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Diffusion Constants near the Critical Point for Time-Dependent
Ising Models. III. Self-Diffusion Constant*
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Employing a time-dependent Ising model of the kind used in the preceding works of this series, we have
studied the self-diffusion constant. In the local-equilibrium approximation, the self-diffusion constant is
expressed in terms of certain equal-time spin correlation functions. At the critical point the self-diffusion
constant is shown to have a finite value, and it is conjectured that it may have an infinite slope as a function
of temperature at the critical point. The two relevant experiments are discussed.

1. INTRODUCTION

HIS work is a continuation of the two previous works
on time-dependent Ising models, ' where we have

endeavored to obtain the behavior of the diffusion con-
stant near the critical point under a simple approxima-
tion which allows us to incorporate some recent ad-
vances in Ising-model statistics. ' The present work is
concerned with the self-diffusion constant whose be-
havior near the critical point is radically different from
that of the ordinary diffusion constant treated in I and
II.The statistical-mechanical treatment of this problem
was first given by Kikuchi' using a time-dependent
Ising model. However, the approximation of his treat-
ment is equivalent to the classical Bethe approximation,
or to Kikuchi's cluster-variation approximatioo. 4

In the present treatment we shall employ the local
equilibrium approximation which we have used in I.
Some of the properties of this approximation have
been investigated in II. Although this approximation is
solely concerned with the dynamics of the problem, and
thus allows us to incorporate the results of accurate
treatments of Ising-model statistics, ' it has not been
possible to estimate the error of this approximation in

general. Nevertheless, because of the simplicity and
other advantages of this treatment, we shall pursue the
present approach, and then the final validity of the
approach should be judged by the experiments, if not
by more accurate theory.

The model employed is similar to Kikuchi's, ' which is
described in Sec. 2. In Sec. 3 we obtain the self-diffusion

constant in terms of certain equal-time spin correla-
tion functions. In Sec. 4 we shall discuss the behavior of
the diffusion constant near the critical point. Although
the diffusion constant itself is finite there, we shall con-
jecture that it may have an infinite slope as a function
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Hereafter referred to as I and II.' See for example C. Domb, in Magnetism, edited by G. T. Rado
and H. Suhl (Academic Press Inc. , New York, 1965), Vol. IIA,
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ences cited therein.

s R. Kikuchi, Phys. Rev. 81, 988 (1951).

150

of the temperature, and we shall discuss the two relevant
experiments. The final section is devoted to some dis-
cussion of the problem.

TABLE I. State variable S; and its functions for
binary alloy and lattice gas.

Alloy
Occupied by Occupied by Occupied by
an atom A an isotope A* an atom B

s;
or =o(Si)—
u, —=u(S;)

A

0

A*
1
1

B—1
0

Lattice gas Occupied by Occupied by
an atom an isotope

Vacant

'The notation used has the meaning similar to that in I g,nd
II. (S)u, for example, denotes the set S~, Ss, ,Sar.
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2. KINETIC MODEL

For studying the self-diffusion, we consider a binary
alloy AB in which one of the species, A, has an isotope
denoted by A*. There are E lattice sites, each of which
is occupied by A, A*, or B.Then, the state of each lattice
site, say, the jth site is completely specified by assigning
the type of atom occupying that site which is denoted
by a symbol S,. 5, equals either A or A* or 8 according
to whether the jth site is occupied by the atom A or
its isotope A ~ or the atom 8, respectively. Here we sup-
pose that the isotope simply serves to label some of the
A atoms and in no way affects its interactions with other
atoms. Thus, an isotope A* can, for example, be an atom
A with its nuclear spin reversed.

