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The nonlinear absorption or gain characteristics of an optical-frequency, Doppler-broadened atomic reso-
nance involving levels with closely spaced structure are analyzed. The level structures are assumed to be
resolved with respect to their natural widths, but not necessarily with respect to the Doppler width at the
optical transition. The radiation field consists of two closely spaced monochromatic frequencies lying within
the Doppler width of the resonance. This type of radiation field may be obtained, for example, from a laser
operating in two of its Fabry-Perot resonator modes. It is shown that, because of saturation of level popula-
tions and double-quantum Raman transitions between levels, appreciable nonlinear coupling takes place be-
tween the two fields. This coupling shows a resonance behavior when the frequency separation of the two
applied fields becomes equal to the frequency splitting between two of the components which form either
level structure. The width of this resonance is determined entirely by the natural widths of these two level
components and not by the Doppler width of the optical transition or the natural width of other level com-
ponents. When such a resonance occurs, the over-all gain or attenuation characteristics of the atomic reso-
nance change drastically. In practice the frequency spacing of the fields may be kept constant while the level
structures are tuned, e.g., magnetically. The effects are analyzed for cases of running-wave and standing-
wave radiation fields. The use of this effect in precise determination of level structures as well as mode or
transition coupling of a gas laser is discussed. Portions of the analysis are applicable to resonances with more
general forms of inhomogeneous broadening.

1. INTRODUCTION

'HIS paper is a detailed theoretical analysis of the
nonlinear attenuation or gain characteristics of a

Doppler-broadened atomic (or molecular) resonance
involving levels with small splittings. An e6ect is dis-
cussed which manifests itself in a particularly useful
way for high-resolution studies of the structure of an
atomic resonance using a gas laser. Also, the nonlinear
gain characteristics considered here are applicable to
studies of frequency behavior and mode or transition
coupling of a gas laser operating on levels with closely
spaced structure. This kind of structure, commonly
encountered in practice, may arise, for instance, from
fine or hyperfine interactions or Zeeman or Stark split-
ting. The spacing between structural components of a
line may be considerably smaller than its Doppler
broadening.

The attenuation or gain characteristics are considered
here for a case in which an applied radiation contains
two monochromatic optical or infrared frequencies
separated by an amount larger than the natural line-
widths of the atomic resonance (but not necessarily
larger than the corresponding Doppler width). A radia-
tion field of the type discussed can be obtained, for
example, from an optical or infrared gas laser oscillating
simultaneously in two modes of its Fabry-Perot
resonator.

The ordinary linear attenuation or gain factor of the
system described above is straightforward. ' Its details
are determined by the Doppler width of the atomic reso-
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'See, for example, A. C. G. Mitchell and M. W. Zemansky,
Resonance Radiation and Excited Atoms (Cambridge University
Press, Cambridge, England, 1961).
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nance and the actual size of the structure of the line.
When the applied field strengths are suKciently large,
nonlinear sects become observable. The details of
nonlinear effects, however, depend primarily on the
natural linewidths of the system and not as much on the
Doppler width. These nonlinear effects arise from
Raman-type transitions between components of the
structure of either energy level and from the effect of
saturation of the populations of the levels. In particular,
their effects lead to a coupling between the two applied
fields which has a resonance behavior when the fre-
quency separation of the thoro applied fields becomes
equal to the frequency splitting between two of the
components which form either level structure. The
width of this resonance is determined entirely by the
natural widths of the levels and not by the Doppler
width. When such a resonance occurs, the over-all gain
or attenuation characteristics of the atomic resonance
change drastically.

In an experimental arrangement, instead of changing
the frequency separation of the two applied fields, one
may choose a system in which the level splittings
are tunable (for example, by a magnetic Geld). In this
case the frequency spacing of the applied fields may be
considered constant, and resonances may be observed
in the total attenuation or gain as a function of tuning.
These resonances, together with the known value of the
frequency difference of the two applied fields, can be
used to obtain high resolution details of the level struc-
tures. Where appropriate, these resonances will be re-
ferred to as difference frequency crossing.

