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temperatures on the 7-62 He® vapor-pressure scale
with an error less than 0.0027°K, over the temperature
range 0.82 to 1.0833°K. Since this range of temperatures
is a very awkward region in which to calibrate an
apparatus lacking a He® vapor bulb, the critical field of
gallium provides an excellent secondary standard.
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Bethe’s hypothesis is proved for the ground state of a one-dimensional cyclic chain of anisotropic nearest-
neighbor spin-spin interactions. The proof holds for any fixed number of down spins.

I. INTRODUCTION
/ I ‘HE eigenvalue spectrum of the Hamiltonian

=—% 2 {00 +0y0)/ D020} ¢Y)

is of current interest. In (1) o are the Pauli spin matrices
at a particular site (¢.2=0,*=0.2=1), ¢’ are the Pauli
spin matrices at a neighboring site. A is a real numerical
constant (A=1 corresponds to the isotropic ferro-
magnetic problem, A=—1 the isotropic antiferro-
magnetic problem?!). The sum extends over all nearest
neighbors in a 1-dimensional linear, 2-dimensional
square, or 3-dimensional simple- cubic lattices with
cyclic boundaries.

The significance of (1) in the theory of ferromag-
netism and the theory of antiferromagnetism is well
known. (1) s also the problem to consider for the
quantum lattice gas.? [In particular, the ground-state
energy and the thermodynamical properties of a system
with the Hamiltonian (1) can be transformed to give
the ground-state energy and the thermodynamical
properties of a quantum lattice gas. This quantum
lattice gas is a Bose gas moving on a lattice with (a) a
quantum kinetic energy, not in the form of an operator
(—#2/29) V2, but in the form of a double difference,

1 C. N. Yang and C. P. Yang, Phys. Rev. 147, 303 (1966).

2 T. Matsubara and H. Matsuda, Progr. Theoret. Phys. (Kyoto)
16, 569 (1956); 17, 19 (1957); R. T. Whitlock and P. R. Zilsel,
Phys. Rev. 131, 2409 (1963); P. R. Zilsel, Phys. Rev. Letters 15,
476 (1965).

(b) a hard core preventing two atoms from occupying
the same site, and (c) an energy of interaction equal to
—2A for nearest neighbors. See Table I.]

Let y be the magnetization per site,

y=-eigenvalue of (1/9) 3" o., (2)

where 9= total number of sites in the lattice. One is
particularly interested in the function

(lowest eigenvalue of H

for fixed y), (3)

1
f(Ay)=1lim —
N® Ny

which is half of the ground-state energy per bond for a
fixed y. Here z is the number of nearest neighbors at
each site. The existence of the limiting function f(A,y)
was proved in Ref. 1. A number of general properties
of fwas also established there. In particular, inequalities
were given between the f for one-, two-, and three-
dimensional lattices.

The purpose of this and subsequent papers is to
study properties of the Hamiltonian (1) for the one-
dimensional linear cyclic chain.

This problem was studied by approximate methods
by Bloch.? Bethe* then proposed that the eigenfunctions
are of a certain specific form (to be called Bethe’s
hypothesis). The particular case A=—1 (antiferro-

3 F. Bloch, Z. Physik 61, 206 (1930); 74, 295 (1932).
4 H. A. Bethe, Z. Physik 71, 205 (1931).
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TaBLE I. Physical problems for different values of A.

Quantum lattice gas with

Hamiltonian (1) is equivalent to

A>O Attractive interaction
outside of hard core
A<O Repulsive interaction

outside of hard core

Anisotropic ferromagnetic Hamiltonian

(A=1 corresponds to isotropic case)

Anisotropic antiferromagnetic Hamiltonian (Ref. 1)

(A= —1 corresponds to isotropic case)

magnetic isotropic case) was considered in detail by
Hulthén,® who gave an evaluation of f(—1,0) using
Bethe’s hypothesis. Later, Orbach® extended these con-
siderations and obtained an integral equation which
he numerically solved to evaluate f(A,0) for AS—1,
again using Bethe’s hypothesis. The integral equation
was later solved by series expansion by Walker,” who
obtained f(A,0) for A< —1 as a series. Griffiths® in-
vestigated the problem of f(—1,y) and des Cloizeaux
and Pearson® the excited states at A=—1, y=0. (See
Fig. 1.) Lieb, Schultz, and Mattis® and Katsural
studied the case A=0.

