
PROOF OF BETHE'S HYPOTHESIS

if the u's satisfy (41). (41) defines the u's as algebraic
functions of h. Thus, in complex 5 space except at the
poles of the u's and at points where lt'=0, f' is an
eigenstate of H. These exceptional points are finite in
number. We can obtain a correct eigenfunction tk" at
these points too by properly normalizing P' and ap-
proaching these exceptional points. Hence, Theorem 6.
(In fact the above proves a generalization of Theorem
6 to complex A.)

We can also prove the following theorem, which
clarifies but is not essential for later discussions.

Theorem 7: The p's are analytic in A in an open strip
containing the semi-infinite real axis h(1.

Proof": (a) Starting from A=O, and inoving along
the real axis towards 6= —~, let d =d~ be the first
singularity of the I s, if any is in the way. We can form
a simple closed path that loops around AI and return to
6=0, which does not pass through and does not contain,
inside of it, any other singularities of any u. Now E(h)
is analytic along the real axis, by Theorem 4. Further-
more, it is a polynomial in N. Thus, E has no singularity
on or in the path and it returns to the original value
when A goes around the path back to A=O. Thus, P'
returns also to the ground-state wave function at 6=0,
except for a possible multiplicative factor. This wave
function is a determinant. Consider its values when

"One can rearrange the theorems so that the topological
theorem is not needed: After Theorems 1 and 2, 4, and 5 the con-
cept of u of (39) is introduced, together with the |k' of (43),
leading to HP'=EP' for complex h. One then proves Theorem 7,
using in part (b) of the proof the discussions following Eq. (38).
This proof of Theorem 7 then automatically establishes (18) for all
n (1, with all p's within the bounds (8) and (9).

xi=1, xz ——2, x„ i ——m —1, but successively x =m,
m+1, m+2, . Its values are in the ratio of 1, P u,

2 u'+ps&t utut, . . . Thus, all syminetrical poly-
nomials of the n's return to their original values around
the loop. Hence, the I's are merely permuted in going
completely around the loop. Call that permutation
P(hi).

(b) For 0~6(1,u, is on the unit circle. By analytic
continuation, it must remain so for 61(d(0. Thus,

p, = z —lnu; is analytic for Ai(A(1. For Ogh 1,
Theorem 1 shows that (18) is satisfied. Continuing all
p's to values of d«0, (18) remains satisfied until either
we reach the point Ai, or the p's go outside of the limits
defined in (8) and (9). The latter alternative, however,
does not obtain, since before the p's reach the boundary,
the corresponding point must go out of the surface of
the cube (37). Part (b) of the proof of Theorem 3
demonstrates that that is not possible. Thus, (18) is
satisfied for all 81(h(1.

(c) ht is not a pole for the u's, since ~u~ =1 for
A=hi+0. Since each ut is algebraic in 6, it has a
definite value at A= t4. (18) shows that at A=hi, all
p's are unequal. Hence, all u's are unequal.

(d) Now tighten the loop of (a) around Ai. Since all
u's are unequal at 6i, the permutation P(hi) must be
the identity. Thus, 6& is not a branch point of any I,.
Contradiction.
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The ground-state energy 2f per lattice site for an infinite system is studied as a function of b, and of the
magnetization y. Analyticity properties of f(ts,y) are proved. The behavior of f(ts,y) at and near y=0 and

y = 1 are investigated.

1. BASIC EQUATIONS
' 'N Paper I' it was shown that if 5&1, the ground state
~ - for a fixed K ( No. of sites) and m (=No. of down
spins) is of Bethe's form (I7), with p; satisfying (I18),

' C. N. Yang and C. P. Yang, preceding paper, Phys. Rev. 150,
321 (1966). Formulas and references there are referred to as
(118), etc. The notations are the same.

or

pt=2zrIt(X-') —X—' Q e(p; pi).
b I

Since ptsep; if j)z, by continuity argument with
respect to A, we see that pt(pz(ps . &p for all h.
As X, m-+ m at a fixed ratio, the p's increase in
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of Q and b for y=0 or 1. (b=limit in m lnte-
gra i . ' = —6 0 &p (m. It is proved in Sec.
2 that y decreases monotonically with increasing Q.

—1(z(1

We have obviously,

p(p)dp, (6b)

y=0

Q=O
(b =0)

Q=G
(b =0)

Q=~
(b= ~)

Q=O
(b=o)

Q=~ —p
(b= )

and by (I11),

f(~,y) = —+—(1—y)—
4 2

p(p) cospdp. (6c)

xp(p)dp. (2)

num er u a way
' ' '

1 (I8) or,I9).number, but always lie within the interva,
I.et us assume ath t the number of p's in an interval p
to p+dp approaches

~6q re the basic equations whic define yEquations are
d f s functions of Q. We shall show t a y i

mono OIlicat ically decreasing function o or
for iven inthe limits tabulated in Table I. Thus, o g y

the closed interva 1 (0 1) one can solve for Q uniquely,
thereby obtaining f(A,y).

