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Correlation-Function Approach to the Transport CoefBcients near the Critical Point. I~
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A general theory is presented for the transport coeAicients exhibiting anomalous peaks near the critical
point, employing correlation-function expressions for transport coe%cients. Recognizing that the anomaly
should arise from the anomalous increase in the Quctuations of certain macroscopic variables, we attempt an
expansion of the flux entering the correlation-function expression in powers of the macroscopic variables,
which then are supposed to obey the macroscopic equations of motion. A general formula for the anomalous
part of the transport coefficient is given, restricting ourselves to the quadratic terms in this expansion. The
general theory is illustrated for the shear viscosity of critical mixtures, choosing local concentration and
local temperature as macroscopic variables. The anomaly is attributed to the cooperation of the two effects:
(1) anomalous increase in certain large-scale Quctuations of macroscopic variables contained in the Qux,
and (2) the anomalous increase in the lifetimes associated with these Quctuations. If we ignore the local
temperature Quctuations, Fixman s result of the anomalous viscosity is obtained. Generalizing these results,
the large frequency and wave-vector dependence which is expected for the anomalous transport coefBcients
near the critical point is studied explicitly for the shear viscosity. The thermal conductivity of the critical
mixture is also examined, and is found to have no anomaly in the same approximation, in agreement with the
existing experiments. In an appendix, a more rigorous and systematic treatment of the general theory is given
with the help of Mori s general theory of Brownian motion for macroscopic variables, and we indicate a
possibility of obtaining a self-consistent set of equations for general nonlocal transport coeKcients.
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FEW years ago Fixman presented a theory of
shear viscosity of critical mixtures which success-

fully explained the anomalous increase of viscosity near
the critical point. ' ' The crux of his theory is the recogni-
tion of the fact that the anomalous viscosity must arise
from the anomalous increase in the concentration
fluctuation on the macroscopic scale which is also re-
sponsible for the anomalies observed in various other
properties near the critical point. However, the method
of his calculation of viscosity is somewhat unconven-
tional, in that he calculates the entropy production rate
in the stationary state in the presence of a constant
velocity gradient and identifies the coe%cient of the
square of the velocity gradient with the viscosity. Thus,
it is not quite obvious precisely what sorts of approxi-
Inations are introduced in the theory and how one can
generalize the treatment so as to be applicable to other
problems.

The present work has emerged from our attempt to
understand Fixman's theory in more conventional terms.
Retaining his basic idea that this type of anomaly
comes from certain macroscopic fluctuations, we have
been able to find a general and systematic way to ex-
tract the anomaly in the transport coefficients. We shall
use the now familiar correlation function expression for
transport coefficients. ' Our starting point of the cal-
culation is to attempt a power-series expansion of the

*The work supported by the National Science Foundation.
t Address after November, 1966: Department of Physics,

Faculty of Science, K.yushu University, Fukuoka, Japan.' M. Fixman, J. Chem. Phys. 36, 310 (1962); W. Botch and M.
Fixman, ibid. 36, 3100 (1962).

M. Fixman, in Advances in Chemical I'hysics, edited by I.
Prigogine (Interscience Publishers, Inc. , New York, 1963),
Vol. VI.' R. W. Zwanzig, Ann. Rev. Phys. Chem. 16, 67 {1965)and the
references cited therein.

flux entering the correlation function in various Fourier
components of local macroscopic variables. Since the
flux is essentially a microscopic quantity, this power
series cannot exhaust the entire flux. However, if the
basic idea adopted here is correct, the anomaly in the
transport coefficients must be contained in this power
series. The time-correlation function of the power series
may then be evaluated using the macroscopic equations
of motion which can be made nonlocal if necessary. 4

In the next section we carry out the above program
in a somewhat heuristic fashion restricting ourselves to
the quadratic term of the power series (the linear term
never appears). In Sec. 3, we apply the general theory to
the shear viscosity of critical mixtures, where we con-
sider the temperature fluctuation in addition to the
concentration fluctuation. If we ignore the former, the
result of Fixman is recovered. In Sec. 4 we consider the
wave-vector (tl) and frequency (to) dependence of the
shear viscosity, which exhibits strong q, co dependence
near the critical point. Section 5 is devoted to some com-
ments including the discussion of thermal conductivity
of critical mixtures. In Appendix A, we present a more
rigorous and systematic treatment of the general theory
of Sec. 2, using Mori's general theory of Brownian mo-
tion for macroscopic variables. In particular we indi-
cate a possibility of obtaining a self-consistent set of
equations which in principle determine the anomalous
parts of q, au-dependent transport coe%cients.

' Use of macroscopic equations of motion in a similar context
in the problems of transport and relaxation phenomena near the
critical point has appeared in literature. Besides Fixman's works
the reader is referred to T. Moriya, Progr. Theoret. Phys. (Kyoto}
28, 371 (1962) for NMR linewidth in an antiferromagnet; P. M.
Richards (unpublished) for ESR linewidths in ferro- and
and antiferromagnets, Kawasaki (Ref. 18) and H. Stern, J. Phys.
Chem. Solids 26, 153 (1965) for thermal conductivity near the
magnetic transition, and Zwanzig and Mountain for one-component
Quids {Ref.27).
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2. METHOD OF EXTRACTING THE
CRITICAL FLUCTUATION

As pointed out in the Introduction, the present treat-
ment starts from recognizing that the cause of the
anomalies in transport coefficients at the critical point
is the anomalous increase in the long-wavelength parts
of fluctuations near that point. Thus, we attempt to ex-
press as much as possible the flux entering the transport
coefficients in terms of the various spatial Fourier
components of the local macroscopic variables of the
system, supposing that the critical fluctuation is
adequately described by the fluctuations of macroscopic
variables. In this section we shall present a somewhat
simpler, but less rigorous treatment deferring the more
systematic derivation to Appendix A.

Let us now write the general correlation function ex-
pression for transport coefficients as follows:

only the quadratic terms have been retained. This
theory describes quite well the various gross features of
phase transition. The higher order terms in A's are
necessary only if we try to study more detailed features
of critical phenomena in the immediate vicinity of the
critical point. Similarly, we Inay hope that the present
simplified treatment is adequate to describe gross fea-
tures of the anomalies in the transport coefficients near
the critical point. However, it may happen that for
some particular problems the present quadratic approxi-
mation fails to describe the anomaly. Then one should
be able to take as many terms in (2.2) as is necessary
without difTiculty. The coefficients S's in (2.2) are de-
termined if we ignore in (2.2) by the set of equations,

(JAk&*A k'*)

=g P S. sk(A, .-A, , sA, ~*A,s*), (2.4)

0=— (J(t)J)dt,
V p

(2 1)
where

(2.4')

where J is the flux corresponding to the transport co-
efficient 8, z is some known function of the temperature,
V the total volume of the system, ( .) the average over
the equilibrium ensemble, and we have assumed classical
mechanics. Denoting the kth Fourier component of the
nth macroscopic variable as A~ we attempt the fol-
lowing expansion:

J=Q Q S p"Aa"A a'+
O,P k

(2.2)

where ~ denote the terms with higher powers of A' s
and the terms which are not contained in this power
series. Here use is made of the fact that J is orthogonal
to the linear combinations of A' s:

(JAk *)=0 (2.3)

which excludes the linear term in A's from (2.2) (also
see Appendix A), and A's are chosen such that (A a")=0
and the asterisk denotes taking the complex conjugate.

For the present simplified treatment, we shall only
consider the terms written explicitly in (2.2). As for the
part of J which does not contain A' s, we assume that it
does not give rise to anomalies in the transport coeffici-
ents because it would not involve the critical Quctua-
tion. An analogy for ignoring the terms containing higher
powers of A's than quadratic may be found in a some-
what similar circumstance in the well-known theory of
the correlation of fluctuations near the critical point of
Landau and Lifshitz, ' where the thermodynamic po-
tential is expanded in powers of the deviations of the
local thermodynamic variables from their values in
thermal equilibrium and their spatial derivatives and

L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-
Wesley Publishing Company, Reading, Massachusetts, 1958.)
See also Fisher (Ref. 18) and P. Debye, J. Chem. Phys. 31, 680
(1959).

and we have used that (J)=0. The magnitudes of k or
k' in (2.2), (2.3), and the subsequent equations are
limited below a certain cutoff k, which is much smaller
than the inverse of the interparticle distance, since A s
represent macroscopic variables. The anomalous parts
of the transport coefficients should be insensitive to the
precise value of this cutoff as we shall see in a specific
example later in Sec. 3.