In this series of papers we study the problem for
general values of A and y. In the process we also establish
rigorously the validity of Bethe’s hypothesis for the
ground state. These papers will use the same notation
as Ref. 1 and will form a self-contained series.

2. BETHE’S HYPOTHESIS

We generalize in this section Bethe’s hypothesis to
the general case of A<1.

Consider an eigenfunction ¢ of H with m down spins
and 9U—m up spins. Clearly,

y=1-2(m/N). 4

We assume
2m=9t, or y=0. 5)
Let %3, %2, - - -, ¥» (in ascending order) be the sites with

down spins. (1=x;=91). Bethe’s hypothesis says that

-———r -
o

A
(A=1)
8 16 1

Fic. 1. A and y values where f(A,y) has been discussed in
the literature. The numbers are the reference numbers quoted in
this paper. The dotted line through A represents the isotropic
ferromagnetic case. That through B represents the isotropic
antiferromagnetic case.

§ L. Hulthén, Arkiv. Mat. Astron. Fysik 26A, No. 11 (1938).

6 R. Orbach, Phys. Rev. 112, 309 (1958).

7L. R. Walker, Phys. Rev. 116, 1089 (1959).

$R. B. Griffiths, Phys. Rev. 133, A768 (1964).
(1’9J.)des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131

62).

0 E. Lieb, T. Schultz and D. Mattis, Ann. Phys. (N.Y.) 16,
407 (1961); S. Katsura, Phys. Rev. 127, 1508 (1962).

there are m wunequal real numbers pi- - -pm such that
the wave function y is a sum of m ! terms each of which
is of the exponential form

(constant) expi[ ppix1i+protet- -], (6)

where (P1,P2,P3,---Pm) is a permutation of 1, 2, 3,
-+ +m. In other words,

Y=3p Adpexpi[L; priti]. @

It will be further assumed™ that the p’s are within the
following range:

—r<lp;<m, for A=Z—1; (8)
—(r—w)<pi<m—p, for —1=AL1; (9)

where
0=u<w, cosu=—A. (10)

Clearly, cosp,>A. We plot the range of p; in Fig. 2.

For large N and m, but with m/91=fixed, the number
of A p’s is larger than the number of spin arrangements.
(7) is therefore not in general a hypothesis without
further conditions on the 4 p’s. These conditions are
stated below in (16) and (17) and form an integral part
of Bethe’s hypothesis.

We now examine the following points:

(a) Consider the equation Hy = Ey at a configuration
in which no down spins are nearest neighbors of each
other. Write

H=—(A/2)N—3 Y [0z0.+0oy0,/+ Ao,/ —A].

The square bracket operating on any state for which
the two spins in question are both up or both down
gives zero. It is then easy to see that Hy=Ey is satis-
fied for the configuration studied if

E=—(A/2)R+3; (2A—2 cosp;) . 11)

(One can see this most easily by taking m=2, then
m=23, etc.)

(b) Consider the equation Hy=FEy at a configu-
ration in which among the down spins there is exactly
one pair of nearest neighbors. Using (11) one sees that
Hy = FEy is satisfied if

Ap 2AeiP—1—girtia

Ap  2Acio—1—girtia’
1t The original Bethe hypothesis was broader than that stated

here. Our more restrictive form makes it easier to prove the
validity of the hypothesis for the ground state.
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where P and P’ are any two permutations so that

PPI,PPz"‘:"‘PMI“' (12)

and

pry, ppro- - - =same as above except with
p and ¢ switched.

(These points are again easily proved first for m=2,
then for m=3, etc.) Define'?

0(p,9)=-42 tan™!

Asin|[ (p—q)/2
X[ Lp—9/2] :| 13)
. cos[ (p+¢)/2]—A cos[ (p—¢)/2]
Notice
0(p,9)=—0(g,p). (14)
Then
Ap/Ap=—e 10D 15)

Equations (14) and (15) lead to a solution of 4 p in
terms of 4, (i.e., the 4 p for P=identity):

AP/A0=:}:CXP{—1'Z ®(Pf:Pl)}; (16)

where the sign is + for P = even and — for odd and
the summation extends over all pairs p;, p; for which j>1
and j stands to the left of / in the sequence P1, P2, P3,
-+-. (§ and ! need not be consecutive.)