(We shall return to a rigorous proof oof of this assumption
in a later paper. ) (1) then becomes

p=2irf O—(p,q) p(q)dq,

2. PROPERTIES OF THE INTEGRAL
EQUATION (6a)

In this section we discuss Eqs.s. 6 with as a
parameter.

where f= I/X. Clearly,

Thus,
df/dp= p

c)0
1=2m p— —p(q)dq.

clp

is inte ral equation was the one found and solved in

illustrated in P'g.1.1ofI.
of inte ration.(3) and (5) we did not fix the hmit o in egIn 4 f an

e 's are distributedThe theorerns of I show that the p

that in e imithe limit we are now considering, t e integra ion
extends from —Q to Q without any gaps, i.e.,

A. Transformation p —+ n

im ler after the trans-The integral equation is simp
formation p —+ n introduced in (I21):

(7a)

where
(8)

and b is the limit of the o. integration that corresponds

dQ/db)0. The functions dp/dn, Be/ p were g'

(I21). They are retabulated in TaTable II for easy
reference. Equations (8) and (6b) give

1=2' p

o c)0~

(p,q)p(q)dq
o Bp

vr(1 —y) =

Equation (6c) leads to

R(n)dn. (7b)

1 dpi
f(a y) = ———— Rdn —~,

4 (." d i
(We shall return to a rigorous proo

'
p

'
oof of this oint in a

later p Aaper. )

d 88 8 in a an
' 6&—1 X&0is denned by —d =cosh'.d 88 8 in (7a) and the constant Cin (7c). For 5(—, is

d6 dtob bt 0 d, d —6= o

8p
(~l()=—=

6(—1

sinhX
&0

cosh) —corn

sinh2P

cosh+, —cos{ —p)

—1 &h(1
sing

&0
cosha —cosy

sin2p,

cosh(o. —p) —cos2p,

sinhX sing,
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TABLE GI. Eigenvalues and eigenfunctions of —K. Por definitions see the caption of Table II.
The integration limit discussed here is defined as bo(h) in the text.

Eigenvalue of —K

Eigenfunction

—e 2)

(n =all integers)

etna

(y =real No.)

ezya

—1&6~~1
OQ

sinhL iw-2p) y]

sinhfs. yj
(y = real No.)

esca

where C was introduced in (I21p) and retabulated in
Table III.

We shall sometimes write Eqs. (7) in operator
notation:

R(u) = (nI R),

dp/dn = &n I (&,

88——= &n
I

K
I p&.

2v Bp 1= (1+K)(l+ J)

0=K+J+KJ=K+J+JK.

Then
R= E

—KR, (9a) or
(12)

(9b)v. (1—y) =rtrR,

Thus, for b=bp, there exists a numbel c1 so that the
eigenvalues of —K are all &c~&1. For 0&b&bo, the

eigertvalues of —K must therefore also be &c&&1,
because shrinking the limit of an integral operator
never extends the range covered by the eigenvalues.

Thus, the Fredholm equation (9a) has a unique
solution R for any b and 6 if 6&1, 0&b& bp. We shall
in this paper only consider values of b in this interval.

We can therefore define a resolvent operator J so that

(9c)

where g is de6ned so that

&ule) =1,
and the superscript T means the transpose. These
operators are de6ned within the range n= —b to n=b.

It is obvious that (9) can be expressed as a varia-
tional principle: R is a vector that minimizes the
quadratic functional

-'RrR+-,'Rr KR—Rr(

LSee Sec. IIB for a discussion of the eigenvalue of
K showing that 1+K is positive definite. ) The mini-
mum value of the functional is

,'R'5= ,'Ch—f(—~y)+s-~j.
B. Spectrum of X and Existence of Resolvent J

For 6(—1, and b vr, the kernel —K is cyclic. For
—1~6&1 and b = ~, the integration extends through-
out the real n axis and

D. Ro(u)=R(u) when b=bp

It is easy to compute R when b= ~, —1(h(1, by
taking the Fourier transformation of (9a). One thus
obtains for —1(A(1, b=

Rp(n) = 7 )0. (14a)
„2coshuy 2u cosh (em/2u)

Similarly, when 6= —1, b= ~,

J of course depends on 6 and b.
The Fredholm equation (9a) can be iterated to give

R=I I—K+K' —K'+ . ]4. (13)

C. Proof that R(u))0 and dy/db& for 0&6&1

For 0~6&1, we have, by inspection of Table II, that

—( IKI p&=o

Thus, R(n))0. Furthermore, when b increases, the
range of integration increases and it is obvious from
(7b) that dy/db&0.

(nI —KIp&=function of u —p. Ro(u) =
cosh(v n)

(14b)

For these cases the eigenvalues and eigenfunctions of
—K are trivially computable and are exhibited in
Table III.