The expansion of the form (2.2) is not new: It has
been used in the theory of sound attenuation in liquid
helium' where the A's are the phonon creation and
annihilation operators and the right-hand side of (2.2)
represents phonon interactions. If we remember that J
is related to the time derivatives of A' s, the right-hand
side of (2.2) represents the so-called mode-mode
coupling familiar in plasma physics.

Substituting (2.2) into (2.1), the anomalous part of
the transport coefficient, 68, becomes,

ZO
oo

60=—Q Q S s" dt(Ak (t)A ks(t)J). (2.5)
V np

We shall now evaluate (2.5) by making use of the
fact that A's in (2.4) are the macroscopic variables, and
thus their temporal development may be assumed to be
governed by the macroscopic equations of motion, such
as the hydrodynamic equations suitably generalized to
take account of the finiteness of k which is expected to
be important near the critical point. We have not con-
sidered the possible frequency dependence or the
memory effects in the macroscopic equations of motion
which may become important for some problems. We

' M. Fixman, J. Chem. Phys. 36, 1965 (1962).' K. Kawasaki and H. Mori, Progr. Theoret. Phys. (Kyoto)
28, 784 (1962).

fl B.B. Kadomtsev, Plasma Turbulence Theory (Academic Press
Inc. , New York, 1965), Chap. II.
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thus write the macroscopic equations of motion as coefficient (2.5) becomes,

—(Ak (t))i ———P Mk P(AkP(t)&i,
dt p

(2.6) 68=—Q p p S pkLolzk
—'] p.,e(AkrA k'J). (2.15)

P ap ~s

where (Ak (t))i, is the average of Ak (t) over the non-
equilibrium ensemble. It is convenient to put (2.6) in
the following matrix form:

d—(Ak(t))i ———Mk (Ak(t) &i,
dt

(2 &)

where Ak is the column matrix with the elements Ak~

and (Ak&i its nonequilibrium ensemble average. Then,
our assumption is that for the purpose of evaluating
(2.4) we can assume that

—Ak(t) = —Mk Ak(t).
dt

(2 8)

Since (2.5) involves A(t) s in bilinear form, we need the
equations of motion for Ak A kP which are, by (2.6)
or (2.8)

d—Ak (t)A kp(t)= —p{Mk rAk&(t)A kp(t)
dt

+M kP&Ak~(t)A k&(t)) . (2.9)

O',k P(t) =Ak (t)A kP(t) . (2.10)

We again write (2.9) in the matrix form introducing
0',k(t), which is the column matrix in the composite
space of Ak(t) and A k(t) and has the following np
element:

If we can calculate S pk from (2.4), and we know the
macroscopic equations of motion (2.6), and we can com-
pute the equal-time correlations of Quctuations appear-
ing in (2.15), (2.15) gives the anomaly in the transport
coeKcient near the critical point. The anomaly arises as
the result of the anomalous increase in the contributions
to (2.15) from small k.

The formula (2.15) is still quite involved for actual
calculation of the anomaly, and we shall introduce
further approximations to simplify it. First, we use the
random-phase approximation to reduce the thermal
averages of the products of four A 's in (2.4) which should
not be bad except, perhaps, in the immediate vicinity
of the critical point, because A's are the macroscopic
variables and their Quctuations will follow the Gaussian
distribution. Next we shall choose A~'s such that difer-
ent A~'s are orthogonal, or are orthogonal in the limit of
small k like the temperature and the concentration.
That is, for small k,

(A A p*&=8.p8 .(IA (2.16)

where we have used the fact that the system is spatially
homogeneous. The error committed in (2.16) is of higher
order in k and is thus assumed not to affect the anoma-
lous part 68 of 8. LHowever, see the discussion at the
end of Sec. 3.]Then we have

(Ak A —k j Ak' A —k' &=(8kk'8ay8pe+8k —k'8as'4r)

x&IA" I')&IA-"I'&
and (2.4) becomes,

Then (2.9) can be written as

—nk(t) = —Onk (tk(t),
dt

(2.11)

&JAk~*A kP*)

= (S.pkysp. -k)(I Ak"
I
')(I A kp

I
') (2.18)

If we note that from the form of the expansion (2.2)
we can choose

where ORk is the composite matrix of Mk and M k

whose nP-y8 element is given by

~aP'=~P~ ' (2.19)

(2.15) can be finally brought to the following form:

ORk p:r'—=8psMk"&+8, M kp'. (2.12)

With this notation the integral in (2.5) is written as P Z P $m ].p „&JA,-*A,P+&

2V~p yb k

dt&Ck~P(t) J) (2.13)
X&JAk A-"&(IA"I'& '&IA-"I'& '

and using the formal solution of (2.11), this expression
reduces to

(2.14)Z [~k ']-P:-«"'J&,

where it is assumed that the real parts of the eigenvalues
of the matrix Mk are positive definite.

Thus, using the definition (2.10), the transport

The evaluation of this expression requires quantities
of the form &JAk"A kP), besides the knowledge of the
macroscopic equations of motion contained in Mk.
There appears to be, unfortunately, no general and easy
way to evaluate these quantities. However, in some
cases, the virial theorem' can be generalized to reduce

s J. O. Hirschfeider, C. F. Curtiss and R. B. Bird, 3IIoteellor
Theory of Gases end Liquids, (John Vililey R Sons, Inc., New
York, 1954); I. OppenheiIn and P. Mazur, Physica 23, 197 (1957).
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these quantities to more tractable ones as we shall see
in Appendix 3.

3. SHEAR VISCOSITY OF CRITICAL MIXTURES

In order to illustrate how the general scheme of the
previous section works, we shall now consider the shear
viscosity p of critical mixtures which was first studied
by Fixman. ' We then have te=1/k&T, where ke is the
Boltzmann constant and T the absolute temperature.
J=I ", and I ~ is the nP component of the stress tensor
defined by

Bet,/Bt = —Dk'cs —(Dr/T) k'Ts (3.5a)

BTs/Bt = (pDDr—/nC) k'ci,
—(pDrs//crT+'A//p)//C ksTs, (3.5b)

where

to take account of higher terms in the gradients, '
which can be done most easily in Fourier space. Thus
we first write (3.2) as

BTs/Bt (pD—r/crC) Bci,/Bt = —(&/pC) k'Ts, (3.4a)

BA/(Bt = —Dk'cs —(Dr/T)ksTs. (3.4b)
Or,

(3.1)
ck ——(27r) ' dre '"'Le(r) —(c)), etc. (3.6)

where I;; is the potential of the intermolecular force be-
tween the particles i and j which is assumed to be a
function only of

~
r;;~. m; is the mass of the particle i.'

The macroscopic equations of motion to be used in
evaluating (2.20) consist of four equations: the con-
tinuity equation, the Navier-Stokes equation, the energy
transport equation, and the equation of continuity for
the concentration. " Since near the critical point, only
the concentration Quctuation and the energy Quctua-
tion become anom. alously large, we may use the simpli-
field macroscopic equations of motion for the tempera-
ture and the concentration in which the pressure is
kept constant, which become in the linearized form and
in the limit of small gradients, "

BT/Bt (pDr//crC)Bc/—Bt=(lt/pC)7'sT, (3.2a)

Bc/Bt =DV'c+ (Dr/T) V'T, (3.2b)

where we have generally followed the notation used in
Refs. 1, 10, and 11 with some alterations. c is the local
concentration, D the diffusion constant, Dz the thermal
diffusion coefhcient, p the mass density, P the thermal
conductivity, C the specific heat per unit mass at the
constant pressure, and o. is a constant defined by

D=n( Bts/cB) i, & p/, (3.3)

where p is the chemical potential of the second species
relative to that of the first defined in Ref. 10. (See also
Ref. 22.). We further simplify the treatment by ignoring
the difference in the specific heats at constant pressure
and at constant volume, which would not be serious for
binary mixtures. At the critical point (Bts/Bc)i, r and
hence D vanish, and C goes to infinity. Other quantities
appearing in the coefficients of (3.2) appear to remain
finite. " '4 In order to use these equations to calcula. te
the anomalous part of rt, drt, we must generalize (3.2)

ie L. D. Landau and E. M. Lifshitz, Fticid Mechanics (Addison-
Wesley Publishing Company, Reading, Massachusetts, 1959).

ii R. D. Mountain, J. Res. Natl. Bur. Std. A69, 523 (1965).
"For D, see Ref. 2, for Dz see Refs. 2 and 13 and for X see

Ref. 14.
"G.Thomaes, J. Chem. Phys. 25, 32 (1956).
'4 J. V. Sengers, in Proceedings of the Conference on the Phe-

nomena near the Critical Point, Washington, D.C., 1965 (to be
published), and the references cited therein.

