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if the #’s satisfy (41). (41) defines the #’s as algebraic
functions of A. Thus, in complex A space except at the
poles of the #’s and at points where ¥'=0, ¢ is an
eigenstate of H. These exceptional points are finite in
number. We can obtain a correct eigenfunction ¢’ at
these points too by properly normalizing ¢’ and ap-
proaching these exceptional points. Hence, Theorem 6.
(In fact the above proves a generalization of Theorem
6 to complex A.)

We can also prove the following theorem, which
clarifies but is not essential for later discussions.

Theorem 7 : The p’s are analytic in A in an open strip
containing the semi-infinite real axis A<1.

Proof'8: (a) Starting from A=0, and moving along
the real axis towards A= — o, let A=A, be the first
singularity of the #’s, if any is in the way. We can form
a simple closed path that loops around A, and return to
A=0, which does not pass through and does not contain,
inside of it, any other singularities of any #. Now E(A)
is analytic along the real axis, by Theorem 4. Further-
more, it is a polynomial in %. Thus, E has no singularity
on or in the path and it returns to the original value
when A goes around the path back to A=0. Thus, ¢/
returns also to the ground-state wave function at A=0,
except for a possible multiplicative factor. This wave
function is a determinant. Consider its values when

18One can rearrange the theorems so that the topological
theorem is not needed: After Theorems 1 and 2, 4, and 5 the con-
cept of # of (39) is introduced, together with the ¢’ of (43),
leading to Hy'=FEy’ for complex A. One then proves Theorem 7,
using in part (b) of the proof the discussions following Eq. (38).

This proof of Theorem 7 then automatically establishes (18) for all
A <1, with all ’s within the bounds (8) and (9).
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wi=1, x5=2, -+ -xm=m—1, but successively x,=m,
m—+1, m+2, ---. Its values are in the ratioof 1, 3_ ,
PR DIISET Thus, all symmetrical poly-

nomials of the #’s return to their original values around
the loop. Hence, the #’s are merely permuted in going
completely around the loop. Call that permutation
P(Ay).

(b) For 0SA<1, u; is on the unit circle. By analytic
continuation, it must remain so for A;<A<O0. Thus,
p;=—1lnu; is analytic for A;<A<1. For 0=A<1,
Theorem 1 shows that (18) is satisfied. Continuing all
#’s to values of A<O0, (18) remains satisfied until either
we reach the point A, or the p’s go outside of the limits
defined in (8) and (9). The latter alternative, however,
does not obtain, since before the p’s reach the boundary,
the corresponding point must go out of the surface of
the cube (37). Part (b) of the proof of Theorem 3
demonstrates that that is not possible. Thus, (18) is
satisfied for all A;<<A<1.

(c) A; is not a pole for the s, since |u|=1 for
A= A;+0. Since each u; is algebraic in A, it has a
definite value at A=A;. (18) shows that at A=A, all
p’s are unequal. Hence, all #’s are unequal.

(d) Now tighten the loop of (a) around A;. Since all
u’s are unequal at A;, the permutation P(A;) must be
the identity. Thus, 4; is not a branch point of any .
Contradiction.
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The ground-state energy 2f per lattice site for an infinite system is studied as a function of A and of the
magnetization y. Analyticity properties of f(4,y) are proved. The behavior of f(4,y) at and near y=0 and

y=1areinvestigated.

1. BASIC EQUATIONS

N Paper I' it was shown that if A<1, the ground state
for a fixed 91 (=No. of sites) and m (=No. of down
spins) is of Bethe’s form (I7), with p; satisfying (I18),
1C.N. Yang and C. P. Yang, preceding paper, Phys. Rev. 150,

321 (1966). Formulas and references there are referred to as
(118), etc. The notations are the same.

or
pi=2x;(1)—9! gfx O (pi, 1) - 1)

Since p;=p; if j>i, by continuity argument with
respect to A, we see that p1<p2<ps--- <pn for all A.
As N, m— o at a fixed ratio, the p’s increase in
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TABLE 1. Values of Q and b for y=0 or 1. (b=Iimit in « inte-
gration.) u is defined by cosu= —A, 0 <p <. It is proved in Sec.
2 that y decreases monotonically with increasing Q.

A< ~1 A=—1 —1<a<1
1 0=0 0=0 0=0

G=0)  (=0) (6=0)
y=0 R G-y

number, but always lie within the interval (I8) or (19).
Let us assume that the number of $’s in an interval p
to p+dp approaches

Np(p)dp. @)

(We shall return to a rigorous proof of this assumption
in a later paper.) (1) then becomes

p=2mf— / O(,9)r(9)dg, )
where f=1/9. Clearly,
af/dp=p. “)
Thus,
90
1=2mp— / —p(g)dg. ®
ap

This integral equation was the one found and solved in
Refs. 14, IS5, 16, I8, 19, and I10 for the special cases
illustrated in Fig. 1 of I.

In (3) and (5) we did not fix the limit of integration.
The theorems of I show that the p’s are distributed
symmetrically with respect to p=0. Thus, we assume
that in the limit we are now considering, the integration
extends from —Q to Q without any gaps, i.e.,

Q 90
1= 2mp— / PR (60)

—-Q

(We shall return to a rigorous proof of this point in a
later paper.)
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We have obviously,
m Q
sa-n="= [ oop, (6b)
N J-q

and by (I11),
A A Q
FAp)=— = ()= f o(p) cospdp.  (60)
4 2 e

Equations (6) are the basic equations which define y
and f as functions of Q. We shall show that y is a
monotonically decreasing function of Q for Q between
the limits tabulated in Table I. Thus, for given y in
the closed interval (0,1) one can solve for Q uniquely,
thereby obtaining f(A,y).