(c) Consider the equation Hy=FEy at other con-
figurations. It is easy to prove that (15) ensures that
Hy = Ey is satisfied.

(d) The cyclic boundary condition must be imposed
on (7). Using (7) the condition is fulfilled if for all P

Ap=Ap: exp(ppd),
where
P'"1, P2, -=P2, P3, - - Pm, P1.

Because of (16) this condition is in turn fulfilled if

exp(ip,90) = (— 1) exp[—i 221 O (p;,p1) ],

j=1l—-m.

an

One of the possible sets of solutions®® of this equation,
upon taking the logarithm, is

Np;=2ml;— lgl O (pi,p), (18)

2 @ is a single-valued real analytic function of A, p and ¢ if the
latter two are in the open interval given for p; in (8) and (9).
©(0,0) =0. These conditions define uniquely the branch of tan™
to take in (13). The function © becomes more visualizable after
the transformation (21) to be discussed later. The range of values
of © will also be given there.

13 (18) is the same as the solution chosen by Bethe (Ref. 4),
Hulthén (Ref. 5), and Orbach (Ref. 6) in their special cases. The
notation here is, however, different from that in their papers. The
main points in the difference are (a) we use tan™! instead of cot™!
in (13). This difference results in our A7=1 in (19), while in
Orbach, the corresponding Ax=2. (b) Our range of p as given in
(8) is shifted by « from the previous convention. This is because
our Hamiltonian (1) at A< —1is related to Orbach’s by a unitary
transformation. (See Ref. 1.) Our definition (13) and the range
(8) and (9) are chosen to facilitate continuity arguments with
respect to A which we shall need later on for proving Bethe’s
hypothesis.
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where

m—1
II,,-- ~Im=(——-~——) ,

() (). @

I;=half-odd integer,

I,=integer.

Notice™ that for

m=even,

20
m=odd, (20)

Thus for every set of p; satisfying (18), (8), end (9),
we can construct an eigenfunction (7) for the Hamiltonian
(1), by taking'® 4,5£0 and substituting (16) into (7).

3. SOME PROPERTIES OF THE FUNCTION ©

It is convenient, to study ©(p,q) in the interval (8)
and (9), to apply the following transformations!® p <> a:

AL —1: A=—coshh, A>0, (21a)
. e)\_e—ia
eP=——— (21b)
e)\—-ux_ 1
—r<p<r e —mr<a<lr,
pa)=—p@,
sinh?\
cosp= — coshA\+—————
cosh\— cosa
sinh) sina
sinp=———,
cosh\— cosa
dp sinp sinh\
———= >0, (21¢)

da sina coshA— cosa

O(p,q)=2 tan—ll: (coth}) tan%g =0(e,8). (21d)

Fic. 2. Interval in a2
which p lies. '\ﬁ MIEERN A
g o [ [N
L /2
-

4 By making I, half-odd integral for the case m =even, one can
treat all values of m together. Notice that, however, this method
works in the case of the quantum lattice gas only for bosons.

18 Provided (7) is not identically zero for all x; where 1=x;
<wg+++ <2, SIN. This provision is probably satisfied for all A <1,
m=91/2. We have so far, however, only succeeded in proving it,
for each fixed 9, for sufficiently small m. However, by a round-
about argument in Sec. 5 we circumvent the necessity of an explicit

roof.
P 16 The transformation for the case A <—1 was used by Walker
(Ref. 7), and for A= —1 by Hulthén (Ref. 5).
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—2r<®<2m, O=continuous in p and q.
a8 a0 sinh 2\ :
—_——=——= >0. (21e)
B da  cosh2\— cos(a—p)
—I<A<LI: A=—cosp, O<u<m, (211)
o eir—e
= 21
e 1’ (21g)
— (=) <p<(r—p) & —» <a<+wo,
p(—a)=—p(a), ,
sin?u
cosp= —cosy+———"—,
cosha— cosu
sing sinha
sing=———,
cosha— cosu
dp sinp sing
—_——— = >0, (21h)

da sinha cosha— cosu

O (p,q)=2 tan‘ll: (cotu) tanhﬁT:IE 6(e,8), (21i)