This is of the form of (2.6), where"

(3.7)

Dk' (Dr/T)k'

(pDDr/nC)k' (pDr'/crT+A//p)k'/C

as k —+ 0. (3.8)

Since D and 1/C vanish at the critical point, these
quantities depend strongly on k Lalso see Sec. 5) and we
must replace D and 1/C by D(k) and 1/C(k) which we
assume to be of the following forms:

D(k) =p(s s+ks) (D= pic s)

1/C(k) =g(g s+ks) (C= 1/gs s)

(3.9)

(3.10)

ol
((BE)')= keT'VpC,

((BT)'}=keT'/VpC.

(3.11)

(3.12)

See Ref. 5. Now, C(k) is expressed in terms of the
Fourier transform Be&' of the local energy density Quctua-
tion Be'(r) at a fixed local concentration, Be'(r)=Be(r)
—(BE/Bc)& z/V Bc(r), in the following way:

(3.13)

"Here cg and Tg are used to denote both the macroscopic
variables and their nonequilibrium ensemble averages.

where ~~' and ~2' vanish at the critical point T„and y
and g stay finite there. The k dependence of D(k) is
mostly due to the correlation in the concentration
fluctuation, see (3.17) below and Sec. 5. Here some care
must be excercised in determining Ms which is related
to the definition of the temperature in the nonuniform
situation. In our simple case, for canonical ensemble,
the total energy Quctuation BE is related to the tempera-
ture Quctuation BT by BE= VpCBT and the specific
heat C is expressed as,
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where

k~T't/'
C(k) = VE /(~s'+k'), (3.15)

(2s.)'pC'

which reduces to (3.11) for k=O because for canonical
ensemble J'Bc(r)dr=0. Here, be(r) and bc(r) are the
fluctuations of the local energy density and the local
concentration, respectively. Then, (3.10) means that
the energy fluctuation at a fixed local concentration has
the correlation range of ~2 ' which becomes infinite at
T, like C')". Thus, if we define the local temperature
fluctuation 3T(r) by

3T(r) = (pC) '3e'(r), or 3T„=(pC) 'be~', (3.14)

the temperature fluctuation has also the same correla-
tion range I~.2 ', although its magnitude nearly vanishes
near T,."Thus we have, using (3.13) and (3.10),

In our case, if we ignore &ckT~*& because it vanishes'
as k ~ 0 Lsee also the end of this section), we have

(I"I'& 0
X(krrTV) '. (3.21)

(I T~l')-

Thus the only restriction imposed by (3.19) is,

~"'/(I c~
I

'& =~~'"/&
I Ta

I
'&. (3.22)

(3.23)(r)p/r)c)r, r (Be/Bc/—e)'knTzt'/4rrap.

This, together with (3.3), (3.9), and (3.18), leads to

That this is satisfied in the limit of small k is seen as
follows. First, there is a relation between (Bp/Bc)r, r
and v~ which is the analog of the fluctuation theorem for
the isothermal compressibility of the one-component
fluid" and near T, is written as,"

k~T'g
K2 ~

(27r)'gpC' (2~)'p
(3.16)

y = (Be/r)c/e) 'nkii T/4rrap'
—(xknT/(2s') p $t. (3.24)

The concentration fluctuation can be expressed near
T, in a similar form:

where"
(I"I'&=«/("'+k'),

gt= 2(eac/ae)'a/(2rr)'

(3.17)

(3.18)

with e the number density of the 2nd species and u some
constant giving the magnitude of the concentration
fluctuation. ' "

In determining Mk, we make use of the generalized
Onsager relation" which can be written if A's are even
variables under the time reversal as,"

(x„—'M„) p
—(x„*—'M„*)p,

We now have from (3.8), and (3.17) for k —+ 0

~~"/k'&
I
cg

I

'& —& atsDr/UT(t. (3.25)

We also have by (3.8) and (3.15),

Mg"/k'(I Tg I
'& -+ pDDrKs'/rrCVrcs, (3.26)

which reduces to (3.25) if we use (3.16), (3.9), (3.10),
and (3.24). For larger k, then, in order to satisfy (3.22),
we assume

~ is= (Dr/Tg s)ks(a s+ks) (3.27)

~a"= (pyDrg~ss/rr)k'(~i'+k'), (3.28)

where we have made explicit the quantities a&' and Kg'

which vanish at T,. The rest of Ma ls immediately
written down:

xg~l'—= (Ayers*&/kn TV . (3.20)

where X& is the generalized susceptibility matrix whose
aP element is,

Jtfa"=yk'(xt'+ k')

M],"= (h/p+ pDT'/nT) gk'(Ks'+k')

(3.29)

(3.30)

"Alternatively, one could de6ne the temperature by
BTs= LpC(k)g 'hey'. (3.14a)

Then the range of correlation of the local temperature Quctuation
becomes very short even near T,."In taking the derivative, we use the following relation

I ld'nl+ I 2frn2 —0
where we write t/';, n; for the partial molecular volume and the
number density of the ith component, respectively. Therefore,
nsc/81 of (3.18) is LV~N2(u&+a~) 1 '. See Ref. 1 and M. Fixman,
J. Chem. Phys. 36, 1957 (1962).

'8 1%(:1' associated with the density Quctuation of one-component
fluid is discussed in M. E. Fisher, J. Math. Phys. 5, 944 (1964)
and the references cited therein. ~1' for ferromagnetism is given in
P. G. de Gennes, in Mcgnetisns, edited by G. T. Rado and H. Suhl
{Academic Press Inc. , New York, 1963), Vol. III, and the refer-
ences cited therein. x2 for the spin system is calculated in K.
Kawasaki, Progr. Theor. Phys. (Kyoto) 29, 801 (1963),Appendix."H. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965); 34,
399 (1965); in Proceedings of the Symposium on Inelastic Scat-
tering of Neutrons, Brookhaven, 1965 (Brookhaven National
Laboratory, 1966)."B.U. Felderhof, J. Chem. Phys. 44, 602 (1966).

which completes the derivation of the macroscopic
equations of motion.

The next step is to evaluate (I sIc~I'&, (I "cj,Ta~&

and &I*&I T~I '). The first one is obtained in Appendix
8, (820) where we set n=x, P=y:

8
(I*"Ic~l '&= kiiTk" (I c~ I ').

Bk
(3.31)

There we present an argument that &I'"csek*& and
(I sIe&I') essentially may have the properties similar
to those of k"f)(caeq*&/Bk and k"8&I eqI'&/Bk, respec-
tively, near the critical point. Since TJ, can be expressed
in terms of cq and e~, &I'"cqTa*& and (I s

I
T~

I
') may also

be considered to have the properties similar to
"M. E. Fisher, Ref. 18.
'2This is derived by using (69), (68), (36) of Ref. 1 and the

Gibbs Duhem rela-tion e&dp&+ardors=0 with p= pi/mr —ps/m s
where p,; is the chemical potential of the ith component.
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Bk
(3.32)

k "8(c&T&*)/Bk*and k'8(~ T&
~
2)/Bk, respectively. Since

(c2T1,*) vanishes as k goes to zero, the term (I'&cKT2*)
has an additional factor of k compared to the other two
terms, and may be neglected near T, Lsee also the end
of this section). We then assume that Ag=Q All I2, n, P=1, 2,

aP
(3.36)

where Ag p becomes, if we write

where A~ is cj, and I'~, and 5@k is the 4)&4 matrix given

by (2.12) and (3.27)—(3.30). Then, (3.35) is conveniently

divided into four parts:

where T' is a constant of the magnitude of T. The dif- (I ~g ~2) 2k T V( k k2/( 2+k2)2 1 2 (337)
ference T'—T takes care of possible additional terms
such as those appearing in (825) and (827). Use of
(3.15) and (3.17) then leads to,