2. PROPERTIES OF THE INTEGRAL
EQUATION (6a)

In this section we discuss Egs. (6) with Q as a
parameter.

A. Transformation p — «

The integral equation is simpler after the trans-
formation p — o introduced in (I21):

dp 1 rba0
R(@=——— | —R(@)dsB, (7a)
da mJ—b ﬂ
where
Rda=2mpdp 8)

and b is the limit of the a integration that corresponds
to the limit Q in the p integration. By definition,
dQ/db>0. The functions dp/da, 30/98 were given in
(I21). They are retabulated in Table II for easy
reference. Equations (8) and (6b) give

r(l—y)= R(a)da (7b)
Equation (6¢) leads to -
1 dp
=———— o — 7
7y = [re(2), 0

TasLE II. The functions dp/da and 96/08 in (7a) and the constant C in (7c). For A<—1, A>0 is defined by —A=coshA.
For —1 <A1, uis defined to be between 0 and 7, and —A =cosp.

A<L—1 A=—1 —1<Aa<1
d sinhA 4 sing
(a|&)=—= —>0 —>0 —>0
da cosh\ —cosa 14402 cosha—cosu
a0 sinh2) 2 sin2u
27{e | K|B)=—= —— —— _—_—
B cosh2\ —cos(a—f) 1+ (a—pB)* cosh (a—B) —cos2u
27 27
C= 4 —_
sinhA singu
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TasLE III. Eigenvalues and eigenfunctions of —K. For definitions see the caption of Table II.
The integration limit discussed here is defined as b¢(A) in the text.

A<—1 A=—1 —1<a<1
b=m b= b=
sinh( (r—2u)v]
Eigenvalue of —K — ¢ 2In —e Il S
sinh[7y]
(n=all integers) (v=real No.) (y=real No.)

Eigenfunction gina

ei'ya gi’Ya

where C was introduced in (I121p) and retabulated in
Table IIT.
We shall sometimes write Egs. (7) in operator

notation:
R(a)=(|R),
dp/da={(a|¥),
1 96
— —={(a|K|g).
2w B
Then
R=:—KR, (%)
r(1—y)=7"R, (9b)
A A ! TR ©
f( yy)____;__c—‘i ) (')

where 5 is defined so that
(an)=1,

and the superscript 7' means the transpose. These
operators are defined within the range a=—5 to a=2b.

It is obvious that (9) can be expressed as a varia-
tional principle: R is a vector that minimizes the
quadratic functional

$R7R+4R"KR—R7E.

[See Sec. IIB for a discussion of the eigenvalue of
K showing that 14K is positive definite.] The mini-
mum value of the functional is

—3R7E=3CL7(4)+14].
B. Spectrum of K and Existence of Resolvent J

For A<—1, and b=, the kernel —K is cyclic. For
—1=A<1 and b= =, the integration extends through-
out the real a axis and

(e| —K|B)=function of a—g4.

For these cases the eigenvalues and eigenfunctions of
—K are trivially computable and are exhibited in
Table III.

We define a function b, of A:

A<—1,
—1=A<1.

b0=7l'
(10)

be= o]

Thus, for b=b,, there exists a number ¢; so that the
eigenvalues of —K are all <¢1<1. For 0=5b6<b,, the
eigenvalues of —XK must therefore also be =c1<1,
because shrinking the limit of an integral operator
never extends the range covered by the eigenvalues.
Thus, the Fredholm equation (9a) has a unique
solution R for any & and A if A<1, 0=56=5,. We shall
in this paper only consider values of 4 in this interval.
We can therefore define a resolvent operator J so that

1=(1+K)(1+J) (11)
0=K+J+KJ=K+J+JK. (12)

J of course depends on A and .
The Fredholm equation (9a) can be iterated to give

R=[1-K+K—Ks+---J¢. (13)

or

C. Proof that R(a) >0 and dy/db< for 0=A <1
For 0= A< 1, we have, by inspection of Table II, that
—(|K|B)z0, (a|£)>0.

Thus, R(ax)>0. Furthermore, when & increases, the
range of integration increases and it is obvious from
(7b) that dy/db<0.

D. Ro(e)=R(a) when b=b,

It is easy to compute R when b=, —1<AL]1, by
taking the Fourler transformation of (9a). One thus
obtains for —1<A<1, b=

2 ( ) 0 ei‘yad,y
a = =
’ ,/,w 2 coshuy 2u cosh (wa/2u)

>0. (14a)

Similarly, when A= —1, b=,

Ro(a) = i

0. 14b
cosh (ma) > (14b)

For A< —1, b=, one obtains by the same method
© eina

Ra((x): Z ”—>0

n=—0 2 coShu\

(14¢)

The inequality in this equation is proved in Appendix B.
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E. Jo=J when b=b,
From (12) it follows that
J=—K/(1+K). (15)

For b=b,, the eigenvalues of K have been exhibited
in Table III. Thus, the eigenvalues of J, (defined to be
J for b=5,) are known. We have then directly

—1<A<1,

1 )
@llly=—— [ erepiy
21 J _
sinh[ (7 —2u)v]

; (16a)
A . sinh[ (w— 2u)y]+sinh[7y]
1 ]
lly=—— [ vy (16b)
21 J 1+l

and

AL —1, .