Under certain general conditions to be described later,
the problem for a complex level structure can be reduced
to consideration of simply a pair of closely spaced upper
levels and a single lower level —leading to two transi-
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tions involving one common level. The Doppler widths
of the two transitions may be allowed to overlap. (The
presence of a common level for the two transitions is
essential. )

The effect discussed here was initially described in an
earlier publication involving the present authors and a
preliminary experimental observation was given. ' In
that discussion only gross features of the effect were
described. In a later paper, we will present spectro-
scopic applications of the present detailed theory.

In Sec. 2, the theory of the eGect mentioned above is
given in its simplest form. The applied radiation is
taken as two traveling waves obtained from the
output of a gas laser oscillating simultaneously on two
of its resonator modes. The atomic system is assumed
to be exposed to this radiation field outside of the laser
cavity. (In practice, this system may be, for instance, a
gaseous discharge tube containing the same atomic
species at that forming the active element of the laser
oscillator. ) The level structure is assumed to be of the
simplest type; namely, the transitions are assumed to
occur between two upper levels and one lower level.
Various expressions appearing in different stages of
these calculations are unavoidably lengthy. In order to
avoid having computational complexities obscure the
nature of our discussion, we have, insofar as possible,
given only representative manipulations and results in
the text, and details in appendices. In spite of all the
details, the final result, including averaging over the
velocity distribution takes a simple form. An interesting
aspect of the result of this calculation is the fact that the
width of a diRerence frequency-crossing resonance in-
volves only the natural width of the two upper levels
and is entirely independent of the natural width of the
lower level. Accordingly, the width of an observed
resonance will be narrow for cases where the two upper
levels are long-lived. This holds regardless of the lifetime
of the lower level. It may be an extremely short-lived
level.

In Sec. 3, we will discuss the applicability of the three-
Ievel model, used throughout, toward description of
transitions between levels of complicated structure. It
will be shown that, as long as the components of the
levels are resolved to within their natural widths (but
not necessarily to within their Doppler widths), the
problem involving complex level structure may be
reduced, in many instances, to considerations of three-
level systems.

Section 4 gives detailed theory of the nonlinear
characteristics for a case where the atomic system is
placed within the laser resonator. In this case, the radia-
tion fields will be in the form of two standing waves. In
this case, additional resonant terms appear which are
related only to the standing-wave nature of the radia-
tion fields. These additional terms have origins similar

2 M. S. Feld, J. H. Parks, H. R. Schlossberg, and A. Javan, in
I'roceedings of the Conference on Quantum Electronics, I'uerto
Rico (McGraw-Hill Book Company, Inc. , New York, 1965).

to that responsible for the Lamb dip' effect. The two
applied standing waves may be decomposed into four
traveling wave components. The additional terms may
be thought of as a coupling between two components
traveling in opposite directions. The frequency de-
pendence of these additional terms will be quite different
from that arising from coupling of components traveling
in the same direction. Because of this the experimental
considerations required for observation of these addi-
tional terms are considerably diGerent.

When the sample is within the resonator additional
complications can arise. Due to the oscillator nature of
the system, the output power is determined regenera-
tively by losses in the system. We will show that, under
certain conditions, these effects can be made unim-
portant and the line shape of the nonlinear absorption
or the gain characteristics may be observed directly by
observing the behavior of the total output power. The
discussion is given in Sec. 4 with details of calculations
presented in Appendix D.

The discussions of this paper are specifically formu-
lated for Doppler-broadened atomic transitions. How-
ever, the results obtained in Sec. 2 are directly applica-
ble to any inhomogeneously broadened line with closely
spaced structure. This kind of structure is encountered
in numerous resonances in solids. Furthermore, in the
case of solids, resonances in the microwave region are
also inhomogeneously broadened. Accordingly, the dis-
cussions in Sec. 2 suggest a number of interesting
applications involving resonances in the microwave
region.