Ke define a function bp of 6:

For 6& —1, b=m, one obtains by the same method

CO eina

Ro(n)=- P ——&0.
n=—~ 2 cosh'psX

(14c)
bp

——x 3« —1,
bp ——~ —1~6&1. (10)

The inequality in this equation is proved in Appendix B.
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E. Jp—=Jvrhen b=-bp

From (12) it follows that

J=—K/(1+K) . (15)

K h been exhibitedr b=bp the eigenvalu
0

es of ave
of Jo (defined to be

Fo

. W h th d tlJ for b= bo) are known. We ave

—1(A(1)

Thus,
(24a)R =R'-J'('-""'

( IRt) with u I
write down equations in terms o
and f:

—1~~(1 ho= ~
20) over all u. NowWe integrate

1
(-IJ.

l
p&= —, e'~(~—»d&

sinh[(x —2p) y]

sinh[(ir —2p)y]+sinh[xy]
'

u u = — [see Table II and (A1)],du(ul (&=2(x—p) see a e

(see Table III).du(ul K IP) = — see

and

e'&(»dy—
1+el v I

(16b) Hence,

d ulR')=2(~ —p) —(vr —2p)(1—y .
—00

uation, we obtain9.) f.. .;.„..;. ,Subtracting

endix C) from these thatI 'll be shown (in Appen ix

ulJ, lp»0 for A&0,

I J,IP)&0 for 6&0.

2 (vr —p) y =g'r (1'—8')R'=
(17)

(18)

du(u I
R')

+ du(u I
R') . (24b')

'= R Extended)I'. Equation for R =

In the integral equation We integrate (20) over all u e we —, . Now
we have

(ul R&=(ul (&— ulKlp)dp(plR), (19 du(ul g&=2m [Cf. (A2)],

and vec

(20)R'= g' —K'8'R',
—u —~u~b; and 8' is a pro-where u R')=(ulR) for —b~u

jection ope r.rato

( IB'~'&=( ~ for —b~a b

and

cl+ 6p or —
p —Q(ul8'('&=0 for b&u 0

— u

nd u KIP) are defined for all u

dbo. To oid o f(Al 0
h "'"d'da rilne t e exwe shall indicate with a p

'

tors. Thus,

du(ulKI p)=1.

du(u I
R') =2x—x(1—y) .

2my=g'r (1'—8')R'= du(ul R')

+ du(u
I
R'). (24b"

Subtracting (9b) from this we obtain

Thus,

Now

Hence,

1I Bl RI(1'+K')R'=g'+K'(I —8 R .

J'=J(1'+Jo') (1'+K') =1' (Jo ——Jo .

R'= (I'+ J,') g' —J,'(1'—8')R'.

(21)

(22)

ex
'

we use (9c) and (24aex ression for we usTo obtain an exp

= 'rB'R'=g'rR' —g'r(1'—L~/+f(~, y)] ~

—g"(1'—8')R'.

(1'+Jo') g'= R„[RO'——Ro' ——Ro]. (23) Ck~/4+f(A, y)] = O—'Ro'
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Putting b=bo in (24b') and (24b") one obtains 1'=B'
and y 0. Thus, (25) leads to an expression for f(A,O).
Subtracting that expression from (25) we obtain

CLf(A, y) —f(6,0))=Ro'r(l' —B')R', (24c)

which is valid for all 6&1.

G. Proof that R(n) &0 and dy/db &0 for 4 &0

For 6&0, the eigenvalues of Ko are between +1
and 0 (Table III). Hence the eigenvalues of Jo are
between —1/2 and 0. So must be the eigenvalues of
(1'—B')Jo'(1'—B'). Now

(Ii BI)o Ii Bi

Hence writing (1'—B')R'= S' we obtain

S'= (1'—B')Ro' —(1'—B')Jo'(1'—B')S'. (26)

This equation for S' can be iterated. ITsing (24) we
then obtain

R'= Ro' —Jo'(I' —B')Ro'+ LJo'(I' —B'))'Ro'
—LJo'(I' —B'))oRo'+ ' ' '

~ (27)

continued lo y(0 analytically (To see this we remark
that, for 6& —1, the discussion preceding (30) extends
also to the case b=bo ——v..) But the continuation no
longer is equal to f(A,y). On the other hand, between

and 8 (i.e., —1&6(1) the function f(h, y) for
y&0, 6xed 6, cannot in general be continued to y&0
analytically. The explicit behavior of f(d,y) at and
near y=O will be studied in Secs. 4 and 5, and in
Appendix E.

4. f(d, )0)

A. Explicit Formulas for f(4,0)

As mentioned in I, the value of f(6,0) for 6= —1

was given by Bethe and Hulthen, for 6&—1 by
Orbach" and Walker" and for 1~6, it is obvious"
that f(6,0) = —6/4.

We are now in a position to calculate f(6,0) for all

6, and to discuss it as a complex function of A. The
calculation is straightforward. One substitutes the
explicit expressions for Ro(n), given in (14), into (7c),
obtaining

(niR')&0. (28)

Furthermore, each term on the right-hand side of (27)
decreases as b increases. Hence,

In the e representation, all elements of Ro' ——Ro are
positive (Sec. 2D), and all elements of J,'=Jo are
negative L(18)).Thus, (27) shows that

f(~ 0) = —~/4

—1(6&1,
cosy sinp,

f(~,0)=

(31a)

d(~i R')/db&0.

Equations (24b') and (24b") then show that

dy/db&0.