(I "tc~~')=2kllTV&lk k"/(Kl'+k')' (3 33)

(I*"
~
Tl,

~

') =2kgT'V /2k*k "/(K2'+k') ' (3 34)

Wtih these preparations, we are now ready to evalu-
ate the anomalous part of shear viscosity hg, which can
now be written as,

1
& ZZ L~K ')-:ss

2VkgT ~

T=—T

and use (3.15) and (3.17),

krlT Tp $p 1
———Z L~K ')-:Ps

T t. V ~

&& (k*k&)'/(Kp'+k2)' (3 38)

&&(I &jA2 )2)(I ~~31~(')((AK ~2)
—2 (3.35) BRl, ' can now be regarded as a 2x2 matrix;

where

(mg ')~~,pp
——

-~ 22(llII 11+~ 22) ~ 12~ 21

(M1,21)'

(M1,12)'

~ ll(llII 11+~ 22) ~ 12llI 21
(3.39)

&—(~ 11+~ 22)(~ llllII 22 ~ 12~ 21)

=k'(hgy/p)( +K1k2)( 2+K2k2)(A(K12+k2)+g(h/p+pDT2/nT)(K22+k2)).

More explicitly, using (3.27)—(3.30),

(OZ2
—'). ,PP

(3.40)

1 ((h/p)(K1 +k )+(g/y)(h/p+pDT /nT) (K2 +k ))/(Kl +k')

g Y(pDTK2 /12) (Kl +k )/(K2 +k )

~ —=k'(h/p) L7( '+k')+g(h/p+pD '/ T)( '+k'))

(DT/TK22) 2/gP ' (K22+k2)/(K12+k2)

f(y/g) (K12+k 2)+(h/p) (K22+ k 2) )/(K22+ k 2)

(3.41)

(3.42)

This allows us to calculate Ag. Near T, both K& and K2

approach zero and, as we shall see below, contributions
from small k dominate in (3.38), and give anomalously
large Ag. In order to investigate this in more detail,
we assume that Kj(&K2 for the temperatures suAiciently
close to T,. This comes from the fact that the specific
heat diverges much more slowly near T, compared with

1/(Bp/Bc)T, T Lfor isothermal compressibility in a,

one-component Ruid or magnetic susceptibility in a
ferromagnet).

We now study each Ap p, separately. First let us con-
sider he'll. Inspection of (3.38), (3.41), and (3.42) tells

us that here the major contribution comes from the

where

= Arjp(1+ p'DT2/nh T),

k&T 1 (k k2)2
agp=—

V " k2(K12+k2)2
(3.45)

region k K~ and we obtain

(5R ')11.11=(2k'y) '(1+p2DT2/nhT)/(K12+k2) . (3.43)

Appal becomes

1
Allll 2kllT Q(OZK ')11.11(k k")'/(Kl'—+k')' (3.44)

k
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This has been evaluated by changing the summation
into an integral to yield

hg p =
kryo Tl(160rryki) (3.46)

where

O(y)
X (3.48)

7+g(hip+ PDr'InT) k2

Q(y) —= dx-
(x'+1)(x'+y)

(3 49)

y= ("Ip+PD —'I T)lh'lg+~/p+PD ' I T) ~ (3 50)

1 kaT" p y+ Xg/p

30vr' T Xg y+g(X/p+PDr'/nT)
1

XZ(y, s) —, (3.51)

where

R(y, s) = dx-
(1+x')' x'+y

(3.52)

s= (~/p)l(vlg+~l —p) (3.53)

and y is given by (3.50). In the absence of thermal dif-
fusion, D~=O, ~g12=~g21=0 and

kgT" p 1

T Xg 160m+2
(3.54)

which becomes Aqp if we replace T', Xg/p, and k2 by
T, y, and iri, respectively.

= (pe Bc/Be)'(a/40n)ri ', (3.47)

where we have used (3.24) in the last step. Since the
integral converges at large k, the upper limit k,„does
not affect (3.47). App is the anomalous viscosity found
by Fixman' in an entirely diferent way, and diverges
as ~1 ' near T,. The same is true for Ag11 which includes
a finite correction due to thermal diffusion. This di-
vergence at T, is the result of the two cooperating
factors: (1) the increase of the long-wavelength parts of
the Quctuations contained in I*& near T, giving rise to
the factor (irik+k') ' in (3.44); (2) increase of the life-
times of these parts of Quctuations which are given by
(mk ')ii,.ii, (3.43) Lcritical slowing-down). Neither one
of them alone is enough to cause the divergence. Thus
(I'"I'") does not diverge at T,. The origin of the cor-
rection to Agp due to the thermal diffusion is traced to
the correction in the lifetime, (3.43), which is also one-
half of the inverse of the eigenvalues of the matrix Mk.

The evaluation of the rest of Aq p is quite similar
except that here the major contribution arises from
k a2. We give only the final results in the following:

1 kaT' (pDr)'
~gl2 ~$21

In summary, we have obtained two kinds of correc-
tions to Fixman's result, (3.47). The first one is
(pDr) /nXT in (3.44) which is Gnite at T,. Since the
thermal diffusion ratio kr ——Dr/D is small (10 ' 10 ')
if we are far away from T, and D& appears to remain
finite at T„"p'D&'/nXT is usuallyvery small. The second
correction is given by (3.48) and (3.51). They are also
small when ~2)&~1 under which they have been derived.
Therefore, the corrections to Fixman's result, Agp,
considered here is of minor importance as far as the
comparison with experiments is concerned. In fact, we
could have obtained Agp much more simply by ignoring
the temperature fluctuation from the beginning. The
main reason for going through this complicated case is
that we wished to illustrate our general theory for the
case where we have at least two coupled macroscopic
variables.

In the example of this section, we have always ignored
(ckTk*) on the ground that it vanishes as k ~ 0 which
simplified the treatment somewhat. Actually, however,
this must be taken with some reservation if k becomes of
the order of the inverses of correlation lengths of critical
fluctuations. For example, the function k'/(ki2+k')
&&(k22+k') vanishes as k goes to zero, but for k k2 it
cannot be neglected compared with 1/(ki2+k'). Since
we do not know (ckTk*) near T„we cannot get a relia-
ble estimate of the error committed by neglecting it,
although this is expected not to change the major con-
clusions of this section. Thus for the moment the treat-
ment given in this section only serves mainly for an
illustrative purpose.

A similar remark also applies to the approximation
(2.16) when Ak~ and Ak~~ (nWp) are not exactly or-
thogonal for k/0. We can then certainly replace
(2.16) by

(Ak Ak' ) ~kk'(Ak Ak ) ~ (2.16')

Then the equation determining S p~ will be still an
algebraic equation which is a little more complicated
than (2.18).Alternatively, we can also transform Ak's so
as to satisfy (2.16) exactly. We hope to come back to
this question on another occasion.

4. NONLOCAL VISCOSITY

The study of the anomaly near T, in the shear vis-
cosity of Sec. 3 indicates that the anomaly arises from:
(1) the anomalous increase of the long wavelength parts
of the fluctuations of I &, and (2) the anomalous increase
of decay times associated with these Auctuations. This
immediately suggests that the shear viscosity may be-
come nonlocal in space and time near T,. In other words,
the shear viscosity may exhibit considerable amount of
wave vector (q) and frequency (a&) dependence near T,.

