
stituting (A8), (A9), and (A10) into (A7) we find that
(leaving out the arguments L_)

Z2ko/km—1
HO= —H(l)[———————} , (A12)
Zd—1
so that
Z2(ko/bm)—1
H(O)‘I‘H(l):H(I)[l'————I—_:I y (A13)
Ziy—1

~—HOZ =4z M(L)Z¢=H(L,).

This completes the derivation of Eq. (26) in the
anomalous as well as the classical regime.