2. TRAVELING-WAVE RADIATION FIELDS

A. Theory

Consider the three-level atomic system shown in Fig.
1 subjected to optical traveling waves at frequencies v&

and v2. Assume that levels two and three are well re-
solved with respect to their natural widths, but not
necessarily with respect to the Doppler width for transi-
tions between either of them and level one. Assume'
also that (rcssu/c) is negligible compared to the natural
width of any level (where I is the average thermal
velocity and c is the velocity of light). Finally, assume
the Doppler width of the transitions to be considerably
larger than their natural width. For the above system, a
particular small band of atoms within the atomic
velocity distribution wi 1 see s ~ Doppler shifted close to
cu» and thus will interact strongly with the radiation at
frequency v&. For another. small band in the velocity dis-
tribution, the same will be true pertaining to v2 and co3~.

Assume now that we can tune the spacing ross (for ex-

3%. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).
4 This condition implies that the difference in the Doppler widths

of the 3-1 and 2-1 transitions is negligible. We will always consider
the applied frequencies, vj and v2, to be somewhere within the
Doppler profile of co» and co3&, respectively. This means
that those atoms, whose center of mass velocity, e, is such as to
make them resonant with one of the applied fields, will Doppler
shift vr and vz very nearly the same amount; i.e., vzv/c=v2v/c.
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ample with a magnetic field). At some particular value
of co» the two sets of atoms in the velocity distribution
will degenerate into each other. In this case the same
group of atoms within the velocity distribution will
resonate simultaneously with both traveling waves. If
we consider the effect of saturation of level populations,
we note that the inIIuence of the Geld at the frequency
vq will result in a chaage of transmission coefficient
(gain or attenuation) of the Geld at frequency v2 and
vice versa. This mill not occur if the frequencies of the
applied Gelds are such that different sets of atoms within
the velocity distribution interact most strongly with
the two Gelds. Accordingly, we may expect to find a
resonant behavior in the coupling between the two
applied Gelds at that value of ~32 at which both GeMs
interact with the same velocity atoms. The frequency
condition for the resonance is readily obtained. We must
have vi(1 —t)13/(;) =e»1 and for the same atomic velocity,
t)13, v2(1 —t)13/c) =e)31. Eliminating t)13/c gives the condi-
tion. We are interested in the case where A&32 is not too
large (for example it is a small Zeeman splitting) and
the discussion in Ref. 4 applies. We then obtain

C032= V2 —P] (I)
that is, the frequency spacing between levels is tuned to
equal the separation between the applied frequencies.
It should be noted that in a perturbation treatment of
polarization induced by the presence of the applied
Gelds, the saturation effect appears in the nonlinear
(third-order and higher) terms. To the lowest order of
perturbation where only linear absorption (or gain) of a
medium is considered, the coupling between the two
Gelds is entirely absent.

In the three level system atoms whose velocity is not
near v& may still have an appreciable Raman interac-
tion in the presence of two strong applied Gelds. A
Raman interaction in this case leads to an atom making
a transition from level 2 to level 3 by absorbing a photon
at frequency u2 and emitting a photon at frequency v&.

This corresponds to a rate of transition proportional to
the product of the powers at frequencies vj and v2. The
frequency condition for such occurrence is, however,
again given by Eq. (1).The Raman interaction has an
additional resonant form' and thus is particularly strong
for atoms whose velocity is near vg. This additional
e8ect is appreciable only for the condition of Eq. (1).s
In the calculation of the induced-polarization, the
Rarnan terms also appear in third order. We shall see
that the same frequency condition for both saturation
effects and Raman processes has a profound inhu-
ence on the shape of the resonance in the third-order
polarization.

'A. Javan, Quantum Electronics and Coherent Light, Proceed-
ings of the International School of Physics, "Enrico Fermi, " 1963,
edited by P. A. Miles and C. H. Townes (Academic Press Inc.,
New York, 1964).