In order to investigate this problem, we erst obtain
the correlation function expression for q, co-dependent
shear viscosity. Thus, let us consider the qth Fourier
component of the transverse part of the local momen-
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turn density Pq defined by

P.-=(2~) 'Z ~qXue "",
quantities whose temporal development is governed by
I.i. Therefore, we consider another quantity it'(q, uo)

(4' dined by

where we assunie classical mechanics. If we write the
Laplace transform of the time correlation function of
I'q as follows by taking the s axis in the direction of q:

g'(q, i(o) =
k~TV

&I "'()I "**) ""d

&I' *(t)I' *&e-"dt

=
& II'~

I '&/Lz+A(q, s)/pj, (4 2)

where p is the mass density, g(q, s) can be shown to re-
duce to the shear viscosity q in the limit of q and s go to
zero. "If we use the following identity due to Mori, "
which can be obtained from (A11) specializing to the
case of a single macroscopic variable 2 Dor the nota-
tion, see Appendix Aj:

in which the temporal developnient of I» P(t) is governed

by the ordinary dynamics. The relation between (4.6)
and (4.7) is obtained as a special case of (A22) as;

~(q, i~) = ~'(q, i~)/L1 —p 'A'(M~)/~~3, (4.8)

01

rt'(q, i(o) g(=q,iu)/I 1+p 'q'-g(q, isa)/ice) .(4.9)

If, as we said earlier, q(q, isa) tends to a finite limit for

q, ~ go to zero irrespectively of the way the limit is
taken, it follows from (4.9) that

«&~(t)~(0))e "=(~')/I:s—"+~'(s)j, (43)

we obtain

lim lim it'(q, i(u) = it,
co~0 q~o

(4.10)

(4.11)
qp

~(q z) = (I; (t)I; *&c '*dt, (4.4)—
(2 )'&II'. I')

where

' pt'
e—iq r&

The anomalous part of it'(q, i&a) in the quadratic
approximation can be obtained either by generalizing
(2.20) or using the results of Appendix A as follows:

j mj
BN;g——.gP —;Pc", ~P (4.3)

j/l (jig'jib

&v'(q, ~~) = 2 Z 2 L~~+~~(q) j-p:.~
'

2k~TV o v»
X&I,"*&~"*&,jP*&&Ig"'*&~'&g ~'&

v(q, t~) =
k~TV

(I "(t)I »'&e ""dt-(4.6)

This reduces to q of Sec. 3 in the limit of small q and co

as mentioned above. It should be noted that this limit is
independent of the order in which the two limits are
taken in contrast to other definitions such as (4.7) be-
low simply because I~~P(t) does not contain secular con-
tributions at long times even for a finite q.

Unfortunately, however, it is not yet clear how to
handle in general the time correlation function of the

23 B. U. Felderhof and I. Oppenheim, Physica 31, 1441 (1965).
'4 Actually, I t de6ned in this manner contains a contribution

linear in A's for q+0 even for n+P. This does not contribute to
(Iq~ A p *A

q p~*) ig. the random-phase approximation and has
been ignored,

which reduces to the stress tensor I s, (3.1), when q goes
to zero, and I~ P(t) differs from I~ P(t) in tha, t its tem-
poral development is governed by the special Liouville
operator I.i introduced in Appendix A, (A6), which is
designed to remove the secular term in I~ p(t) at
long times. Thus, g(q, ko) is naturally regarded as a

q, co-dependent shear viscosity which becomes, if we
note that (2ir)' &II'~I'&=q'kiiTpU,

X(I~,-l &- &l~, ,sl &-i, (4.12)

where 5K~(q) is the composite matrix of M~ and M~ ~

whose O.P yb elem-ent is

on -p: '(q)= sN -—+s Ã (4.13)

ac~/at = —k'y(~i2+ k') ck. (4.14)

and we have assumed the form of macroscopic equations
of motion (2.6) which is local in time. Here it is noted
that (4.12) does not approach zero in the limit of zero co

with a finite q. This contradicts (4.11) because (4.12)
contains anomalous part which dominates g'(q, i~) for
small q and co near T,. This is because in the process of
introducing the approximations leading to (4.12), the
secular part at long times contained in (4.7) is washed
out. Thus in fact we ought to identify (4.12) with the
anomalous part of it, Aq(q, iar). With this new hit(q, ice)

which is finite in the limit of small q and ~ irrespective
of the way the limit is taken except precisely at T= T„
(4.11) is again satisfied using (4.9).

For the macroscopic equations of motion, we now
choose for simplicity the simple diffusion equation in-

stead of those of Sec. 3„
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Thus, (4.12) leads to

~rt(qz )= E{z +k'v( '+k')
2k~TV k

In order to obtain (I,"'c ~c~ q), we write Iq&' as

J yz — dre iq r~
—yz(r)'

Substituting this into (4.15) and using (3.17) and (4.20)
we obtain (q&=0, q'= q),

kggT
Art(q, ice) = Q{i&o+k'y(~iz+k')

2V

+ (k—q)'y[~iz+ (k—q)') } '[(2k' —q)k )'
2+ (Q q)2) 1(& 2+k2) 1 (4 23)

Ke now transform this first by introducing the following

(4.16) dirnensionless variables:

where j&*(r) is the local stress tensor at r. The explicit
expression for j"'(r) can be obtained from (4.5) and
(4.16), but we do not write it here because we do not
need it. Let us now expand j&'(r) in powers of the local
concentration c(r) and its gradient. If we note the tensor
property of j&'(r) and that it does not contain terms
linear in c(r), we will have

(—=q/Ki, 4=~/~» {=~/'Y~i ~ (4.24)

Art(q, i~) = DztrZ($, {), (4.25)

where Ape is the anomalous shear viscosity of Fixman
given by (3.45)—(3.47), and

then, by changing the summation over k into an integral
over gi. This then leads to

(4.17)

The terms not written explicitly in (4.17) are of the
higher orders in c and/or in the gradient and the part
which is not expressed in terms of c(r). Therefore, we

may ignore them in the quadratic approximation near
T,. To determine f, we consider

where g is in the direction of the s axis. In particular, we

find that

Bc Bc Z(0,0) = 1. (4.27)
df

Br" Bf,

(2~)'
fP k&k'(chic g—(chic g)),

V k

where the term with (c~c ~) does not contribute because
of symmetry. If we consider (I&*cz,c k) and use the
random-phase approximation for the average of product
of four c's, we find

2(2zr)'
(I 'c~c ~)= fk&kz(~cg~')'

V
(4.19)

I "'=(2 )'fV 'Q k"(k'—q')c c, (4.21)

from which we obtain (Iq"*c qc~ q) again with the use of
the random phase approximation as follows:

(I,"c. ~c~ q) = (2zr)' fV '

X [k"(k'—q')+k'(k" —q"))(
~
c~ q ~

')(
~

c~
~

') . (4 22)

Using (820) for the left-hand side, and (3.17) and (3.18)
for (~ c&

~
'), this immediately gives for f,
f kzzZ/(2zr)'gz=keZ (Brz/Bc/zz)''/4zra (4.20).

The existence of such a constant f which is finite at T,
justifies a posteriori the local form of (4.17). Substitution
of (4.17) into (4.16) leads to

Therefore, the q, co dependence of the shear viscosity is
contained in Z($,{),which is in general complex giving
rise to dissipative as well as reactive parts to zt(q, i&a)

The integral (4.26) can be transformed by the change
of integration variables,

hi=&, 4'=y+zk,
where gi, is the component of gi perpendicular to the s
axis, and extending the limits of integrals to infinity
we finally obtain

40 oo oo

Z(g, {-)=— dx dye'y'
p

X{(1+~'+y')'+2(1+*'—y')k'+i'e P} '

X (2(*'+y') (1+*'+y')+(*'+3y'+-') P

+-.'P+ {-}-'. (4.28)

Near the critical point where x& is very small, $ and f
can become appreciable even for small q and co. This
indicates stronger q, a dependence of d, rt(q, i~) closer we

approach Z', as was expected. Since (4.28) is a com-
plicated integral, we consider a few special cases to study
the properties of Z(),f').

(a) Zero zoave vector (j=0) arzd a fzrzzte freqzzerzcy ru.

Near Z'„ t can become very large. Although actually the
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by (4.24), where

dS
f4+ i

(4.30)

Thus, if we remember that Ag~ grows like ~~ ' near T.,
this singularity is offset by (4.29) for a finite a& when
«i & (~/v)"'.