The state of the system is described by giving the
probability distribution function pz((S)&,t) of the en-
tire system with S lattice sites. ' Introducing the spin
variable o,= a (S;) which is de6ned in Table I and which
specifies the state of the jth site when the isotope loses
its identity, the equilibrium distribution function for the
case with E~ A atoms, /~*A* atoms, and E~ J3 atoms
is given by

Qz tg~, 1

P&'({S)Ar) = p~'(fa)~),
(&A+&~ )!

where use is made of the fact that in equilibrium isotopes
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are randomly distributed among the sites occupied by
atoms A and A~, and p~'({o)~) is the equilibrium dis-
tribution function in the absence of isotopes. When
(E~+iV~*)(jE~ equals the critical mixing ratio,
p~~({0.)~) has the following form

p~'({o)))()=Z ' exp{K Q a,o)}, (2 2)

where
K= (kaT) 'L2-'e~g —4 '(egg+~))g) j (2.3)

with the familiar notation for Cga egg~ and 6g~. If
(E~+E~*)/EI) deviates from the critical mixing
ratio, a term similar to the Zeeman term is added to
K Zo')) +i(r)

For our kinetic model, we shall consider the two kinds
of exchange mechanisms involving atoms on the nearest-
neighbor sites:

(i) AB exchange. An A atom or its isotope exchanges
sites with one of its nearest-neighbor 8 atoms. The
transition probability for this process is the same as that
obtained in I from the consideration of the principle of
detailed balancing. Namely, using the same notation as
in I, Lsee I (2.1)'j

vacancy and e» denotes the interaction of the two
particles on the nearest-neighbor site, and 5~gg= Gg~=o.

Z per({S)~ &) =p)) '({~))))), (3.1)

where i.d. means the sum over all possible isotope dis-
tributions with {0.)))( specified. This requirement is con-
sistent with the master equation (2.6) because after the
sum P; z, (2.6) reduces to the master Eq. I (2.11)
which has p~'({(r)~) as a solution.

For the problem of self-diffusion, we shall introduce a
state function at the jth site N, =u(S,) which takes the
value unity when the site is occupied by the isotope and
vanishes otherwise, and consider the average value of
this function defined by,

3. SELF-DIFFUSION CONSTANT

The self-diffusion process for the present model is
studied by considering the situation in which the spatial
gradient exists only in the relative concentration of iso-
topes. Thus we can assume that when the isotopes lose
their identities, the system is in the state of complete
thermal equilibrium. This requires that

u, (),') —= P N(S;)p~({S)»t).
ISJx

(3.2)

where
y=—tanhE (2 5)

Use of the master Eq. (2.6) then yields for the time rate
of change of n,, the following;

and j (or l) runs over the nearest-neighbor sites of 1

(or 2) except 2 (or 1), and n is taken to be a positive
constant.

(ii) AA* exchange. An Atom A exchanges its site
with one of the nearest-neighbor isotopes. Since no
energy change is involved in this process, the simplest
choice for the transition probability is just a constant
which we denote by ze.

Having specified the transition probabilities, we are
now ready to write down the master equation for the
problem, which is

p&({S)—»1)= —P X;)({S)On) p&({S)~,t)
dt (Jl)

+g X;)({S)(;))")p))(({S}))(",t), (2.6)
&J&&

where I;» is the total transition probability given by

X;g({S)(,)))=—W, )({(r)(,)))
X—(120;0 )+)w——(12+a;)-,'(1+ () (7(2.7)

and the sum (jl) is over all the pairs of the nearest-
neighbor sites. The superscript jl designates the states
in which 5; and S» are interchanged.

Finally, we note that the present model applies also
to the lattice gas where we replace a 8 atom by a

& We refgr to &hg equations in j: in this manner.

g I;p)) ({S})),t) = 1+o; u, (t)
p~'({~)~) (3 4)

where c is the ratio of isotopes to the total number of A
and A* atoms and I, is the equilibrium average of I,.
(here we have excluded the case of antiferromagnetic
interaction below the transition temperature where I,
differs from site to site). Namely,

I,=——,
' (1+m)c,

m= (0;),

(33)