(@] Jo| B)=——2 ¢ita=b)n . (160)

2 ¥ 1 e2Mnl

It will be shown (in Appendix C) from these that

(@]Jo|8)>0 for A>0, a7
(@]Jo|B)<0 for A<O. (18)
F. Equation for R'= (R Extended)
In the integral equation
b
(@|R)=(al&)— | (aIK|B)dp(8|R),  (19)

—b

the functions {a|£) and {(a|K|B) are defined for all «
(Table II). Thus, we can regard (19) as defining
(@|R) for all « between —by and &,. To avoid confusion
we shall indicate with a prime the extended operators
and vectors. Thus,

R'=¢—K'BR, (20)

where («|R’)=(a|R) for —b=<a=<b; and B’ is a pro-
jection operator:

| B)={(|{) for —b=a<b
and
(@|B'Yy=0 for b<a=zb, or —b=a<-—b.
Thus,
T'+K)R'=¢+K'(1'-B)R’. (21)
Now
U+INA'+K)=1" (Jo'=Jo). (22)
Hence,
RI= (l,+J0/)E/_JOI (II_BI)R/ .
But
@'+J)E=Ry, [R/=Ro]. (23)
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Thus,
R'=R/—J/(1'—B)R’. (24a)

This is an integral equation for {(a|R’) with a outside
the interval (=&, b), but within (— by, bs). We can also
write down equations in terms of such (a|R’) for y
and f:

() —1<A<1. bo=c0.

We integrate (20) over all «. Now

/°° do{a| €)=2(r—pu) [see Table IT and (Al)],

and
T2

/“’ do{a|K|B)= (see Table III).

—w T

Hence,

©

dafa|R")=2(r—p)— (x—2u)(1—y).

—o0

Subtracting (9b) from this equation, we obtain
—b
2r—ily=n"(U=BIR= [ datalR)

+ f da(a|R’).  (24D")

(li) AL —1. bo=7l'.
We integrate (20) over all « between (—, w). Now
we have

/ " daa] B=20 [CL. (AD)],

-

" dafalK|B)=1.

Thus

2

/ da{a|RY=2r—7(1—y).

-7

Subtracting (9b) from this we obtain

—b

27ry=1"T(1'—B')R'=f da(a|R")

-

+ / " da(a|RY).  (24b7)

To obtain an expression for f we use (9¢c) and (24a)

—C[A/4+f(Ay)]=¥TB'R'=¢TR'—¢7(1'—-B")R’
=¥ TRy — gryy (II_B/)R/
—¥T(1'—B)R’.
Using (23) we obtain, since Jo=J,7,

—C[A/4+f(Ay)]1=¥E"R/—R/TA'—B)R’. (25)
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Putting b=b, in (24b’) and (24b”’) one obtains 1’=B’
and y=0. Thus, (25) leads to an expression for f(A,0).
Subtracting that expression from (25) we obtain

CLf(Ay)—f(4,0)]=R/7(1'=B)R’,
which is valid for all A<1.

(24¢)

G. Proof that R(a) >0 and dy/db <0 for A <0

For A<O, the eigenvalues of Ky are between -1
and 0 (Table III). Hence the eigenvalues of J, are
between —1/2 and 0. So must be the eigenvalues of

1'-B)Jy1’'—B’). Now
1'—-B2=1'"-P".
Hence writing (I’—B’)R’=Y’ we obtain
S'=1'-B)Ry/—(1'—B)J,/(1I'—B)S". (26)

This equation for S’ can be iterated. Using (24) we
then obtain

R'=Ry'—J¢'(1I'=B")Ry+[Js' ('~ B) Ry’
—[J/U'—B)JFRs/+---. (27)

In the o representation, all elements of Ry/=R, are
positive (Sec. 2D), and all elements of Ji'=J, are
negative [ (18)7]. Thus, (27) shows that

(@|R)>0. (28)

Furthermore, each term on the right-hand side of (27)
decreases as b increases. Hence,

d{«|R")/db<0.
Equations (24b’) and (24b”") then show that
dy/db<0.

(29)

3. ANALYTICITY OF f(A,y) IN y AND IN A

At b=0, it is clear that R’=¥, and that y=1. At
b=by, ’—B’=0. It follows from (24b’) and (24b”)
that y=0. For 0=6<b, y is monotonic in & with
dy/db<0. It is clear that the solution R(a) of the
integral equation (7a) is analytic in & for 0=<b<b,.
Hence, y and f are analytic in & in this semiopen
interval. Thus,

f(Ay) is analytic in y for 0<y=1, A<1. (30)

By using the variable p or the variable @ introduced in
(125), one can also prove similarly that R is analytic
in A for fixed b. Hence, ¥ and f are analytic in A for
fixed &. Thus,

f(4,y) is analytic in A for 0<y=<1, A<1l. (30"

Thus 2f(A,y)(=the ground-state energy per bond) to
the left of the point A in Fig. 11, an even function of y, can
only be nonanalytic in y or A along the line y=0.

Actually along that line, to the left of B (i.e., for
A< —1), the function f(A,y) for y=0 and fixed A can be
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continued to y<O analytically. [To see this we remark
that, for A< —1, the discussion preceding (30) extends
also to the case b=5by==.] But the continuation no
longer is equal to f(A,y). On the other hand, between
A and B (i.e., —1=A<1) the function f(A,y) for
y20, fixed A, cannot in general be continued to y<0
analytically. The explicit behavior of f(A,y) at and
near y=0 will be studied in Secs. 4 and 5, and in
Appendix E.