(29) p, slnpdS
; (31b)

„2Lcosh (s x))Lcosh(2px) —cosy)

3. ANALYTICITY OF f(A)y) IN y AND IN 4
y(a, o) =-,' —ln2;

6&—1,

(31c)

cosh' sinhX-X
f(a,o) =

4 X 2 ~=& 1+e'""
(31d)

B. Analytic Continuation of Integral in (31b)

At b=0, it is clear that R'=g', and that y=1. At
b=bo, 1'—B'=0. It follows from (24b') and (24b")
that y=0. For O~b&bo y is monotonic in b with
dy/db&0. It is clear that the solution R(a) of the
integral equation (7a) is analytic in h for 0 b&bo The definitions of &, u were given in (121).
Hence, y and f are analytic in b in this semiopen
interval. Thus,

f(A,y) is analytic in y for 0&y&1, 5&1. (30) We de6ne, for 0&p, &2~,
By using the variable p or the variable a introduced in

(I25), one can also prove similarly that R is analytic
in 5 for fixed b. Hence, y and f are analytic in 5 for
fixed b. Thus,

I'(u) = p, slnpdS
(32)

„2Lcosh (v.x))Lcosh(2@x)—cosy)

f(A,y) is analytic in 8 for 0(y~1, 6&1. (30')

Thus 2f(h, y)(=the ground state energy per bo-nd) to

the left of the point A in Fig I1, an even func. tion of y, can
only be nonanalytic in y or 6 along the line y=O.

Actually along that line, lo the left of B (i e , for. .
6(—1), the function f(D,y) for y~0 and axed 6 can be

(a) For 0(p&2x, the integral is well defined and
analytic in u. The integrand has poles at x=i(-,'+n)
and x=&i/2+xni/u As p, is . changed, these poles
move. By distorting the integration path one can study
the analytic continuation of F'(p) to complex u. It can
thus be proved that F' is analytic in the whole complex

p plane except for a cut on the negative real axis. By
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the same method one can also prove that

I'(~*)= LI'( )]',
7r2~Z

F(p) —7'(—p) = —2m P sin

(33)

path to P. Now along P the function

P, SlIlP,

cosh(2@x)—cosy
(38)

n=l p and each of its derivatives with respect to p, is bounded.
Thus, by the generalized mean-value theorem, for any 1,for p ~ real,

X sinhhdx
I"(—8)=

„2(cosh7rx) (cosh' —cos2xk)

+~'
sinh (s'n/X)

(lt = real) 0), (35)

where the first term on the right is real, the second pure
imaginary.

(b) We can convert the integral in (35) into a sum
by completing the path of integration to enclose the
whole lower half-complex x plane. The residues at
x= i/2—+7m/X cancel. The residue at x= i/2 in- —
(n) 0) gives a contribution

X sinhX( —1)" —X(—1)" X(—1)"

2 sinh (Xn+X) sinhXn e ""—1 e'""+'~—1

(38)= cp(x)+ci(x)p+ +ci(x)p'+di+ip'+',

1'(~)=E ~"
c„(x)dx di+i(x)dx

+,~i+1
2 cosh(7rx) ~ 2 cosh(7rx)

and we arrive at an asymptotic expansion of V(p) in
the section 5:

1'(p)=Z u"&-+O( "'), («rI ~o) (39)

where h„ is real.
Using (33) we see that the asymptotic expansion

(39) holds also in the complex-conjugate region of S.
We can start with an integral for dy/dp and go

through the same reasoning as above, obtaining

where ~di+i~ (constant. The functions c„(x) are real
rational functions of x, with denominators which are
powers of (4x'+1). Thus,

The residue at x= —i/2 gives a contribution
dy l—= P np" 'h +O—(p, ') (for p —& 0) .
dp, n=0

(40)
—', X cothX= —+

e2X ]
(b) To obtain the coefficients h„explicitly we express

(32), for real values of p, , in a different representation,
obtained by writing the two factors in the integrand as
I'ourier integrals with the aid of (A1):

Thus, (35) gives for real X)0
- (—1)"

real part of I"(—iP,) =——2X P
2 ft l e2nx ] tanhy

tanh (ys/y)
By (A5) we have 1"(p)= dy 1—

real part of V(—iX) =—+2K P . (36)
n=i 1+epxm

tanhy
(41)

e2,'Q'w/ p
d yL1 —tanhy) —2

(42)tanhy= Q n„y'"—'
n=l

C. Asyrnytotic Expansion of F(1p) near p=O

(c) The series P"„=i (sinns) ' is convergent for all
s+real. The real axis forms a natural boundary across
which no analytic continuation is possible. Using (34) The first integral is ln2. To evaluate the second, let
we see that Y(p) has a natural boundary along the
negative real axis.