(b) Zero freqgertcy (/=0) arid a firtite wave vector

Here g can become very large near T,. Then the major
contributions to the integrals, (4.28), come again from
the region x,

~
y~))1 and we have

40
Z(i, 0)—— dx

0

Qyx y

limits of integrals are about k„, -/«i, this is still much
greater than 1 for small a&, and the limits can be taken
to infinity as in (4.28) since the integrals converge.
Then the most contributions come from x, ~y~))1.
Therefore, one can show that (4.28) for /=0 may be
approximated by

2r(4X16
Z(0 f )~ Rf '" y't'« (d 't'

fluctuations and in the associated lifetimes of these
fluctuations. We note, however, that the latter is actually
caused by the former. In concluding this paper, let us
make a few remarks:

(1) Let us now consider the thermal conductivity of
critical mixtures. We can apply the treatment of Sec. 3
by replacing l*& by the heat Aux J& . Now I&* consists
of linear and cubic terms in particle momenta and thus
changes sign under time-reversal whereas c~ a,nd T~
do not. Therefore the quantities (Ir*~ c«

~

'), (Ii '~ T«~ ')
and (Ir'c&T&*) identically vanish. This means that no
anomalous increase near T, is expected for the therma, l

conductivity of critical mixtures at least in the quadratic
approximation and with the choice of ci, and Tl, as
macroscopic variables, which is consistent with the
existing experiments. "

(2) In the preceding section we have studied the
strong q, ~-dependence associated with the transport
coefficient which exhibits an anomalous increase near
T,. There is another type of anomaly in which the trans-
port coefFicient vanishes at T,~ An example is the dif-
fusion process which appears in Sec. 3 and Sec. 4. The
q, a&-dependent diffusion constant D(q, &p) is then given by

f (x2+y2)2+ i (x2 y2)$2+ 1 $4} 1

&&(2(*'+y')'+("+3y')8+k~'}-'. (4»)
D(q, ~p) = «(A(t)j.*) (5.1)

Z(0,t ) = 1 if'+——
12

(4.33)

19
Z(k 0) = 1——5'+

56
(4.34)

These results indicate explicitly that whenever a
transport coefFicient tends to infinity at T„it is necessary
to consider the strong q, co-dependence of the transport
coeKcient.

S. DISCUSSION

In the preceding sections, we have given the general
treatment of the behavior of transport coefficients which
exhibit anomalous increases near the critical point, and
we have illustrated the general theory with the applica-
tion to the shear viscosity of critical mixtures. The
anomaly has been attributed to the two cooperative
effects of the anomalous increases in certain large-scale

The actual limits of integrals k, /«& are very large com-
pared to $ for small q, and the integra, ls converge as in
the preceding case. Then we can ignore these limits as
in (4.31). Therefore, if we change variables as x=$x',
y= jy', we see that

Z($,0) & '=«i/q. (4.32)

Thus, again the divergence ~&
' of App is canceled by

Z(&,0) for «i&q.
For small values of $ or f, one also obtains the follow-

ing expansions of Z($,f):

where jq is the component in the direction of q of the
diffusion current jq defined by

Bcp/Bt= ig ' J~ q

and jp(t) differs from jp(t) in that the former is governed
in its temporal development by L& of (A6) with A

given by cq. If the conventional theory of the critical
slowing-down" holds, the numerator of (5.1) remains
finite near T, and thus has no anomalous q, ~ de-
pendence, whereas ( ~

cp
~

') increases anomalously near
T, and has a strong q dependence. Thus, for this type of
anomaly, oely the q dependence becomes of importance
near T,.

(3) The question arises how our result for the
anomalous shear viscosity depends on the specific
choice of the Ornstein-Zernike form of correlations of
fluctuations, (3.15) and (3.17). Ignoring the temperature
Quctuation, we can easily generalize the result of Sec. 3
for a more general forni of (~ c«~ ') which we denote as
G(k). Namely, using (2.20), (3.31), and M& ——const
Xk'/G(k) with T« =0, we obtain

ay= const g 3E«-'(I
~
c«

~
')/(~ c«~ ')

[G'(k)]'(k'k")'= const P
k'G(k) k "LG'(k) j'

= const k'dk, (5.2)
p G(k)

"K. Kawasaki, Phys. Rev. 145, 224 (1966) and the references
cited therein.
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where G'(k) = dG(k)/dk. At T= T„we may put

G(k) =const k &' "', (5.3)

where v represents the deviation from the O.Z. form of
G(k) (i equals Fisher's &2i). The behavior of hrt near 1,
may be obtained by introducing z ' which is the range
of correlation of concentration fluctuations as follows

LG'(k)l'
d g= const dkk' =const K ~' "'. (5.4)

G(k)

v is usually a small number, 2' and Ag still diverges at T,.
However, the result (5.4) should not be taken too
seriously, because the quadratic approximation and the
random-phase approximation were already used in
arriving at this result.

Finally, we briefly mention a recent very interesting
attempt made by Zwanzig and Mountain'~ to calculate
the various transport coefficients of one-component fluid

near the critical point. They adopted the model of van
Karnpen, "where the particles are interacting with very-
long-range potentials which is essential in their treat-
ment. They successfully explained the various features
of anomalies observed experimentally. Although their
theory undoubtedly contains a key to the understanding
of this difficult problem, the model adopted is somewhat
unrealistic because the critical point is characterized by
the long-range correlations of fluctuations rather than
by long-range interaction potentials. Thus it is hoped
that the present theory may provide a more realistic
treatment of this problem.
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APPENDIX A

Here we shall present a more systematic treatment of
the general theory of Sec. 2 which enables us to general-
ize the results obtained there and to derive them in a
more satisfactory way. In particular, we have been
able to derive in the quadratic approximation the self-
consistent set of equations for the anomalous parts of
the wave vector (q) and frequency (co)-dependent trans-
port coefficients.

The starting point of the present treatment is the
theory of Brownian motion for the macroscopic varia-
bles recently put forward in a general form by Mori. "

"M. E. Fis'her, in Proceedings of the Conference on the
Phenomena near the Critical Point, Washington, D. C., 1965
(to be published)."R. W. Zwanzig and R. D. Mountain (private communication).' N. G. van Kampen, Phys. Rev. 135, A362 (1964).

Therefore, we shall first summarize the relevant part of
Mori's theory which is necessary for the subsequent
development.

Before proceeding further, we shall introduce a set of
necessary notations. Let A be the column matrix repre-
senting macroscopic variables at the time zero whose
element is 3& . Ak may be a classical phase space func-
tion or a quantum operator. We introduce the classical
or quantum Liouville operator I. to describe the tem-

poral development of any variable Ii as

F(t) =e"~F. (A1)

We define the inner product of two variables F and G by

(F G*)—=P ' dP, (e"~Fe ~~G*), P—= 1/keT) (A2)

A= iLA=iM A+f. — (A5)

The first term represents the part of A which contains
the collective motion and f represents the random force
acting on A. It can then be shown that the temporal
development of f is described more appropriately by the
modified Liouville operator l.~ rather than L, where

Li= (1—(Pi)I.. —
That is,

f(t) =e"~'f (A7)

Finally we define the damping matrix y(t) by

~(t)—= (f(t) f*) (A,A*)-', (AS)

which is related to the general wave vector and
frequency-dependent transport coefficients.

With these notations Mori derived an important
identity satisfied by the variable A(t), namely,

—A(t) =ik A(t) — y(t —s) A(s)ds+f(t), (A9)
0

"In Mori's paper (Ref. 19), (P1 is denoted by (P0. Mori's (P1,
(P2, . 'have different meanings from ours.

where H is the system Hamiltonian and G* denotes the
Hermitian conjugate operator of G for quantum
mechanics. For a classical case, (F,G*) reduces to (FG*).

With this inner product we define the projection
operator (P& which projects any variable G onto the sub-
space spanned by A."Namely, in matrix notation,

O,G—= (G,A*) (A,A*)-'A. (A3)

Now, when the system exhibits certain collective
motions such as sound waves, their frequencies of oscilla-
tion can often be described by the first moment fre-

quency matrix or defined by

io) (A,A~=) (A,A*) ' (A4)

where A is the time derivative of A taken at t=0
and the matrices are constructed from all the Ai, 's with

~

k
~
(k, . Then we can divide A into two parts:
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where the first term on the right-hand side represents
the collective motion associated with A, the second the
friction term with memory, and the last term represents
the random force mentioned earlier. We rewrite this in
terms of the Laplace transforms AL(s) q L(s), and fL(s)
defined by

AL(s) =— dt e "A(t), etc. , (A10)

in the following way:

AL(s) = js—i'+ pL(s)7 ' LA(0)+fL(s)$. (A11)

The meaning of this equation becomes clear if we take
the average over the nonequilibrium ensemble. Then
fL will drop out and this represents the generalized
macroscopic equations of motion. For example for a
simple diffusion, we take A to be the Fourier components
of the local concentration cs. Then to=0 and (A11) be-
comes a scalar equation with

~'(s) = V'D(q, s), (A12)

where D(q, s) represents the q, s-dependent diffusion
constant which reduces to the ordinary diffusion con-
stant in the limit i7, s ~ 0. Thus q L(s) is in general re-
garded as a matrix representing the wave vector and
frequency-dependent transport coefficients if we set
s=m. In the following we shall drive a set of self-
consistent equations determining the part of yL(s)
which becomes anomalous near the critical point.