4. f(A,0)
A. Explicit Formulas for f(A,0)

As mentioned in I, the value of f(A,0) for A=—1
was given by Bethe and Hulthén,'® for A<—1 by
Orbach™ and Walker,”” and for 1=4, it is obvious™
that f(A4,0)=—A/4.

We are now in a position to calculate f(A,0) for all
A, and to discuss it as a complex function of A. The
calculation is straightforward. One substitutes the
explicit expressions for Ro(a), given in (14), into (7¢),
obtaining

124,
f(4,0)=—4/4; (31a)
—1<A<T,
cosu  sinu
fa0=—— =
4 N
© u sinudx
X/ ; (31b)
—w 2[ cosh (7rx) J[cosh (2ux) — cosp ]
A=—1,
f(4,0)=1—1n2; (31c)
A< —1,
coshA  sinhArA w 1
fa0)=——-— ——[—+2>\ 2 J . (31d)
4 A L2 n=1 1-4-¢2\»

The definitions of A\, u were given in (I21).

B. Analytic Continuation of Integral in (31b)
We define, for 0<u< 2w,
® u sinudx
ve- .
—w 2[[cosh (7rx) J[cosh (2ux) — cosp ]

(a) For 0<u<2m, the integral is well defined and
analytic in u. The integrand has poles at x=1(+n)
and x=41/24mni/u. As u is changed, these poles
move. By distorting the integration path one can study
the analytic continuation of ¥ (1) to complex . It can
thus be proved that ¥ is analytic in the whole complex
u plane except for a cut on the negative real axis. By

(32)
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the same method one can also prove that

V() =LY w7, 33)
V()Y (—p)=—2r 5, [sin’r—”}
n=1 M
for upZreal, (34)
A sinh\dx
V(—iN)= /
—w 2(coshmrx) (coshA— cos2x\)
w0 1
iy
1 sinh (72/\)
(A=real>0), (35)

where the first term on the right is real, the second pure
imaginary.

(b) We can convert the integral in (35) into a sum
by completing the path of integration to enclose the
whole lower half-complex x plane. The residues at
¥=—1/2z4mn/\ cancel. The residue at x=—i/2—in
(>0) gives a contribution

A sinhA(—1)» —)\(——1)"¢ AM—=1)»
2 sinh(vi4-)) sinhhe @ —1 | @mn_q’

The residue at x= —1/2 gives a contribution

A
2\ cothA=—+ .
2 er—1

Thus, (35) gives for real A>0

A ( 1):1
real part of Y (—i\)=-—2\ Z .
2 n=1 62")‘ 1
By (AS) we have
1
real part of YV (—i\)=- +2)\ Z . (36)
n=1 1+82)‘"

(c) The series > ®,—; (sinnz)~! is convergent for all
z¥Freal. The real axis forms a natural boundary across
which no analytic continuation is possible. Using (34)
we see that ¥ (u) has a natural boundary along the
negative real axis.

C. Asymptotic Expansion of ¥ (u) near u=0

(a) Consider a pie-shaped section S in the lower
complex u plane:
|| <w, —68o<argu=<0, where &y=m—ce. (37)
Consider the straight line P in the complex x plane:
= leim—o)2

l=— 0 —> w,

For p in S, the line P is always free of poles of the
integrand in (32). Thus, we can distort the integration
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path to P. Now along P the function

M Sing
—_— (38)
cosh (2ux) — cosu

and each of its derivatives with respect to u is bounded.
Thus, by the generalized mean-value theorem, for any /,

(38)=co(x)+c1(x)u+- - - +er(a)u!4dpputHt

where |di;1] <constant. The functions ¢,(x) are real
rational functions of x, with denominators which are
powers of (4x24-1). Thus,

l ca(x)dx dip1(x)dx
V= w [ S g [ T
n=0 J p 2 cosh(wx) p 2 cosh (rx)
and we arrive at an asymptotic expansion of ¥ (u) in
the section S:

l
V() =3 what-0@uH),

n=0

(for u— 0) (39)

where /%, is real.
Using (33) we see that the asymptotic expansion
(39) holds also in the complex-conjugate region of S.
We can start with an integral for dy/du and go
through the same reasoning as above, obtaining

dy 1
—=2 " Y, +0(!)  (for u—0).
dl;, n=0

(40)

(b) To obtain the coefficients /, explicitly we express
(32), for real values of u, in a different representation,
obtained by writing the two factors in the integrand as
Fourier integrals with the aid of (A1):

¥ ()= / p tanhy :I
M Y
[ tanh (ymr/u)
* ® tanhy
=/ dy[l—tanhy]—Z/ —dy. (41)
0 o eTle—1

The first integral is In2. To evaluate the second, let

tanhy= f ay?nt (42)

n=1

be the power-series expansion of tanhy near y=0. By
the generalized mean-value theorem, for all real y,

l
tanhy=73" a,y*" 14?3,

n=1

where 8, is proportional to the value of some high-order
derivative of tanhy at y'=6y. Clearly,

|8:] < a constant dependent on /, not y.
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Thus,
1 0 27n—1
Y(u)=In2-2 3 o, —————dy-+0 (uH?)
n=l 0 eymin—1
/1
=ln2—-% Z (__>aanu2n+O(#2l+1) ) (43)
n=1l \72,
where
) xZn‘-l
B,=Bernoulli’s number=4# / dx.
0 e21rz_1

Comparing (43) with (39) we obtain %,. Thus we
conclude that (43) is valid for u in the union of the two
pie-shaped sections § and S*. Furthermore, (40) shows
that (43) can be differentiated term by term.