(a) Consider a pie-shaped section 5 in the lower
complex p, plane:

) p) (7r, —8p~argg&0, where bp=pr —c. (37)

Consider the straight line P in the complex x plane:

x=te'~ '&I' t= —~ —+ ~

For p, in S, the line P is. ahvays free of poles of the
integrand in (32). Thus, we csn distort the integration

be the power-series expansion of tanhy near y=o. By
the generalized mean-value theorem, for al/ real y,

l

tanhy= P a„y'" '+yP'Pi,

where Bz is proportional to the value of some high-order
derivative of tanhy at y'= Hy. Clearly,

~
Bi

~
( a constant dependent on 1, not y.
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Thus, R = CUT h, PLANE

F(y,)=ln2 —2 g o.„ y
dy+ 0 (~2 i+1)

p 2" I"—i

where

(1
=ln2 —i Q

~

—n g3 ps"+0(ysi+i)
-i ke

8„=Bernou]. li s number =4s dx.
$27l S~

(43)

Comparing (43) with (39) we obtain h„. Thus we
conclude that (43) is valid for p in the union of the two
pie-shaped sections S and S*.Furthermore, (40) shows
that (43) can be differentiated term by term.

Now
2(2N)! p1 '" 2(2N)!Zi—
(2~)» m=i t, ~ (2s-)s~

FIG. |.Riemann
sheets of F(h). S',
5', etc., are similar
to S'. E.', RI, R ',
E~, etc., are similar
to E'. The gravy line
represents a natural
boundary across
which F(ci) cannot
be continued. See
Flg. 2.

to R'
B

(A=-1)
toR

to R2

from R

to 82

toS

to 5&
A

(h;-1)
to S'

from Ro

from Ro

V2 (1 1)
F(~)=---—L~(1-~))+i ——

4 6m. (16 2s'~~n„~ & constant (2/s.)'".

Is
The radius of convergence of (42) is s./2. It can be
shown that

Thus, the asymptotic series in (43) has a radius of
convergence =0.

sing
F(~)= ——— I'(~),

4 p

we find, by the results of Sec. 4B, the following.

(44)

(i) F(A) = f(6,0) for —1+8,~1. (44a)

(ii) F(A) is analytic in the cut 5 plane (R' in Fig. 1).
F(~') = LF(~)3*

(iii) For d,(—1,
s'I) ' sinhX

F(haiO) = f(5,0)arri Q sinh
~

— —, (44b)
X)

where X&0 is defined by 5= —cosh'. LThis follows
from (35), (36) and (31d) l
(iv) The mapping p —& d divides the p plane into many
regions each of which is mapped to the whole 6 plane
(Fig. 2). Each of these regions in the 6 plane is one
Riemann sheet of F(h). Some of these sheets are illus-
trated in Fig. 1. Notice that the natural boundary in
the p plane (=negative real axis in the si plane) becomes
a natural boundary in each sheet R', E', etc., and
8 ', R ', etc., extending from 6= —i to 6= i.

D. Analyticity of f(4,0) in 4
The 6 plane, cut along (—~, —1) and (1,~), (&s

in Fig. 1), is mapped by 6= —cosy to the strip
0(keir(w in the p plane. Defining the f(5,0) of (31b)
as F(A) in the cut 6 plane:

S. f(A,y) FOR y=0+
A. Case 4&—1

For y= 0+, b= m.—e, Eqs. (27), (24b"), and (24c) give

2sy=q(1 —B)(1—Jo(1—B)+LJe(l—B)j'
—

L 3'+" )Ro, (46)

f(a,y) =f(a,o)yC-'R, (l—B)(" }R„

Rz $l $2

A'

f8=-2~) (8=-~)
B A B
(8 =0) (8 =~) (8=2~)

&&Lv'(1—~)j'+. . . (43)

Unlike the neighborhood of 6= —i discussed above in
(iii), continuation of F(d,) to F(h+iO) for 6)1 in the
cut plane E does not lead to anything resembling the
value of f(5,0) given by (31a).

(vi) In Es the function F(A) has an asymptotic ex-
pansion (43) near the point LL= —1 /valid actually on
E. , E', and E ' since Sec. 2C yielded the expansion in
the p plane around point 8 with only the exclusion of
the natural boundary]. Now near 6= —1, p' is a power
series in (1+6).Thus, in R, (43) gives an asymptotic
expansion of F(LL) in powers of (1+6).

Equations (44a) and (44b) thus show that the asymp-
totic expansion of f(6,0) in powers of (1+6) is the
same for 6)—1 and for 6(—1. (The series has a radius
of convergelce=O )Therefor. e, f(6,0) and all of its
derivatives with respect to 6 are continuous at 6= —i.

(v) In the neighborhood of 6=1 in E', F(h) has a
branch point. It is straightforward from (31b) to
evaluate F(h) as a power series in g(1—6). The result

R R

Fro. 2. Riemann sheets of Fig. 1 in p, plane.
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i
R') =S(

J (~ r)dr S(r)S(,) =so(b+~)

(51)(2b+ + )d S( ) '

)0,)0 is 0(b '). S"For larg
e sha&l treat

t f t
Appendix C.) .