(3.6)

where the angular bracket ( ) always designates the
average over the equilibrium ensemble. Equation (3.4)

d~,(t)= —P Q (u;—u))
» Is I

,)({ )(,)))p~({S)~)t), (3.3)

where the sum l is over the nearest-neighbor sites of j.
Since the right-hand side of this equation cannot in
general be expressed solely in terms of u's, it is necessary
to introduce a fundamental approximation here as in I.
We shall again introduce the local-equilibrium approxi-
mation in which p~({S}»t)is replaced by its value in
local-equilibrium state with given tc s. We have found
that the equivalent and simpler procedure is to use the
following ansatz for p))(({S)~,f):
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follows from the intuitive consideration that the average
of u, for a speci6ed fo)~, g;.e. ufp)g({S))g, t)/p)g'({o))g),
is equal to the product of the probability that the site
is occuped by 3 or A*, and the probability that, when it
is occupied by 3 or 3*, it is A~. This consideration
ignores the correlation between the distribution of A, 8
atoms and the isotope distribution, and therefore cannot
be exact. The equivalence of this ansatz and the local
equilibrium approximation is demonstrated in the
Appendix.

tute (3.15) into (3.13), it reduces to an average of
—,'(1+oi)g(1—o.iog) over the equilibrium ensemble of
the system in which the "spins" rj and 02 are removed
from the system. Namely, (3.10) becomes, using (3.5),

D,i———,'a'g(e xo)/(1+m) . (3.17)

If we define the spin pair correlation pf) by I(3.5), (3.14)
reduces to

D, 2 ,' a'—w——
r 1+m+(t)»/(1+m)) . (3.18)

Substitution of (3.4) into (3.3) yields In the above derivation, we have excluded the case of
antiferromagnetic interaction below its transition tem-

u, (t) — a—2D Q (u.(t) u (t)) (3 7) perature. We shall now discuss this case briefly. The
only difference is that, since we have here two sub-
lattices, (u;) is not the same for all j and u(r;) is no

where a is the lattice constant (we assume a simPle longer a slowly varying function of r, Th.us the ansatz
cubic lattice), and (3.4) is now replaced by

cc
D,= (-', (1—+o;)Xf)({5)(;i))). (3 8)

u, (t)z ufpfg({5'))g, t) = g'(1+&2)e p)g'({(f))f) ~ (3.19)
i ~d

whereIf we introduce the number density of isotopes u(r) by u,'=—c(1+m;)/2, (3.20)
u(r, )=—u;/a' (3.9)

and, supposing that u(r) is a slowly-varying function of
r, make use of the expansion

a-'(u( —u, )—(ri —r;) .Vu(r;)
+-,'(ri —rf)(r( —r,):VVu(r, )+ . , (3.10)

(3.7) becomes
8
~(r) =D,V' (ru)
Bt

(3.11)

D, =D.i+D.2, (3.12)

which is the diffusion equation for isotopes with the
self-diffusion constant D,.

Corresponding to the two mechanisms of particle ex-
change, the self-diffusion constant consists of the two
parts

and m, depends on the sublattice to which the jth
state belongs. Substituting this into (3.3), we obtain

where

(i~)—u, (t) = —P LF,uf(t) —F)u)(t)),
dt

c
F—=—(g(1+a)X )({5')( i))).

(3.21)

(3.22)

This quantity takes two values Fj or Ii2 according to
whether the jth site belongs to the first or to the second
sublattice, respectively. Although u(r) changes rapidly
as r moves from one sublattice to another, it can still be
regarded as two smooth functions of r if x is allowed to
move only on either one of the sublattices. Thus we can
put

where
cG

(2(1+a))2(1—aia2)lf'»({~) (»))) ~ (3 13)

a 'u;=ui(rf) if r, =rf
is on the first sublattice

(3.23)
u2(rg) —if r, =rg

is on the second sublattice,
Ds2 (2(1+ai)l (1+a2)), (3.14)

and the sites j., 2 are the nearest-neighbor sites. If
oi= —o.