'At extremely high fields there can be some significant fre-
quency pulling eiIects. A. Javan, Phys. Rev. 107, 1579 (1957).
Such high field strengths probably invalidate a perturbation cal-
culation of the atomic response and we will not consider them here.

FxG. 1. Frequency spacings of the
three atomic energy levels and two
applied radiation fields —the system
on which most of the discussion of this
paper is based.

"„32

The Hamiltonian for the atom with energy leve/s of
Fig. 1 is taken to be

B=Hp pE, — (2)

where p is the dipole moment operator and the electro-
magnetic Geld E for two traveling waves is

E(s,t) = p 2E„cos(v„t—k„s)

=P E„(expLi(v„t—k„s))

+exp —Ls(v„t—k„s))}. (3)

We wish to calculate the third-order polarization
P(r, t) in the atomic sample and to exhibit the behavior
discussed above. We consider the density matrix

p(r, t; t), t(),c() describing the ensemble of atoms which are
at position r at time t, are moving with velocity e,
and which were excited to state 0, during their last col-
lision at to.' The equations of motion for the density
matrix taken with respect to the three unperturbed
states are'

pp2l+'Y )pl =pV(l}p (p —p )
dt —sV(t)pie 32 (4a)

(
d

+2(p)31+731 ~psl 2V(t))usi(pss Pll)
dt

+3V(t)psst», (4b)

(4c)(
d—+2(p)32+732 ~pss sV(t)lllsipis+zV(t)tuispsi p

dt )

+722 ~P22 «(t)(t(12P21 )u21P12) p

dt )
fd

~

—+vss lpss=sV(t)(pisp» —psst is),
kdt )

(4d)

—+vp) pp= «(t) (w p p ppp )— —
dt

2I (t)(tstspsi Pstpis) p (4f)

p21 p12 p pis p31 p p23 P32 ~ (4g)
7 More precisely, of course, atoms in the ensemble are excited

to mixed states at to and we are making Qxe usual random-phase
assumption of the excitation mechanism in describing the states
one at a time.

8 For convenience we take 5=1 throughout.
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The decay of the density matrix elements is assumed to
arise from spontaneous emission. This means of decay
is introduced in the above by assuming that the proba-
bility amplitude of a given level, u, su6ers an exponential
decay in the form exp( p —t/2). Accordingly, the decay
of p p is described by the parameter

given by

P(f f 'v fp Cx) =tttRlp12(r f v fp cx)

+Ztlsp»(r, f; t&, fp,cr)+complex conjugate. (8)

Let the rate of production per unit volume, via col-
lisions, of atoms of velocity 3& in the state cr be A (s).
Then the actual polarization in the material is

00 t

with y =y as the natural width of level+. The param-
eters p, &. and p, » appearing in the above equations are
the matrix elements connecting levels 1, 2 and 1, 3,
respectively. %e assume there are no other matrix
elements. For the ensemble in question,

P(r, f) =P dvh(y&) .dtpP(r, t; t&, tp, cR). (9)

(It is assumed A is independent of time and position. )
Since we are interested in the third-order polariza-

tion, we seek a solution of Eqs. (4) and (f) to third order
in perturbation V(t). We use the standard iteration
technique which consists of 6nding a zero-order solu-
tion by setting V=O and then using this solution to
obtain successive corrections. To this end it is convenient
to introduce

for t) f (since the atom of velocity 3& arrives at r at t)
and the initial conditions on (4) are

f& (r,f0, t&, tp, ct) =1,
p„ft(r, tp,

.
t&, tp, cr) =0, P, y/cr.

(10)g,,=p;; exp[(zcg;;+7;;)tj.