& ut it the resn since w't otux»tio"P
h Wiener-Hopisoft e

„,nmterv al

/I)) ))2 ~ ' 0 )

1)ave
{]"—Jo + p

(47)

he~ sPawhere the dou eble prime mean h t the n spac
from

pr —p) to (n.+p) .
Write

334

sjmpli citywhere we
(14c) and (16 ) .

ll with periodin '
~ f course p«io ' '

be replace~
~ tom'0

(—1)"cosno.(+ I
o")= &

2c

=e eo'+e40 +''' i
—eo epo 4

' (48a)
S)(p)+ Jp(o —r)dr S)(r)

S ()=Z.(b+ ),Jo(0 r)dr—p r =Sp(~)+ (52a)

1 cos(0 —r)
(~+ t

J—p"((~+r =—
2

p 20 —7 40'—7

Then

) g
—— epepopp+O(p')q(6,0)j—= e()27ry+ epep2 pp p'Lf(~,y-

sinh)

S2 o +(48b)

(52b)Jp(2b+a+r)dr So.(r),

Jp(~ r)dr -S2(r)

etc. , (52c)Jo(2b+o+r)dr Sg(.r, etc. ,
0

(53o(y'), (49)= 2preoy+
3 8p

S=Sp+S)+S2+ ' ' '.
(24b') and (24c) becomeIn terms of 5,

iseveniny. n

ion is not equal to f,ye continuation is
cus and t e ac

ti bl
h sica mea

'

and orterm yy' for the magne
Iattice-gas pro em

B. Case d.=—= —I

S(~)do. ,(pr —p y= (54)

CLf(~,y) —f(~ 0)j=2 Rp(b+o)S(o)do (55.

2~~—7r(b+o )

To solve (52a) we wnte

Equation (24a) means Ep(b+~) =
1+e—2m'(p+n)

(n|R') =Ep(n)— J.( -~)egal '

where00

R'),
Thus,b

Jp — —8) accordingJo' 8)=Jo n-ave written (n~ Jp
R') ito (16b). Clearly (n i n.

r oe—pm e pe—par 56)

(57)

=2 [1---—l'-'-

(-)2 1'""(-1)",Sp(~)=P T
sM

(niR')=Zp(n)— Jo(n P)ddt I
R'— where

e-(2n+)) ~r (59)Jp(o r)dr T.(r =e-—2'-(~)+

n. The transforme of T„iener-Hopf equation. e
Jo(n+P )dl(&I R') (5o)
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is known through Appendix D: C. Case —1&4(l

T.((o) =

Now

e'"'T (o)do

G, (~)G [—2(2m+ 1)~j

(2n+ 1)n i(o—
=independent of b. (60) R p(b+ o)=.

244 coshs(b+o)

The method here is the same as above. In fact (50)—
(55) are applicable to the present case as well.

[Jp(2b+o+r) now falls off exponentially with b. See
Appendix C.j In place of (56) we have

00
00

Sp(o)do. = Q 22r( —1)" e~' '("+' T)„(0) (61)
0 n=0

7r
D.e—ssss

l 8e—assis+. . .] (56f)
p

00
00

gp(b+(r)Sp((r)d(r —P 47r2( I ) ss+ssse —ssb(2ss+2m+2)

0 n 'if' 0

XT [in (22fi+ I)j. (62)

Thus, for large b, if we first neglect Si+S,+, we
obtain

y—2[/To (0)—VTi(0)+ i bT2 (0)—

where

Thus,

where

i =e " s=ir/(2f4).

p n=0

(57')

(5g')

f(~ y) f(~ 0)—=2~I VT—o(i~) t'Tp(»—~)
—f4Ti(iir)+0(f') j. (64) Similarly,

The correction terms Si+S2+. will introduce terms
of the form n

(const)
b (lni)

into y, and terms of the form

=exp[—(222+1)soj (59'.)

G+((p)G [—i(2fi+1)sj
e'"'T (o)do = (60')

(222+ 1)s—i(o

( —~)y=-[t To(0)—l'T (o)+ . . j.
p,

p2 g2

(const)
(lni')'

~Lf(~,s) —f(ssP)] i( )Ll'=r, (i—s) —('r (iis)

into f. We thus obtain

I (~—I)
f=y [I+O(y')

n Tp(0)
+O(y'"( -") ')g, (65')

sinp, Tp (is)
(~-I )'

[T,(0)j'
Xy'I I+O(y')+O(y"'. — -')j (66')

n Tp(iir)
f(~,y) f(~ 0)=y' — +O[y'l(lny) j (66)

2[Tp(0)j'
The coefficient of y' in this formula can be evaluated by
using (60). It is f A,y) f 6,0 =—
2r G+(fair) G (—in.) ir2

2 [Gp(0)J' [G (—iir)$' 22r
Now

G (; ) Tp(is) G+(is) G ( is) s' — Gp(is)s

4 [G,(0)]2[G (; )]
' [Tp(o)7 [G+(0)1' [G-(—is)7 2s [G+(0)7G-(—is)2

Using (D5) and (D6) this becomes

2LG+(0)j' gf (~—
) )

The corrections due to Si+S2+ will be treated in

y[2T, (0)7
—i+.O[yf(iny)~ (65) APPendix E. One obtains

4 LG+(0)3' 4 G+(o)G-(o)
(68)

f(~,y) f(~ 0)=—n. (n —Ib) sing,

This result has been conjectured by Griffith" on the
basis of a numerical solution of (52a). Xy'[I+O(y'-)+O(y4~( -" ')j. (69)
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ically decreasi gThe coefftcient of y, as follows:e s ecial va ues arecreasing p $om p