& only for which (3.13) gives nonvanishing con-
tributions, lf')2 can be rewritten as /see I(3.9))

where ui(r) and u2(r) are the slowly varying functions of
r. Then (3.21) becomes,

&fz'&

u&(rf) = —Z LF»i(rf) I &u&(r'))
Bt gf

where
~»(f~) (»))=g exp( —Xo)

g—=—,'ne ~LcoshE) '(

(3.15)

(3.16)

8 &af'&

u2(1 g) Q p 2u2(rg) Fi'ul(rf'))
Bt

(3.24)

and Xg is defined by I(2.4) and represents the interac- where the suins of g' and f' are over the nearest: neigh-
tion energy of the site 1, 2 and their first nearest neigh- bors of f and g, respectively. For ui(r) and u&(r) we
bors apart from a factor —(keT) '. Thus, if we substi- can make use of expansions such as given by (3.10)„
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and (3.24) finally reduces to

8
~1(r)= 6LFlul(r) F2u2(r)$+F2a 7 u2(r)
Bt

8
+2(r) = 6LF2u2(f) —Flul(r)$+Fla V ul(1') .

8$

(3.25)

The condition of obtaining a nontrivial solution then
determines X;

Z—6F, (6—a'k')F,

i (6—a'k')Fi X—6I'2
=0 (3.27)

For small ak, this has the following two solutions:

This set of equations can be solved by setting

u;(r) =A,e "i ei~ ry'(u (r)), i = 1& 2. (3.26)

d4i2 E
T (2'L) —2

4. THE BEHAVIOR OF THE DIFFUSION
CONSTANTS NEAR THE

CRITICAL POINT

Equations (3.17), (3.18), (3.33), and (3.34) immedi-

ately tell us that, since both D,j and D,2 are expressed
in terms of averages of finite quantities which involve
only a finite number of sites, all the diffusion constants
remain finite at the transition point. This does not, how-

ever, exclude singularities of the derivatives of the dif-
fusion constants with respect to the temperature. We
shall first study this problem for D,2 given by (3.18)
and (3.34). Besides the obvious singularity coming
through dm/dT or dm'/dT, pi2 also contains a singu-

larity, as one can see in the following: for T& T,.

where

~z =D.&',

X2= 6(Fi+F2)—D,k',

D,=2a'F'iF2/(Fi+F~) .

(3.28)

(3.29)
C„

SsEk~T
(4 1)

A general solution of (3.25) is then written down as

u (r)=A e "+8 e '"'+(u;(r)), i=1, 2. (3.30)

Since, for small k, X~((A.2, this shows that for the time t
such that Xi '))/))X2 'u, (r) obeys a simple diffusion
equation with the diffusion constant D, given by
(3.29). F; given by (3.22) can be transformed in the
same manner as we obtained (3.17) and (3.18), and we
find that

Fi ———,'a(1+mr) —'(e-xo)

+-',u(1+m2+(1+mi) —'Pi2j (3.31)

with F2 given by interchanging m& and m2 in (3.31).
Using this result together with (3.29), we obtain

D,=D,i+D,2,

D, i———,'a'g(e —
o),

D,2= 2a ie(1—Bl 1Qi2),

(3.32)

(3.33)

(3.34)

where we have used the fact that re~= —m2=m. Since
(e «) and pi2 do not depend on the sign of m, D, is also
independent of the sign of m as one expects for antiferro-
magnetic interactions. This is not the case for ferro-
magnetic interactions.

Equations (3.12), (3.17), (3.18), (3.32), (3.33), and
(3.34) give the expressions for the self-diffusion con-
stants for systems with ferro- and antiferromagnetic
interactions. It is seen that in the local equilibrium
approximation, diffusion constants are simply given as
sums of the diffusion constants arising from different
diffusion mechanisms.

(4.2)Dx =a'g(e-xo) .

This, combined with (3.17), yields the following rela-
tion between D and D,j.

2(1+m)D„=Dx. (4 3)

This means that if we know that the AB-exchange
mechanism dominates the diffusion process, the ratio
(1+ns)D,/DX does not contain any singularity at
the transition temperature, which can be checked
experimentally.