We now attempt an expansion of f's in powers of A' s
as in (2.2) for J. To do it more systematically, we con-
struct a set of orthogonal variables from A's in the fol-
lowing way. Writing A instead of A~ supposing that
o, also specifies k, consider the set of variables A,
8 &, C», which are linear combinations of the prod-
ucts of A' s. The maximum number of powers of A' s
contained in each variable equals the number of indices
attached, and the condition of orthogonality requires
that"

where Sp~ is determined by the set of equations,

(A19)(fa +sea) p g a(/)pal . g35ea)

»
which is obtained from (A16) by applying (Ps to (A18),
and we have used the fact that (f )=0, and

(~; G)=—(~ G) —(F)(G).

To proceed further, we neglect all the terms not
written explicitly in (A18) for studying the anomalous
part of p, hp, by the same reason by which we truncated
(2.2). For obtaining hyL, we could replace f"(t) in

(A8) by the first term of (A18). However, there is one
difficulty, that is, the temporal development of f
given by (A7) is differentfrom that of A and B.Thus we
introduce another variable K~(t) defined by

the orthogonal set A, 8 ~, C», . ~ - represents the
ascending powers of A' s.

In order to obtain the expansion of f's, we now intro-
duce the projection operators 6'2, (P3, ~ ~ which projects
any variable t" onto the orthogonal subspaces spanned
by the sets 8 &, C"», , respectively, in analogy- with
6'~ introduced earlier. For example,

6,G= (G,B*) (B,B*)-'B,
where B and B*are the column and row matrices con-
structed from 8 & and 8 ~*, respectively, which are the
obvious analog of A. Because of the orthogonality of the
set A, B, C, , the desired expansion of f becomes

f» = ((pi+ (Ps+ )f~+fLt~, (A17)

where fbi is the part of f which is outside of the sub-
space spanned by A, B, C, Since by the definition of

f, (AS), it is orthogonal to A, that is, (Ptf =0, the ex-
pansion starts from 6's in (A17). Therefore we can
write (A17) as

(A18)

(B~s,A~*) = (C»,A'*) = (C-s~,Bs *)= . =0. (A13)

As an example, let us consider 8"~ which we write as

Ka(])—eALfa

and also define the matrix function PL(s) by

(A20)

8 &=A "As gu, ~A'. —(A14) 0'(s) = dt e '*(K(t),K*) (A,A*) '. (A21)

The orthogonality condition (A13) then requires that

(A As A'*)—Q u ~(A&A'~)=0 (A15)

which determines N~ ~. In a similar manner C» can
be determined except for multiplicative factors. Since
from(A15) u~ eisof theorderof A' s, 8 ~isof themagni-
tude of square of A' s. Similarly, C» is of the magni-
tude of cube of A' s, and so on. In this sense, therefore,

Then, Mori has derived a simple relation between q (s)
and PL(s) ";

9 '(s) = L1—4'(s) (s—s~) '3 '&'(s).

Thus, we can study the anomalous part of QL, AQL,

instead of hyL. K (t) becomes, using (A20), (A18),
and (A14)."
K (t) =Q Sp $A&(i)A&(t) —Q us»A'(l) j+.. . (A23)

"The orthogonality is required only between the variables with
dQ"erent number of indices.

"In (A23) we suppressed (8») which must be subtracted from
it, because (8») does not contribute to the final result (A25l.
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Denoting the Laplace transform of E (f) by E ~(s)
and using (A11), we obtain

IC s(s)=g Sp
pv (22ri)'

dzydz2

Si ZGO+ rP (Si) Pr S2—SCAN+ (P (S2)

XLA'+f"( ))LA'+f"( )) d~ et (zI+z2—z)

—N2p& (A'+ fz~(S)) + (A24)
-S—ZC7+P (S)-2z

(&"(s)f.*)= g P Sp -(A&A f.*)
(2~i)2 pv 2.

-S1 ~+ V2 (S1)-Pb -S2 $M+ P (S2)- yz

dh e'i ~+ 2 &+, (A25)-

where c is the contour appearing in the inverse Laplace
transformation of A~(s) and runs from x i ao—to
x+i~, where x is a real number greater than the real
parts of all the singular points of A~(s). When all these
singularities are located to the left of the imaginary axis,
we can take @=0 and the time integral converges for
Rez& 0, which we assume to be the case. Let us now con-
sider the expansion of f~ appearing in (A24) in powers of
A' s. By the definition of f's, we have

(f ~(s) AP*)=0,

because f»(f) is orthogonal to AP at all times. This
means that f s(s) does not contain linear terms in A' s
in this expansion. Therefore, in the approximation of
retaining only the quantities quadratic in A' s, all fs in
(A24) should be omitted since N2P" is the quantity of the
order of A' s. With this resulting expression for Ik ~(s),
we now consider (E ~(s),f *). Again noting the
orthogonality of A's and f's, the second term of (A24)
does not contribute, and we finally obtain

to be known smooth function of the temperature near
the critical point. Since hP~(s) is expressed in terms of
p~(s) by (A25), if we substitute (A26) into (A22) we ob-
tain a self-consistent set of equations for fp~(s). Thus,
this set of equations in principle allows us to study the
anomaly of generalized nonlocal transport coefficients
near the critical point contained in p~(s) in the quadra-
tic approximation once we know the equal time cor-
relation functions appearing in (A19), (A25), and (A26)
as well as the well behaved part Pit~(s). In practice,
however, it is too involved to be useful and further re-
ductions are necessary for specific applications. We hope
to be able to report on this in future. ~'

In the following, we shall use the above results to
derive the results of Sec. 2 for the transport coefIj.cients
(2.1) in the limits of long wavelength and then small s.
In this case ip~(s) reduces to f~(s) except for such sys-
tems as plasmas and superfluids and we can use (A25)
replacing both E and f» by J, and then we can set s
equal to zero. We thus obtain in classical mechanics

dt(J(t)J)= g g p 5 pk(Ak&A k'J) dsi
0 (27ri)' p ~»

-sl 20k+ Pk (sl)- ay -s2 28 k+ W—k (s2)- Pr

df pt(zy+zz z)+. . . (A27—)

where we have written down k explicitly again, We now
move the integration contour very far towards the left
in the complex plane in a familiar way. We are then
left with the contour integrals over the small circles
around each singularity in (A27). For small k, which
give major contributions near the critical point, co& and
q ~~ are small and only the singularities clustering around
the origin become significant. Then, we may ignore the
s-dependence of 22k~(s). This would not be always cor-
rect since near the critical point some transport coeKci-
ents exhibit strong frequency dependence Lsee Sec. 4).
However, this appears to be true for the example con-
sidered in Sec. 3 and the simple diffusion equation
(4.14). Equation (A27) then becomes

where ~ is the contributions of higher-orders in A' s
and that which comes from fir of (A17). Ignoring the
former contributions to be consistent with our quadratic
approximation, we write (A21) as

dt(J(f)J)=p p 5 p"(Ak~A „'J)

X dt(exp( —tMk)} ~

ip»ps(S) =Q(lt r(S),fra) L(AA*)-') p
where

X(exp( —tM k)}p2+, (A28)

Mk—= S k~—idik. (A29)

where hif ~(s) comes from the first term of (A25) and
thus represents the anomalous contribution to f~(s),
whereas err~(s) comes from fir of (A17) and is assumed

"A self-consistent set of equations has been used also in the
theory of Zwanzig and Mountain (Ref. 27). Since the details of
this theory are not yet available to the author, we do not discuss
it here.
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2%.
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equilibrium distribution unc

(82)p, =Z ' exp( —PH),

d B the systemfunction anwhere isZ
'

the partition
Hamiltonian,

(83)