—|r—2u| <0< |7 —2u]|,

20 a6 sin 2 .
== : (21))
B da  cosh(a—B)—cos 2u
A=—1: a=13 tanp/2, (21k)
—r<p<lm > —o <a<l+ w0,
dp P 4
—=4 cos?*—= >0, (211
da 2 14402
0(p,9)=2 tan'(B—a)=0(a,8), (21m)
—r<f<r,
a0 a0 2
—_—————, (21n)
B da 1+ (@B
We notice that for all cases
2w dp (210)
cosp=A+——, 0
C da
where
2w 2w
C= —— or 4r (21p)

. ) .
sinhA  sinu

for the three cases, respectively.
Using these, and also the original form of © in (13),
it is easy to see the following:

(a) Reference 12 is correct.
(b) O can be extended to the boundary of the open
square (8) and (9) for p and q.
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For A<—1, there are no singularities of ® in the
closed square —r=p=<w, —r<¢=w. For —1=5A<]1,
the only singularities of ® in the closed square
—(r—p)Sps (r—u), — (w—p)Sg=<m—pare at

p=g¢=m—p and p=g¢=—(r—p), (22)
at which © is discontinuous.
(©) O(r—p, @)=2u—m, (for —1<A<1), (23)
except at g=m—u, where © is discontinuous.
(d) O(=p, —9=—00,9)=0(gp). (29)

It is useful, for discussing A dependence, to make a
further transformation (for all A<1):

pe—nx(—)a,

where
P dp
a=Ca/(2m)= . (25)
o cosp—A
The intervals (8) and (9) become
_m
<a< A<—1, (26a)
sinhA sinh)
—w gLl o —1= AL, (26b)

Within this range a is analytic in p and A.

4. PROOF OF EXISTENCE OF SOLUTION FOR (18)

Consider the function [A<1, p; satisfying (8) and
91

Z(pr pu) =5 #(0)— 20 T Lia,
+H T w0@—e), @7

where C was defined in (21p), @ in (25), and

z = r2ra
r(x)= / pda, Qx)= / 0(—,O)da. (28)
0 0 C
Clearly

. ag pj da
Q(ai—a;)= f Blase)da= / O (p,p)—dp, (29)
aj pi dp
and .
Q(a;—a;)=Q(a;—a;).

Thus, Z is analytic in all p; and A for A<1 and p; in
(8) and (9).
One has also by straightforward differentiation

0Z ddj
——=—{p;=2r (42 91O (p;,p1)]. (30)
dp; dp; t

Thus (18) is the condition for an extremum of Z ol fixed A.
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We are now in a position to prove

Theorem 1: For m=91/2, 0= A<1, (18) has a unique
solution .S so that each p;isin (9). Each p; is an analytic
function of A. For any A, p,#p; unless 1= j.

Proof: (a) At A=0, ®=0. (18) has then a unique
solution satisfying this theorem.

(b) For 0A<1, Z as a function of a;, a3, -+ - @, has
a positive-definite second-derivative matrix [ Proof:

7' (%)>0, Q'(x)=0, (31)

as is easily verified from (28), and (21j). Each term
Q(a;—a;) gives therefore a contribution to the second-
derivative matrix that is positive (but not definite). ]
Z can thus have only one stationary point. To prove
that it does have a minimum (for each A) at finite values
of a, consider successively larger closed cubes C; in p;
space approaching the open cube (9). We shall show
that the position P; of the minimum of Z in these closed
cubes C; cannot always lie on the boundary of C,: If
they always do, there would be an accumulation point
P [on the boundary of the open cube (9)] of these
minima, P;.

() Now suppose P is on the “surface” of the closed
cube of (9). In other words at P, there is one p, say,
p; which is =7 —p, all other p <w—pu. We can approach
P through a series of minima P; at each of which
9Z/3p;<0, or

2= 2w (FU)L;4-22 O (p5,p0) SO. (32)

Approaching P we obtain, by (23) and the continuity
of ©,

(r—p)— 2w (Y491 2u—7) (m—1)Z0.
This is a contradiction since

Ilé%(m_l)’ p<m, 2m=JqN.