Now
22n)! » s1\2»
8 ()
2m)2n m=1 \m

The radius of convergence of (42) is w/2. It can be
shown that

2(2n)!
Qmy

|@n| > constant (2/m)2».

Thus, the asymptotic series in (43) has a radius of
convergence=0.

D. Analyticity of f(A,0) in A

The A plane, cut along (— o, —1) and (1,), (R°
in Fig. 1), is mapped by A=—cosu to the strip
0<Reu<m in the u plane. Defining the f(A,0) of (31b)
as F(A) in the cut A plane:

A sing
F)=————Y(u, (44)
4 “
we find, by the results of Sec. 4B, the following.
(1) F(A)=f(A0) for —1=A=1. (44a)

(if) F(A) is analytic in the cut A plane (R in Fig. 1).
F(a*)=[F(a) 1~

(iii) For A<—1,
© w2\ ! sinh\
F(Ax10)= f(A,0)£mi 3 (sinh——) _—
A A

n=1

(44b)

where A\>0 is defined by A= —cosh\. [This follows
from (35), (36), and (31d).]

(iv) The mapping u — A divides the u plane into many
regions each of which is mapped to the whole A plane
(Fig. 2). Each of these regions in the A plane is one
Riemann sheet of F(A). Some of these sheets are illus-
trated in Fig. 1. Notice that the natural boundary in
the u plane (=negative real axis in the u plane) becomes
a natural boundary in each sheet R!, R?) -- -] etc., and
R, R etc., extending from A=—1 to A=1.

(v) In the neighborhood of A=1 in R° F(A) has a
branch point. It is straightforward from (31b) to
evaluate F(A) as a power series in 4/(1— A). The result
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R®= CUT A PLANE
toRY 1
' R I toS
o= (A=) .
1oR tos
Fic. 1. Riemann
sheets of F(A). S?,
S3, etc., are similar
to S. R?, R® R, R
R™2, etc., are similar R
to Rl The wavy line "R .
represents a natural ~2 o
boundary across t (A1) (A=1)
which F(A) cannot from R®
be continued. See
Fig. 2.
st
to 52 from R®
' 8] A
ls? (A=-1 (A=1) &fmm RO
is
F(a) : \/Z[\/ (1-4)] -
A= — — — — 1—A 3_|_(_____
4 6n 16 2x?
XV(A=a)+---. (45)

Unlike the neighborhood of A= —1 discussed above in
(iii), continuation of F(A) to F(A-+10) for A>1 in the
cut plane R® does not lead to anything resembling the
value of f(A,0) given by (31a).

(vi) In RO the function F(A) has an asymptotic ex-
pansion (43) near the point A=—1 [valid actually on
R° R and R~ since Sec. 2C yielded the expansion in
the u plane around point B with only the exclusion of
the natural boundary]. Now near A= —1, u? is a power
series in (1-4-A). Thus, in R°, (43) gives an asymptotic
expansion of F(A) in powers of (1+A).

Equations (44a) and (44b) thus show that the asymp-
totic expansion of f(A,0) in powers of (1+A) is the
same for A> —1 and for A< —1. (The series has a radius
of convergence=0.) Therefore, f(A,0) and all of its
derivatives with respect to A are continuous at A= —1.

5. f(A,y) FOR y=0+
A. Case A<—1
For y=0+4, b=mw—¢, Egs. (27), (24b""), and (24c) give
2ry=n(1-B){1-J,(1—B)+[Jo(1—-B)
~[ P+ R,
f(A,9)=f(4,0)+C'Ro(1-B){- - - }Ro,

(46)

R? ) R! RO s! s?

7

A B A 8’
=-2m) (H=-1) (4 =0) (p=1) (K=21)

R? R

F16. 2. Riemann sheets of Fig. 1in u plane.
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where we have deleted all primes for simplicity of
writing. Now by (14c) and (16c¢), {(«|Jo|B) is periodic
in @ and in B8, and (a|Ry) is periodic in e, all with period
27. {a|n)=1 is of course periodic. Thus, the combined
interval (—= to —b) and (b to w) can be replaced by
one interval (r—e to m+e¢) where b=mw—e. We thus
have

27Ty="1”{1H—J0”+J0”2"‘ o }Ro",
f(8,9)=f(8,0)+CR"{- - 1R, (47)

where the double prime means that the o space extends
from
(m—e) to (w+e).
Write
(—=1)" cosno

(r+o|R{)= 3

n=—w

2 coshn
=eytew0?teot+---, (48a)
., 1 = cos(e—7)
—{r+a|Jo IW+T>=E1: ngwm
= fotfolo— 1)+ falo—7)*
4o, (48b)
2ry=e2e+eofode+0(e),

27
—Lf(4,9)— f(4,0)]=eo2my+ezeo}+0 ()
sinh\ \
e

=oreqt -~y 000, (49)

€o

Then

where the ¢’s are defined in (48a).

For A<—1, f(A,y) as a function of y has thus a cusp
at y=0 [f is even in y]. The function f(A,y) can be
analytically continued from y>0 to y<O0 (cf. Sec. 3).
But the continuation is not equal to f(4,y) for y<O0.

The physical meaning of the cusp and the lack of the
term ¥ for the magnetic problem and for the quantum-
lattice-gas problem will be discussed in a later paper.