Z(r' X"—)=(I')= e-spV, (89)

p "p
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S—=—X 'Vpe~5 (r,))X,s=XP(r; =—
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'
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(810)
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r, ; =— drr X~(r)= —p d5r e~g(r,'X;s)= dr r—
8

r = —pV8p,= —p r r =—
Br&the

has been used.h G uss theoremwhere t

d th 6 th o810), (811),md t,

where
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and is
is p
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following identity:

(812)

(85)XP=— Bu /Brg-
e
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nn d to the finite volume y
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Since g, (r) varies with r appreciably only near the Thus we obtain
boundary, if we ignore small surface contributions and
use (88), (813) reduces. to (I j)G)= —kjjT g),y y" k'e e—i')I rx

&r;~gieG)= —1(/ )Vph j) drg;(r)

= —X-'Vp&G)B., (814)

Substituting this into (86) we 6nally obtain the general-
ized virial theorem as

BG
+k Tg p,' +pV&G)B.e (.»8)

,P

As a first example, let us consider the case when
G=

I
cy

I
'. Noting that"

c),l'= (Bc/BN)'Iu), l'
= (Bc/Bn)'(22() ' Q; ' e "." (819)

Although the special form of the external force has been
used in deriving this result, it should be valid for large
systems in general because it is concerned with the
bulk properties of the system. It is sometimes more con-
venient to rewrite this in a slightly different way by
writing G formally as follows:

G—Q g Br(y)(7) e
—i)287 ~ rII (816)

where k~, y~, and r~ are the vectors in the 31V-
dimensional space of E particles. Then we have

BG BGy
&I eG)=k Tg

I p,'
Bp,e Br ej

+p V(G)B e. (815)

&where n~ is the Fourier component of the number
density of the second species and g' denotes the sum
over the particles of the second species and r;;—=r,—r;.
Use of (818) immediately yields

l9

&I"'I"
I
') = —keTk' &I c.

l
')+ p V& Icy I

')B-e (82o)
Bk

Thus we obtain (I el c), l
') from the knowledge of the

pair correlation function of the concentration Quctua-
tion (Ical'). The same relation holds also for the
ordinary density Quctuation.

As a second example, we consider the expression
&I*yc),e8*) where e), is the k Fourier component of the
energy density given by

p'-
(22r)3e& p e

—ik ri+ p p u ire i)r ~ ri+iq—rei (821)
'2~; 2V q

where

BG 8
g.a g ~ pN P.P

u '=— u (r)e ' 'dr u"(r")=0
—i)287 r)I (81 "Br)

Then, we have

(822)

p.2

(I'"recce)=(Bc/Brc)(I'"recce") (2 ) (Bc/Bre)(=I'"'r, P; e 'e"'+ Q +cree e 'e"" ' "). (823)'2, 2V q

Using (813) this reduces to,
8 kjjTBc/Bri

(I*yc),e),*)= —kjjTky (cye),*) jlrr(Iy (e
—ik rii iq rii)

Bk* 2(22r)'V ' Iiq B/I''
B kjjTBc/Bri=—kjjTky (c),e), )— — p g&nye'""jrji Bujl/Br, i"),

Bk' 2(22r)8

where we have used that u),= (22r) 'g —e 'y'*' and

Bu, ,(r)/Br. y &V
—2 Q e

—iq r/Iyu ij+
q

(825)

(826)

which follows from (822). By a similar but somewhat lengthy analysis, we obtain for &I*ye8e),*)7

l9 kj)T pi' Buji
(I*"Iey I

8)=—kjjTky (I e), I
')— g (e '""'I+e'"'*I)rjiy''

Bk* 2(22r)' ii 2m; Qy. )Q

kgT Bu;; +tn
e '" ' r;;~ cc,„+rc.—a;;)). (827)

4(22r)' 'j(8 gr;)" jr)„'fI
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Thus, (I"&c~e~*) and (I*"
~ eq ~') are not related to (ct,e„*)

and ()et, ~') respectively in a simple manner as for
(I*")cz ~'), and there are additional terms represented by
the last term of (825) and the last two terms of (827).
I.et us now consider the nature of these extra terms.
First, consider the last term of (825) which we denote
as Ct, o. Cq'" is different from (street, *), where et, corre-
sponds to the potential energy, by the fact that I,&

is replaced by r, t cttc, t/ctr, to. Thus both of them contain

the same types of the long-range particle correlations
near T,. However, the di6erence arises from the diGer-
ent symmetry property of tt, t and r;t*ctg, t/ctr, p T. here-
fore, Cl, "& vanishes as k goes to zero. In this sense Cl, '&

is more similar to k&(ct/elk')(ct, e~u ). The same thing is
also true for (827), and the properties of its last two
terms may be similar to those of k "ct(et,xet, ~*)/elk and
k"&(~ es,~ ~')/elk', respectively, where e~~ corresponds to
the kinetic energy.
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Nuclear Spin Relaxation in Cs Metal*
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The characteristic nuclear-magnetic-resonance parameters, Knight shift, line shape and width, and
relaxation times have been measured in cesium metal from the melting point to 1.6'K. The nuclear spin
relaxation time Ti is inversely proportional to the temperature from 300 to 7'K, with T&T=0.135~0.01
sec 'K. For temperatures below 7'K, the relaxation shows another contribution of unknown origin. The
Knight shift increases linearly with temperature down to 4'K, following the line previously measured by
Gutowsky and McGarvey at higher temperatures. Diffusion narrowing of the magnetic-resonance line is ob-
served at 190'K, but the strong electron-nucleus interactions preclude good diffusion-constant measurements.

I. INTRODUCTION
' 'HE alkali metals were among the first metallic

systems to be extensively investigated by means
of NMR techniques. ' 4 The experiments provided
detailed information in two major areas of interest.
(1) Measurements of the motional narrowing of the
resonance line gave good data on self-diffusion, par-
ticularly in Na and Li.' (2) The large electron-nucleus
magnetic interaction allowed investigation of certain
properties of the electron system such as the spatial
distribution of electronic wave functions, importance
of nonfree-electron effects, and spin magnetic
susceptibility.

The work reported in this paper was undertaken
primarily for the purpose of extending these earlier
measurements to cesium. The experimental data con-
sist of measurements of the nuclear spin-lattice relaxa-
tion time T&, the free induction decay time T&, and the
Knight shift E, from the melting point 28.5'C, down
to 1.6'K. After a short section discussing experimental
details, we will discuss the data from three points of

*This work was supported in part by the U. S. OfFice of Naval
Research, the U. S. Army Research OfFice—Durham, and the
Advanced Research Projects Agency.

t Present Address: Physics Laboratories, University of Kent,
Canterbury, England.' H. S. Gutowsky, Phys. Rev. 83, 1073 (1951).

~ R. E.Norberg and C. P. Slichter, Phys. Rev. 83, 1074 (1951).' D. F. Holcomb and R. E. Norberg, Phys. Rev. 98, 1074
(1955).

'R. T. Schumacher and C. P. Slichter, Phys. Rev. 101, 58
(1956).

view. We will analyze them for information on (1)
self-diffusion, (2) properties of the electron system, and
(3) the existence of an unidentified low-temperature
relaxation mechanism; these three topics are covered
in Secs. III, IV, and V, respectively.

II. EXPERIMENTAL DETAILS

All resonance measurements were made using
transient techniques. The basic experimental apparatus,
consisting of a pulsed, phase-coherent rf spectrometer,
low-temperature probe, and gated integrator, has been
previously described by Sundfors. ~ In the probe used,
the rotating rf field H1 had an amplitude of about 15 G.
Thus, pulse lengths of about 30 @sec were necessary to
nutate the nuclear magnetization by 90'. The T&

measurements were made with a two-pulse sequence,
observing the recovery of the free induction decay
following the second pulse as a function of spacing be-
tween the pulses. The T2 measurements were obtained
from the shape of the free induction decay envelope.
For some T2 measurements, a Northern Scientific
model NS-513 digital memory oscilloscope was used to
improve the signal-to-noise ratio.

Most of the samples used were prepared from bulk
cesium obtained from Electronics Space Products, Inc. ,
catalog No. K999E. The impurities listed by the manu-
facturer are given in Table I.

A second shipment of metal from the same source,
ca,talog No. K999J, was of higher purity, and a more

' R. K. Sundfors, thesis, Cornell University, 1963 (unpublished) .