Similarly, P cannot be such that one p=— (7—pu).

(B) Suppose P is on an ‘“‘edge” of the closed cube of
(9). For example, at P, pj= pi=m—up, all other p<w—p.
In this case we use the fact that at each P, since
P; is a minimum in a closed cube,

oZ 9z

—+—=0.

aaj da;
That is,

pit =200 (L;4-11) 4901

Using (24) and approaching P we obtain
2(r—p)— 279 (L;4-1,)
491 2(m—2)(2u—7)=0. (34)

This is again a contradiction since I,+7;=%(m—1)
+[5(m—1)—1]. ,

(v) Similarly we can prove that P is not on a “super-
edge” of the closed cube of (9), etc.

PROOF OF BETHE'S HYPOTHESIS

325

(c) Thus some of the P; are not on the boundary of
the closed cube C;. Such a P; must give an absolute
minimum of Z. Hence, Z has a unique minimum in the
open cube (9), for each value of A. That minimum gives
the unique solution of (18).

(d) Since the second-derivative matrix of Z has an
inverse, one can evaluate dp;/dA for every A in the
interval 0= A< 1. This evaluation is also possible for
complex values of A in the neighborhood of the interval.
Thus p; is an analytic function of A.

(e) (18) shows directly that if p,=p;, I,=1;, hence
i=7j.

Theorem 2: The solution discussed in Theorem 1
satisfies
j=1l—m.

Pi=—Pm—ji1, (35)

Proof: For m=even, consider p; (j=1-—m/2) as
dependent on p; [j=(m/2)+1—m] through (35).
For m=o0dd, put pmi1)2=0, and use (35) to eliminate
half of the p’s. Z as a function of the independent p’s
clearly has a positive-definite second-derivative matrix.
We can prove that the minimum of Z does not lie at
infinite values of @, just as in Theorem 1. Thus, Z has
a minimum with respect to the independent p’s satis-
fying (35). Using (24) one sees that (18) is satisfied at
this minimum. But by Theorem 1 (18) has only one
solution. Hence, Theorem 2.

Theorem 3: For m=91/2, A0, (18) has solutions S
forming a continuous curve in the real k; (j=1—m)XA
space with k; satisfying (8) and (9). The curve extends
from A=0 down to all A<0. At each point S on the
curve

pi#p; unless i=7j.
Furthermore,
j=1->m.

bi= — Pm—jt1, (36)

Proof: (a) Consider the case m=even. The case
m=odd can be treated similarly. Consider the cube €:
j=m/2)+1— m.

05 $s= (r—p) (1= )
0= p;Sw(1—9r1)

(37a)
(37b)

For every point in the cube @, we can construct a fulf
set of p’s satisfying (36). Clearly this full set lies in (8)
and (9). Thus, Z is an analytic function of $ and A in
(cube @)X A. For

j=(m/2)+1—>m,

—I_S_Aé()’

A<—1.

aZ ddj
—=2—{p;—2r (V42 91O (p;,p)]. (38)
ap;  dp; L

(b) At every point P in the cube @ there is a vector
9;=—9 7] of (38). A stationary point of Z is a point
where v=0. v is continuous in both P and A. Now on
the boundary of @, the vector v is 0 and always points
inward. To prove this we discuss three points:

(@) For 2i=0, 'l)j=£27rIj]>0.
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B) If —12A=<0 and p;= (r—u)(1—9T"), then by
(21.10), (21.14), and (23),

O(p;p0)2 O(r—p, p1)=2u—m.
Thus,
;S — (r—p) (O— 1)+ 27l ;— (m—1) 2u—1)
éo— (r—p) (A—1)+x(m—1)— (m—1)(2u—m)
<0.

(v) T A<—1,0=p<r,

= —4 tan™[ (coth)) tan(a/2)]>—2r,

where the = sign can be verified by using (21.5) to

calculate the derivative of its left-hand side with respect
to pi. Thus, if p;=7(1—3),

9;< —7(N— 1)+ 27T ;+7m =0.