=—1

B. Case

Equation (24a) means
—b
(| R') = Rofe) - / Tola—B)B(EIR')
- f Jola—B)dBEIRYY,
b

where we have written {a|J¢'|8)=Jo(a—8), according
to (16b). Cleaily («|R’) is even in «. Thus,

(a| R')=Ro(a)— f Jola—B)dB(B| R')

- / Tola+B)dB@IRY).  (50)

C. N. YANG AND C. P.
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Write {(a|R’)=S(a—b5). Then
S(o) =R0(b+a)—/ Jole—7)dr S(7)
- / Jo(2b4otr)dr S(). (51)
0

For large b, Jo(2b+04 1) for =0, 7=0 is 0(672). (See
Appendix C.) We shall treat the last integral as a
perturbation, since without it the rest of the equation
is of the Wiener-Hopf type:

So(a)+/ Jole—7)dr So(r)=Ro(b+0), (52a)

Sio)+ / Jolo—r)dr Si(r)
= —/ ]0(2b+0‘+1’)d7 SO(T) ) (52b)
52(0')+/ Jolo—7)dr S2(7)
0

=—/ Jo(2b+o+7)dr Si(r), etc., (52¢)
0

§=So+S1+So+---. (53)
In terms of .S, (24b’) and (24c) become
(r—)y= f S()do, (54)
0
CLiay)—1(40]=2 f Ro(b+0)S(0)do. (55)
0
To solve (52a) we write
27‘-6—7(”6)
Ro(b+0)=——
1+e—2w(b+¢)
—_ 21!'[;'8_7"—‘ 3-36—37r¢+§-56—51r§'__ e ] s (56)
where
t=e"0, (57
Thus,
So(0) =3 Ta(@)2ng(—1)", (58)
n=0
where
Tn(o)-{—/ Jolo—7)dr To(r)=e@ntDre, (59)
0

This is a Wiener-Hopf equation. The transform of T,
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is known through Appendix D:
Tulw)= / e T, (0)do

0

B G ()G [—1(2n+1)7]
(2n4-1)m—ico

=independent of &. (60)

Now
/ So(a')do'= Z 27!'(—1)"3—””(2”4—1)7‘71,(0) ’ (61)
0 n=0

/ RoB+0)So(0)do= 3 da(—1)rime—rbritnin
0

n,m=0
X Tu[ir 2m-+1)].

Thus, for large b, if we first neglect S;+So+---, we
obtain

(62)

y=22[¢T0(0)—3T1(0)+¢572(0)—- -1,  (63)
F(8,9)—F(A,0)=2a[¢*T o (im) — ¢ 4T~ o(34m)
=T ()08 ], (64)

The correction terms S1+.S2+- - - will introduce terms

of the form
¢
—= (const)
b (ng)
into y, and terms of the form
fz {2
—= (const)
b  (Ing)?

into f. We thus obtain

¢=2[27(0)1"+0[y/ (iny)], (65)

: xTo(im)
f(A,9)—(4,0)=y*————+0[»*/(Iny)]. (66)
2[T5(0) T

The coefficient of 32 in this formula can be evaluated by
using (60). It is

T G (ir) G_(—im) i
2 [G+(O) P [G-(—im) P 2x
7r2 G+ (1:7]')

=— . (67
4 [G+(0) P[G-(—im)]
Using (D5) and (D6) this becomes
w? 1 w2 1
(68)

1[G, OF 4G, (0G0 8

This result has been conjectured by Griffith’® on the
basis of a numerical solution of (52a).
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C. Case —1<AK1

The method here is the same as above. In fact (50)—
(55) are applicable to the present case as well.
[Jo(20+0+7) now falls off exponentially with 5. See
Appendix C.] In place of (56) we have

Ro(b+0) = ————
brto) 2u coshs (b+0)
=Tt peset 1, (56)
I
where
(=, s=u/(2u). (57
Thus,
Se(e)=— 3 (= 1)HT (o) (58)
n=0
where g
Tn(o)-{—/ Jo(o—7)dr TH(r)
’ —exp[— Qnt-1)so]. (59
Similarly,
_ © G G_[—i(2n+1)
To() = / O M a2
0 2n+1)s—iw

([ To(0)— T2 ()], (63)
m

C[f(A,y)—f(A,O)]%?(E) [T (is) — 4T 3is)
=471 (is)+0 () ].

The corrections due to S1+Sa+4: - -
Appendix E. One obtains

(64)

will be treated in

=T 100
wlo 0)
+O (@t ],  (65)
sinu \ To(is)
SO SO0 =" e
Xy [1+00GA)+0 ()], (66")
Now
To(is) B G (is) G_(—is) s? G (is)s

[ToO)F [G:+(O)F [G—(—is)F2s [G+(O)FG(—is)?2

3 s B s
G (O] Sulr—p)
Thus, 2[G( )2 ;;(. ")
(A3~ f(a0) =72
L

Xy 1402 +0 (ym—m™) ], (69)
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The coefficient of 3? is monotonically decreasing with
increasing u. Some special values are as follows:

Coefficient of 3% in f(A,y)— f(A,0)=7%/8, A=-—1
/8, A=—1+
/8, A=0

0, A=1—
0, A>1.

6. f(A,y) FOR y=1—

It is easy to evaluate f and y for small b, by direct
iteration of (6a) in the variables p, g. One thus obtains

()= A A——l(1 7r21 .
f ,y)~—z+——2—" —y)'l‘;g( —9)

+0L(—yp)4]. (70)
7. f(0,y)
For A=0, (6a) gives 2rp=1. Thus,
1 =y
f(0,y)=——cos—. (711)
T 2

This result is well known ™0
The results of this paper have been briefly announced
in an earlier publication.?