Next, we conjecture that (e 3'0) as a function of tem-

perature may have a positive infinite slope at the transi-
tion temperature. Before going into this, it is interesting

where E, is the total energy and C, the specific heat of
the system when our system is regarded as an equiva-
lent spin system, and s the number of nearest neighbors.
Thus, just above the transition point dD.2/dT can be
negatively (positively) infinite for ferro- (antiferro-)
magnetic interactions.

We now turn to the discussion of D, i, (3.17) and
(3.33). Apart from m in the denominator of (3.17), the
singularity of D,~, if any, must be contained in the
quantity (e xo). This quantity involves the correlations
of maximum 2s spins, and reliable estimate of the nature
of singularity appears to be difficult. Nevertheless we
can make a definite statement and also make some con-
jecture regarding the nature of the singularity of S,&.

First, let us note that the diffusion constant D cal-
culated in I LI(3.15) and I(3.11)] can be put in the
following form (here we must again exclude the case of
antiferromagnetic interactions below the transition
temperature):
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to observe that we can give a simple physical interpreta-
tion to the quantity (e xo) which is written more ex-
plicitly as

(4.4)e(x—xp)/ Q ex
{0.}N {0}N

where X is, in the terminology of the equivalent Ising
spin system, —(keT) ' times the total spin Hamil-
tonian of the system, whereas X—Xo is —(keT) '
times the total Hamiltonian of the system in which all
the interactions involving the spins 17~ and 0.2 are cut off.
Thus, (4.4) is written as

e—dFg/k~T
) (4.5)

where AF, is the activation free energy for the removal
of the spins r~ and 0.2 to the infinite distance. Our con-
jecture may then be stated that AF, decreases infinitely
rapidly with increasing temperature at the transition
point.

We now enumerate the reasons for making such a
conjecture. First, let us consider the derivative of
(e xo& with respect to the temperature. The temperature
enters in this quantity (1) through Xo and (2) through
the equilibrium distribution function on averaging.
Upon differentiation, the former gives only a finite
quantity, and thus only the latter is considered. We
then obtain

(4.6)

Since
X=E g 0ztTi'

(jl)

p~(f~)~)=l:1+~ Z(~« —(~«&)jp~'(( )~) (4g)

where u is a positive number. If we restrict ourselves to
the case of ferromagnetic interactions, since one can
easily modify the argument for the case of antiferro-
magnetic interactions, we see that the neighboring spins
tend to align each other in this state more strongly than

contains the spin variables of the sites arbitrarily distant
from Oi and o.2, (4.6) is a sum of spin correlations whose
range can become very large near the transition point
and (4.6) may become positively or negatively infinite
at the transition point, if we exclude the possibility of
cancellation of contributions, which appears unlikely
since spins are contained in bilinear forms where only
nearest-neighbor spins are combined. The sign of this
quantity may be inferred, if we note that AF, vanishes
at the high-temperature limit whereas it reduces to a
finite positive value at the absolute zero. Thus it is
plausible to suppose that —hF, and hence e ~~'~~~~

are increasing functions of the temperature. This may
also be seen as follows: consider a distribution function
of the form,

in equilibrium. Therefore, we may have

Z p ({ ) )- & Z p (f ) )-"
{cr}N {0'}N

That is,
(e

—«(X—(X)))(0 (4.9)

implying that (4.6) may be positive.
Although the argument presented here is by no means

rigorous, it makes plausible the supposition that the
quantity (e xo) and hence (1+m)D, i (ferromagnetic)
or D, i (antiferromagnetic) have positively infinite slope
at the transition point.

It is appropriate here to mention two relevant experi-
ments. One is the measurement of the self-diffusion
constant of a one-component Quid near the critical
point. ' It was found that pD, as a function of tempera-
ture, with p the density, exhibits a dip just helot the
transition point. This is consistent with our conjecture
that (1+m)D, i has a positively infinite slope at the
transition point because 1+m is proportional to the
density for lattice gas. Since in this case diffusion is
likely to occur through holes, AA* exchange will not be
important. The second relevant experiment is the meas-
urements of self-diffusion constants of Cu or Zn iso-
topes in CuZn alloys which undergo order-disorder
transitions. ' The self-diffusion constants as a function
of the temperature have been found to exhibit kinks
near the transition point with steeper slopes below the
transition point than above. However, the temperatures
at which the kinks occur are found to be above the
transition temperature determined by other methods
and the discrepancies amount to several percent of the
transition temperature. This may be understood again
by supposing that the true transition point is char-
acterized by the temperature where the self-diffusion
constant has a positive infinite slope rather than a kink,
although more detailed experiments are needed to con-
firm such a supposition.