(c) Thus with respect to the vector v(P), the bound-
ary of the cube € has an index of 1. It follows from a
theorem in topology!’ that there are solutions of v=0
which form a continuous curve in the product space of
C with A. We can then use (36) to construct a con-
tinuous curve in the product space of p; with A. By
(24) one easily verifies that (18) is satisfied on the curve.

(d) Obviously p;= p; implies 7,=1;, hence i= j.

5. PROOF THAT BETHE’S HYPOTHESIS IS VALID
FOR THE GROUND STATE

We shall now use continuity arguments with respect
to A to study the ground state. To do this we need

Theorem 4: The ground state of the Hamiltonian (1)
for finite 9T and m(m=no. of spins down) is nonde-
generate for any real A. The ground-state energy is
analytic in A for all real A.

Proof : The Hamiltonian is a matrix operator between
the 9N![m!(—m)!T" spin arrangements. The off-
diagonal elements of this matrix are —1 or 0. The
diagonal elements can be all made negative if we
subtract a large constant from H, i.e., there is a large
number 4 so that 4 —H has all elements =0, and all
diagonal elements >0. A nonvanishing off-diagonal
element connects every two spin arrangements with
one pair of neighboring spins 1| switched. Clearly, for
large enough powers of 4 —H all elements will be >0.
Consider one such odd power: (4—H)”. The largest
eigenvalue of (4 —H)™ cannot be degenerate, since any
corresponding wave function can be normalized so that
all its elements are >0.

Now the eigenvalues are solutions of a polynomial
equation with coefficients which are polynomials in A.
Any nondegenerate solution must be analytic. Thus,
Theorem 4 is proved.

Theorem 5: At A=0, the solution of (18) is unique
and gives through (20) the ground state of H.

Proof: At A=0, @=0. Thus (18) gives Jp;=2xI;.
(16) gives Ap/Aoy==1, 4+ for even and — for odd

17 P, Alexandroff and H. Hopf, Topologie (Springer-Verlag,
Berlin, 1935).
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permutations P. Thus, (7) becomes a determinantal
wave function.

Now at A=0, all eigenstates of H are known."’ It is
easily seen that the solution above is the ground state.

If the provision referred to in Ref. 15 is satisfied
always along the solution S of Theorems 1 and 3, we
have a wave function y for every point on S, with an
eigenvalue E given by (11). The (E,A) plot forms a
continuous curve extending over every real A<1. Con-
tinuity in A and Theorems 4 and 5 would then lead to

Theorem 6: For any real A<1 and for 2m=91, the
ground state is given by Bethe’s hypothesis as stated
in (20). Furthermore,

Pi=—Pmi1—j j=1—m.

Proof: We need only examine the provision of Ref.
15. The main idea is to show that the point where the
provision is not valid is discrete and therefore could be
rendered harmless. This is done by showing that each
element of the wave function (7) is algebraic in A:

(a) Put u;=exp(ip;). 39)
Then
. 2Au,~— 1— Ui
exp[—i® (p;,p) J=——— (40)
2Au;— 1— Ujuy
Now (18) implies (17) which becomes
20u;—1—uu;
u= (=11 (41)

1 280u—1—um,

[Notice, however, that solutions #; of (41) may not
satisfy (18).] One can eliminate all #’s but one from
(41), obtaining an equation

®(u,A)=0, (42)

which is satisfied by %, by u,,
nomial of % and A.

Thus, each « is an algebraic function of A. % has no
more than a finite number of cuts and poles. Further-
more, it has only a finite number of Riemann sheets.

(b) Now (16) and (40) show that 4 p/4is a rational
function of A and the #’s. Thus, after (16) is substituted
into (7) and 4, put =1, we obtain a ¢ every element of
which is a rational function of A and the #’s. Define

v'=y¢ II 2Au—1—um). (43)
7.l

-+ by #4m. @ is a poly-

Every element of ¢’ is @ polynomial of A and the w's.
At A=0, ®=0 and all the «’s are, by (18) and (39),
on the unit circle and have positive real parts. Thus,
at A=0 the product in (43) is not zero and ¢’ is the
genuine (i.e., nonvanishing) ground-state wave
function.