APPENDIX A

We list here some useful formulas:

/.w eierda 27 sinh[ (r—pu)y] @A)

« Cosha—cosu  sinu sinh7y

® glevdy T
/ = . (A1)
— Cosha  cosh (rv/2)
T einada 21l'
/ = el (A2)
_r coshA\—cosa  sinh\
® dx
/ =In2 (A3)
0 1+e’
o dx
/ =In2 (A4)
—w (14-442) cosh (rx)
1 1 1 1 1 1
— ; ——e e y +
y—=1 =1 »-—1 y+1 ¥+1 »y+1
+-0 (>1). (AS)

2C. N. Yang and C. P. Yang, Phys. Letters 20, 9 (1966); 21,
719 (1966).

AND C. P.
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Proof :
1 2 1

yn_l y2n__1_yn+1 :

Sum over # and one obtains (AS).

APPENDIX B

We shall now prove the inequality in (14c). To do
this we first convert Ro(e) into an integral: Expand the
denominator in the summand of (14c)

(2 coshmd)t=g A —g3mA g5 —. .. = (B1)
then sum over #, yielding
sinhA
Ro<a>—%=[——~——~ 1]
coshA— cosa
—[same with A — 3\]
+[same with A — SA]—- -
1 sinhz\ " 7
44 coshz\— cosa Jeos (mn/2)

where the integration loops around all positive odd
integers # counterclockwise. Detour to n=-+0-2iy:

1 00—120

1
Ro(a)=—+-
2

dy [ 7 sin2y\ :l
2 J —o—io coshwyL Cos2y\— cosa

i /”‘io ay sin2yA
2 —ew—i0 COshmy cos2y\— cosa ’

(B3)

Take the average of this equation with its complex
conjugate

b 0—10
Rc (Ol) = ‘"[/ +
-4 —o0—10

Thus, Ro(a) is a contour integral. Its value can be
readily evaluated:

“°°“'°‘| dy sin2y\

w0 ti0 Jcoshn-y cos2y\— cosa

. (B4)

Ro(e) =21 i sech[zl;: (a+ 21rn):|> 0. (BS)

nE=—00

APPENDIX C

For 0< A, —{a|K]|8)>0, thus J= —K+K2— K34 - -
has all elements >0.

For —1<A<0, we write the denominator of the
integrand in (16a) as 2 sinh(w—pu)y coshuy and then
express (coshuy)~! as a Fourier integral through (A1’).
The v integration can then be performed by first writing
(r—uw)y==t and using the Fourier inverse of (Al).



150 PROPERTIES OF GROUND-STATE ENERGY PER LATTICE SITE 337
Thus, we obtain
siny ® dn
(] Jo|B)=— ' <0, (C1)
8u(r—u) J_ {cosh[w(a—B—1n) (mr—u)~L]—cosr} cosh[mn(2u)~]
where
T—v T2
= . (C2)
T T U

For A= —1, we write (16b) as

® eXP['iY(a'".B)“*]'YD

<azJom>=—i/_w

cosh(v/2)

and then express [cosh(y/2)]™ as a Fourier integral through (A1’). The v integration is then trivial and we

arrive at
—1 > dn 4
(@|Jo|By=— <0 (C3)
47 J_, cosh(mn) 144 (a—B—n)?
For A< —1, we proceed to treat the sum in (16c) similarly.
1 exp[in(a—B)—A|n|]
(@|JoB)=——2
g » cosh(A\n)
1 /‘” exp[in (a—,B)—MnI—}-inZn)wr*l]d
=— yl
4r? " J_, coshyg
1 = dy 1
z___f { c——1}<0, (C4)
47 J _, coshn 11—exp[i(a—B)— 7\+127;)\1r_1]
since the curly bracket is always >0. use (16b) and integrate by parts:
To find the asymptotic form for {a|Jo|8) for large o
a—@3, we take first the case —1<A<1. The integrand — (el Jolﬁ)———/ 1) cos(ye)dy
in (16a) has poles at 0
i i =— —1—f’ 0)— ~1— i f”('y) cosy pdy
Yo=—mn, and v.)/=—2n—1), (Cs5) & &
U 2u
— 111
(n=any integer). B f (OH_ f ™
(But v=0 is not a pole.) For a—B>0, we close the -[-——/ f® () cosypdy
contour around the upper half v plane and obtain e*Jo
(@|Jo|B) as a sum over the residues at the poles (CS) b =, (C7)
where

for n>0. If (m—pu)/u is irrational, all poles are simple.
Otherwise, some are simple poles, some double. Let the
successive simple poles along the positive imaginary

f@)=1/(14¢) and o=a—8.

Carrying this procedure to the dominant term we obtain

axis be £y, £, - - -; the successive double poles, 7y,
19, * + . Then for a>p, 1

el Jold)=— o( ) (c8)
(a|Jo|By=3: grie~tite—0 -4 Ar(e—p) ("‘_ﬁ) S

+2: [geit (@—B)gsiJem¢®,  (C6)
where g1;, ge:, and g3; are numerical constants. (C6)
gives the asymptotic form of {a|Jo|B) for large a—p.
Notice &; and 7; are all >0 and are integral multiples
of w/(wr—p), or w/2pu.