7 J. D. Noble and M. Bloom, Phys. Rev. Letters 14, 250 (1965).
8 A. B.Kuper, D. Lazarus, J. R. Manning, and C. T. Tomizuka,

Phys. Rev. 104, 1536 (1956).

S. CONCLUDING REMARKS

In the preceding sections we have calculated the self-
diffusion constant for simple time-dependent Ising
models. Near the critical point, the self-diffusion con-
stant does not vanish although its slope may show
anomalous behaviors. This is in contrast to the ordinary
diffusion constant which vanishes at the critical point.
This difference is due to the difference in the nature of
the thermodynamic driving forces for diffusion in the
respective cases. For the ordinary diffusion, the driving
force is associated with the concentration gradient of
AB atoms. Because of the anomalous concentration
Quctuation near the transition point, the concentration
gradient gives rise to very small driving forces. For the
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self-diffusion, the driving force is associated with the
concentration of isotopes which is not aBected by critical
fluctuations directly, and hence the self-diffusion con-
stant exhibits only milder anomalies at the transition
point.

Another point to note in this work is that the nature
of the singularity depends on the detailed mechanism
for diffusion process such as AB exchange or AA ex-
change. This is in contrast to the equilibrium proper-
ties' whose asymptotic behaviors near the critical point
seem to be determined only by gross features of the
model such as the dimensionality or whether we have
Heisenberg or Ising models. Finally, the additivity of
the diffusion constants arising from different diffusion
mechanisms in the local equilibrium approximation
may be used to check the validity of this approximation
experimentally.
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APPENDIX

Here we shall demonstrate the equivalence of the
ansatz (3.4) and the local equilibrium approximation.
The local equilibrium distribution function pii ~({S)~)
must sa, tisfy among others the condition (3.1),

px ({S)x) pN ({ }No) '

as the fact that

2 p~'({&')~)=p '({oj~) (A4)

we 6nd that

h, can be obtained by ca,lculating the average of I
in p&~ which is equal to the average of n/ ,'o b—e-—

cause of (A1), namely,

If we use

yp p u, (u, ' ,'coi')—hi—p~'({S}~). (A7)

The first term simply becomes

((u, '——,'o )(u(' ——',o ('))=-',c(1—c)(1+m)8,,

which can be easily verified by making use of the fact
that isotopes are randomly distributed in equilibrium,
we obtain

h, = 2u, '/Lc(1 —c)(1+m)j,
which together with (AS), completely determine pzz
in terms of u, .

Using these results let us now compute the quantity,

Z up ({S).)=Z up '({S) )
l.d

i.d
,'(1+o,—)cpN'({o)~) (AS)

Thus, pv~ has the following form
In the second term, only the terms with /= j contribute

p&~({S)ii)=p&'({S)&)$1++(u fo )h,j, —(A2) and one easily finds that it becomes

where primed quantities imply that the equilibrium
averages of the quantities have been subtracted. f is a
constant determined by (A1) and h; describes the in-

homogeneous isotope distribution. Since in equilibrium
isotopes are randomly distributed over the sites occupied
by atoms A and A*, we have

c(1—c)-,'(1+ )oph~'({ )ogg) . (A9)

Qg

p '({S) )=l(1+ ) —
p '({ ) ) (A1o)

i Eke Rg

With the use of (A6) and adding (AS) and (A9) and
using (3.5), we finally obtain

2( + i)' ( ) which is identical to the ansatz (3.4). This completes
the equivalence proof of the ansatz (3.4) and the local

Thus, substituting (A2) into (A1) and using (A3) as well equilibrium approximation.