We have thus ¥’ and E, both as polynomials in A
and the #’s so that

Hy'=EY, (44)
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if the #’s satisfy (41). (41) defines the #’s as algebraic
functions of A. Thus, in complex A space except at the
poles of the #’s and at points where ¥'=0, ¢ is an
eigenstate of H. These exceptional points are finite in
number. We can obtain a correct eigenfunction ¢’ at
these points too by properly normalizing ¢’ and ap-
proaching these exceptional points. Hence, Theorem 6.
(In fact the above proves a generalization of Theorem
6 to complex A.)

We can also prove the following theorem, which
clarifies but is not essential for later discussions.

Theorem 7 : The p’s are analytic in A in an open strip
containing the semi-infinite real axis A<1.

Proof'8: (a) Starting from A=0, and moving along
the real axis towards A= — o, let A=A, be the first
singularity of the #’s, if any is in the way. We can form
a simple closed path that loops around A, and return to
A=0, which does not pass through and does not contain,
inside of it, any other singularities of any #. Now E(A)
is analytic along the real axis, by Theorem 4. Further-
more, it is a polynomial in %. Thus, E has no singularity
on or in the path and it returns to the original value
when A goes around the path back to A=0. Thus, ¢/
returns also to the ground-state wave function at A=0,
except for a possible multiplicative factor. This wave
function is a determinant. Consider its values when

18One can rearrange the theorems so that the topological
theorem is not needed: After Theorems 1 and 2, 4, and 5 the con-
cept of # of (39) is introduced, together with the ¢’ of (43),
leading to Hy'=FEy’ for complex A. One then proves Theorem 7,
using in part (b) of the proof the discussions following Eq. (38).

This proof of Theorem 7 then automatically establishes (18) for all
A <1, with all ’s within the bounds (8) and (9).
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wi=1, x5=2, -+ -xm=m—1, but successively x,=m,
m—+1, m+2, ---. Its values are in the ratioof 1, 3_ ,
PR DIISET Thus, all symmetrical poly-

nomials of the #’s return to their original values around
the loop. Hence, the #’s are merely permuted in going
completely around the loop. Call that permutation
P(Ay).

(b) For 0SA<1, u; is on the unit circle. By analytic
continuation, it must remain so for A;<A<O0. Thus,
p;=—1lnu; is analytic for A;<A<1. For 0=A<1,
Theorem 1 shows that (18) is satisfied. Continuing all
#’s to values of A<O0, (18) remains satisfied until either
we reach the point A, or the p’s go outside of the limits
defined in (8) and (9). The latter alternative, however,
does not obtain, since before the p’s reach the boundary,
the corresponding point must go out of the surface of
the cube (37). Part (b) of the proof of Theorem 3
demonstrates that that is not possible. Thus, (18) is
satisfied for all A;<<A<1.

(c) A; is not a pole for the s, since |u|=1 for
A= A;+0. Since each u; is algebraic in A, it has a
definite value at A=A;. (18) shows that at A=A, all
p’s are unequal. Hence, all #’s are unequal.

(d) Now tighten the loop of (a) around A;. Since all
u’s are unequal at A;, the permutation P(A;) must be
the identity. Thus, 4; is not a branch point of any .
Contradiction.
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The ground-state energy 2f per lattice site for an infinite system is studied as a function of A and of the
magnetization y. Analyticity properties of f(4,y) are proved. The behavior of f(4,y) at and near y=0 and

y=1areinvestigated.

1. BASIC EQUATIONS

N Paper I' it was shown that if A<1, the ground state
for a fixed 91 (=No. of sites) and m (=No. of down
spins) is of Bethe’s form (I7), with p; satisfying (I18),
1C.N. Yang and C. P. Yang, preceding paper, Phys. Rev. 150,

321 (1966). Formulas and references there are referred to as
(118), etc. The notations are the same.

or
pi=2x;(1)—9! gfx O (pi, 1) - 1)

Since p;=p; if j>i, by continuity argument with
respect to A, we see that p1<p2<ps--- <pn for all A.
As N, m— o at a fixed ratio, the p’s increase in