To find the asymptotic form of J, for A=—1, we

I " APPENDIX D’{

Equatlon (59) is a Wiener-Hopf equatlon Its solutlon
can be found by a Wiener-Hopf factorization.? One

T T

3M. G. Krein, Usp. Mat. Nauk (N.S.) 13, No. 5§ (83), pp.
3-120. [English transl.: Am. Math. Soc. Translations, Series 2,
22, 163 (1962).]
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defines

jo(w)=-/w e J o(o)do

sinh (7— 2u)w

= , (—1<A<)
sinh[ (7— 2u)w ]+ sinh (rw)
- (A=—1). D1
v ) (1)
One then factorizes
=G (0)G-(w) (D2)
1+J0 (w) + ’
where
G+ (0) [G-(w)] is analytic in the open upper
[lower] half-plane, continuous and different
from zero in the upper (lower) half-plane
plus the real axis, D3)
and
Gy()=1. D4)
For our problem,
Gi(@)=G-(—w). ®S)
Therefore,
- ™
=14+J,(0)= , (—1<A<Y);
[GL(0)F 2(r—p)
=3, (A=-1). (D6)

For a general Wiener-Hopf equation, Krein® described
a method of solution which involves lengthy calcu-
lations. For the special case of Eq. (59) where the
inhomogeneous term is a pure exponential, it can be
shown, by a variation of his arguments, that the
solution is given by (60).

APPENDIX E

We concentrate on the case —1<A<1. To find the
correction due to S;, we introduce some notations:

s=7/2u, t=x/(r—p), (E1)
t=eb, @f=e0,
Jo(o) =mesavie ot uge S afvpe et .- (E2)

where we have assumed (r—gu)/u to be irrational and
have used the expansion (C6) with no double poles.
The coefficients #1, v1, etc., are numerical constants:

1 —
w= +—[cot i u)r] , (E3)
2ul 2u
1 T
9 =— l:tan } , etc. (E3)
2(r—wL  7—p
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In the following, the b dependence of all quantities will
be only through their dependence on ¢ and 6. O(qu.)
means “‘of quartic order in 6 and {.”

Ro(b-+o) =L (e 7+0 (241, (E4)

M
JoQ2b+o+71)=ug% 0,162 "+ 0(qu.), (ES)

™
SO<0)=“§(W8‘§2W3S+O<§'4)] ) (E6)

"

where W, (o) satisfies

Wz(a)-i—/ Jolo—m)Wa(r)=e27, (x>0). (E7)

Thus,
Tn= W(2n+1)s .

Substituting (ES) and (E6) into (52b) we can solve
for Sy:

81(0) = = ¢ (s; YW 0 (t; W +O(qu)], (ES)
m

where

(y; 2)= / p—r (E9)

Using (60") we find

( G (1y)G(—1ix) G4 (iy)Gy(ix)
; x = =

g x+y x+y
(x+y>0).

=(x;9),

(E10)
It is clear that

S2(0)={0(quartic polynomial in { and 6),
S3(0)=¢0(6th degree polynomial

in { and 6), etc. (E11)

Thus, by (24b’)

(r—n)y= / S (Yo =5(0; 92203 39)
0 I
—u30%(s; 5) (0 5)—v162(¢; 5)(0; )+ 0(qu.)]. (E12)
By (24c),

%C[./r(A»') - j(A:O)]
:/“ Ro(b+0)S(o)do
o

= (7:5)2[(8; §)—282(3s; 5)—ui(s; 5)°

g —0,02(¢; 5)24+0(qu.)]. (E13)
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Thus,
0; 3s

t;5)(0;
§=y1+y13[((0 ————( ) t)v

)
) +u1(S, 3)]+y09 (O; 9

+y10 (qu) ’

;S

2= {4/1/(71'—#) = yl4#/(7r—,u)+0(qu_) ,

where
)

Y1=-
w(0;s)

V.

(E13) gives, in terms of v,

F(4,9)— f(A,0)= Aoy*{1+4y%d1+y*/ =0 d,
+0()+0 s/ m=m)} ,

where 4 was given before in (69), and
w(m—u)r2(0; 3s) (3s;5)
d= 1S5 8)— ’
l:‘n'(();s):H: ©;s) Hauls; o) 2(s;s):'
d _[#(W—u):l“"""‘” 20;90;0 (¢ 8)2:|
“Lros9 [ 09 3ol
Writing G4 (ix) = g, we obtain from (E10)

T—u dp/(r—p) 252
dy= l: ] 2 2.
2g:80 (t+s5)2

1
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(E14)
(E15)

(E16)

(E17)

(E18)

(E19)

(E20)
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Now by explicit construction,

Ir'(1+4=) [ L\
= 21— —
Mt w(r—)/r T3+ u/m 1L ( w)]

B\ wu T
Xexp[x ln<1— —)-—- — ln———~:|>0. (E21)

T T u

When u/(m—u)=irrational, d;30. Hence if p/(r—p)
=irrational,

a\" du
lim I:(—) f(y,A)] =finite for n<24——
0 | \dy. T
4y
=+w for #>24+——. (E22)
T—p

It is not difficult to show that (E22) is valid also for
4u/ (r—p)=rational, butZan integer.

For integral values of 4u/(r—pu), sometimes f(y,A)
is analytic at y=0. An example is when A=0, 4u/
(m—u)=4. See Sec. 7. Other integral values of 4u/
(m—p) are under investigation.

(E22) shows that for 4u/(w—u)=integer, the zero-
temperature susceptibility X(3C) as a function of the
magnetic field has some high-order derivative (with
respect to JC) — = when 3¢ — 0. This will be dis-
cussed in a later paper.