1, ~ .(A )—f(A,0) =~'/8oeflicient of y in ~~ y
' 8 7

~/g,
0,
0,

g=0
Q=1-
g)1.

f(~,y) pOR @=1

nd y for small & byIt is easy to evaluate f
Qne thus obtains

~ ' f (6a) in the variables p~ giteration o

proof:

y ysn 1 y +1
d one obtains (A5).over Q an

ApPENDIX 8

ator i

—5nX Q1osheA) '=o

then sum over +, yield& g

4c. To doove the inequaltty 1~e ~he'll now Prove . . t ral. EXI1and theert ge n into a»th s we ftrst conv
'n the summand odenomln

f(A,y) = 4+ 2 48

y. f(o,y)

—y)
1Zo(n) ——.=

+OL-(1—y)'j
sinhX

coshy —coso.

Lsarne with )I ~ 3

0 (6a) gives 2s'p=1

1 7ry

f(0 ) ———cos ~

sinh~~
(E2)

cos(7I +/ )cosh'~ —cos

known '"'"""'"'"""""-"-h-.b--b- 6,:---dThe results of this paper have een
in an earlier publication. '

APPENDIX A

inte ra i nd all positive oddinte ration loops aroun a p
cou

'
. Detour to I=+0+ sy:counterclockwise. eintegers e cou

1 11 " " dy
— i sin2y)

2 2 s cosh' y cos2y)i —cosnip COS eely

e'~~dn 2s- sinhL(s —p)71

to coshQ —cosp sing sinhmy

" e' ~de

coshn cosh(s.y/2)

~
~

1l' eiAcLd~

e
coshX —cosQ sin hx

= ln2.

We list here some use u1 formulas:

(A1)

(A1')

(A3)

dy sin2y)

oo ip cosh7l y cos2yA, cosQ

—te+ip-oo—ip

coshsy cos2y)I. —cosn—~—'0 ~+io

sin 2' . (E4)

, R ( ) 's a contour integra .e ral. Its value can beTllusq Ep cE is a
readily evaluated:

&o. (B5)XII(n) =- sech —(n+ 2~)
2X~—~

,
'2X

is e uation with its complexTake the average of this equa
' '

corn lex
conjugate

dx

(1+4x') cosh (s.x)
(A4)

+ ~ ~ ~

1
+ +

y+1 y'+1 y'+1

(y»). (A5)

an Phys. Letters 20, 9 (1966);21,' C. N. Yang and C. P. Yang, Phys. t:
719 (1966).

APPENDIX C

K' —K'+.Por0(a, —(ni KiP)&0, thus J=-
h d.

'
f

s 2 sinh s.—p)y coshpy and the
we write t e

eng i ( ) i pv

( ).
an then be per orm

(vr —p)y=7r annd using the Fourler i
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Thus, @re obtain

where

(nl JoIP)=
sins

p 7x —„(n——g) (s —p) 'j—cosa) coshLmx)(2p)-'jSp(n —p) (cosh n qn ——g s —p
(C1)

(C2)

For d = —1, we write (16b) as " expLiv(n —)3)—s I v I3
(-IJ.I~)=——

dg 4
(-IJ.I~)= ,

47r „ cosh(v/ )

h A1' . The y integration is t een trivial and we( /2)) ' as a Fourier integral through ( ).and then express Lcosh(v~ as a
arrive at

(C3)

For 6(—1, weprocee to read t t the sum in (16c) similarly.

expLie(n —p) —Riel j
h(), )

" exptin(n —P)—Xlnl+ie2g) ~—'j
cosh'

+c.c.—1 (0,
cosh' 1—expLi(n —P)—X+i2xiXm

—'j (C4)

IJI ) o
racket is always &0.

find the asymptotic form for e 0 or a
n —P we take first the case—)

in (16a) has poles at

use (16b) and integrate by parts:

f(v) «»(v4)dv

I, and v„'=—(2e—1),
2p

(I=any integer) .

J I ) as a sum over the residues at the po es
0. H (s —p p 1s irra iona,

successive si p po
b 'g 'q . . the successive ou eaXls De Zgy) Zq2)

' '
)

ixis, Then for n)P,

(CS)

1
= ——f'(o)- —,

p2 0

= ——f'(o)+—,f"'(v)

00

+.
0

f"(v) cosv tv

f('& (v) cosvydv

~ ~ ~ (C7)

f(v) = 1/(1+e'x) and q =n —P.

Carrying this proce ure od to the dominant term we obtain

1
+0

I
. (CS)

1

4 ( —I))' ( -~)'

gsi n gsi e

and gs; are numerical constants. (C6)
f ( I

J IP) for large n —P.
d t l

s the as totic form o o.

Notice &; and x); are all ) an are
'

of s./(m —p), or s./2p.
To find the asymptotic form of Js or

t Ft
'QL&nl'WgBÃ'l

APPENDIX D-

qu
' ' ' -Ho f e uation. Its solutionEquation (59) is a Wiener- op q

can be foun y ad b Wiener-Hopf factorization. ne

Us . Mat. Nauk (N.S.) 13, No. 3 (33), pp.'M, p
3-120. LEnglish txansl. : Am. Mat .
22i 163 (1962) j
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delnes

e'" Jo(a)do.

In the following, the b dependence of all quantities will
be only through their dependence on f and 8. 0(qu. )
means "of quartic order in 8 and i'."

smh (m
—2p) &o

, (—1(h(1)
sinh L (m

—2p)(u]+ sinh (m(u)

i
(ti= —1) .

1+el~I

One then factorizes

Eo(b+o) = i(—e " P—e "'+0/4)]',
p,

(F4)

S,(o) =-i.(W,—PW, .+0(i.4)], (E6)

Jo(2b+o+r) =ugPe " "+w&8'e " "+0(qu ),. (E5)

where

=G+(~)G-(~),
1+Jo((o)

where W, (o.) satisles

W.(o)+ Jo(o r)W—.(r)=e *', —(x&0). (E7)

G+(co) LG (cu)] is analytic in the open upper
Dower] half-plane, continuous and different
from zero in the upper (lower) half-plane
plus the real axis,

and
G+(~) =1.

For our problem,

G+(~) =G-(—~).

~ =~(2+~)'

(D3) Substituting (ES) and (E6) into (52b) we can solve
for Sg-.

(D4)
Sq(a) = ——i'fuqi2(s; s)W,+oq8'(t; s)W~+0(qu. )], (E8)

(D5) where
Therefore,

(y; x)= e o W, (o.)do. (E9)

= 1+&o(0)= (—1(h(1);
LG+(0)]' 2(~—t ) Using (60') we 6nd

1
2 (~= —1) (D6)

(y; x)=
G+ (ty) G—(—i&) G+ By)G+(~&)

=(x;y),
For a general Wiener-Hopf equation, Krein' described

a method of solution which involves lengthy calcu-
lations. For the special case of Eq. (59) where the
inhomogeneous term is a pure exponential, it can be
shown, by a variation of his arguments, that the
solution is given by (60).

APPE5'DIX E

We concentrate on the case —1(h(1.To find the
correction due to S~, we introduce some notations:

It is clear that
(x+y& 0) . (E10)

(m- —p)y =

S2(o)= fO(quartic polynomial in i and 8),
S3(o) —f0 (6th degree polynomial

in i and 8), etc. (Eii)
Thus, by (24b')

s=~/2p, t=sr/(~ p), —
f=e " 8=e " (E1) —ug'(s; s) (0; s) oi8'(t; s) (0; t)—+0(qu. )]. (E12)

Jo(a)=u~e '+o~e '+gee " +o2e "+, (E2)
By (24c),

where we have assumed (7r—p)/tl, to be irrational and
have used the expansion (C6) with no double poles. kCLf(~~~y) f(~~0)]
The coeKcients N~, e~, etc., are numerical constants:

1 (n —p, )m
Qy=+ —cot

2p- 2p

X'P

tan
2(vr —p) ~—p

etc.

Ro(b+o)S(a)do

$(s; s) —21'2(3s; s) A+2(s; s)—2
p —r, g8'(t; s)'+0(qu. )]. (E13)
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Thus,

(0; 3s) (t; s)(0; t)
{=y~+yi' +u) (s; s) +yoe'-

(0; s) (0; s)

+ygo (qu. ), (E14)

Novr by explicit construction,

r(1+~) ~) -)/2

g*=
1"L1+x(s.—p)/7rgrP, +x(p/s-)$ xi

gm —t4P/(~ —y) —y 4y/(~ —p)+0(qu )

where

(E15)
( p, xy x—p,

Xexp sin~ 1————ln
p

&0. (E21)

t (~—t)
n(0; s)

(E13) gives, in terms of y,

f(a,y) f(6—,0)=A Oy'{1+y'd&+y4»( -»d&

+o(y)+o(y"'= »), (E»)
where Ao was given before in (69), and

When /a/(v. —p) =irrational, dm/0. Hence if t//(s —p)
= irrational,

4p
lim —

~ f(y,D) = finite for n &2.+
dye p

4p
for e & 2+ . (E22)

s.(0; s) (0; s) (s; s)

Writing G+(ix) =g we obtain from (E10)

~-4'/(~ —P, ) 2~2
'Vy gt ~

(t+s)'t-2gsgo-

-p, (s —p) 2 2(0;3s) (3s; s)
di= +u((s; s)—2

v-(0; s) (0; s) (s; s)

p(s.—/a)
'/" ' /') 2(t; s)(0; t) (t; s)'

(E18)

(E19)

(E20)

It is not dQ6cult to show that (E22) is valid also for
4p/(vr —t() = rational, but/ an integer.

For integral values of 4t(/(s —p), sometimes f(y, h)
is analytic at y=0. An example is when 6=0, 4p/
(s' —p,)=4. See Sec. 7. Other integral values of 4p/
(v' —t() are under investigation.

(E22) shows that for 4t(/(s —)a)/integer, the zero-
temperature susceptibility X(3C) as a function of the
magnetic Geld has some high-order derivative (with
respect to K) -+ &~ when K~ 0. This will be dis-
cussed in a later paper.