It is shown in Appendix A that the equations of mo-
The polarization due to one atom in the ensemble is tion and the initial condition for o(r, t; z&, fp,cr) are

3 V(f) g kdRltIR (g 22e7l1R
—72& t

g lie (71R 71&t) zzzlsV(f)g 32g im3ltg (71R 73—R& 3

dt

do 3]
3 V(f)gta'tttl3 (g 33g (713 73& t

g lie(713—'Yl& t)+zlzzt V (f)g 32gi(otl tg (713 732&t-
d$

(11a)

(11b)

3p (f)Ztzlg 12ettttltg
(732 712& t+z V(f)tttlzg pie

—tttttte (732—731)t (11c)

d0 22

3 V($) (Zt g eitt21te ( yt y12& t
Zt

—
g Rg

—tra21te (72-712& t) (11d)

d033
zP (f) (ztlsty s irut tg(73l—718& t —

Z3312ylpgi2 Rtte(73—713& t)
dt

—3 p (f) (Zt lg 22sira21te (71—'712& t
Zt Rtyzlg

—
2MRltg (71—712& t) z V(f) (Ztlsg Rle

—
ttt31tg(72 '713& t

Zt lg tssttt32tg (71—'713& t) (11f)

0 21 (712 |713=&31 ) (11g)

g tttt(rtfst t&tfptCR) = 87 ~ (12)

It is shown in Appendix 3 that the solution when the atom starts in state one or three (et=1 or 3) can be obtained
simply from the solution when cr = 2. We thus need consider only ty»&0&: If we set V(t) =0 we get from (11d) and (1.2)
tyRR

&'& = exI&ysfp. We integrate this solution in (11a) and (11g) to get 6rst-order solutions tylR &'& and lysi &1&. These first-
order solutions give second-order solutions tyll&2&, ty22&" and ty32 ' via Eqs. (11d), (11f) and (11c). Finally we use
these in (11a) and (11b) to 6nd the third order tyRR&3& and lysi&3&.

The procedure just outlined leads to a sum of triple integrals for arses&(r, t; t&, fp, cr) and typists&(r, t; t&, fp,cr). There are
eight terms in all. The complete algebraic manipulations are rather lengthy. They are carried out in a shorthand
manner in Appendix B.Here we will follow through the typical manipulations for one important term to illustrate
the procedure. %e will use 0-32&') which will lead to one of the Raman' terms as is explained later.

The terms in 7;t. in these equations could, of course, be simpli6ed using the 7;,= (7;+7;)/2 relation. We chose not to make this
substitution at this point. In this way our equations may be taken over to cases where Eqs. (11)hold but 7;8 is arbitrary. In particular,
this is true in many cases in solids.

&o This terminology may be somewhat confusing and requires explanation. If the frequencies of the two applied fields are oG reso-
nance (with respect to the natural width, for a particular atom) then the terms due to p32&2& represent the direct transitions from level
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The term in osr'"(r, t; e, ts, 2) which comes from oss&'& is given by

ost &» (r, t; v, ts,2)= —i I ts» I
'ts» exp(ysts) dt'V(t') exp[itost+(y» —ass)]»'

X dt"V(t") exp[icost+(ass —Y»)]t" dt"'V(f") exp[ i—esst+(its y—s)]t"' (»)

We integrate over all possible initial times from —~ to t. Changing the order of integration three times gives

dk'V(t') exp[irost+ (y» —ass)]t'

X dt"V(t") exp[ue»+(y» —y»)]t" dt"'V(t"') exp[—itost+pts]t"'. (14)

We next substitute for the V s using Eqs. (6) and (3).We make the usual rotating wave approximation; that is,
we neglect any frequency-dependent exponential which cannot have a resonance. Ke then have

ost syp (r, t; v, 2) = (i I ls»I ts»/Ys)

X Q E„EpE, expi[(k, +k,—k„)s—(v.+v,—v„) t—ket] dt' exp —[i(v.—~st —ke) —(mrs —ass)]t'

dt exp —[z(v (iosr ke) (Yss 'Y12)]t dt"' exp[i(v„—~sr —kv)+its]t"', (1&)

where z now refers to only the s component of velocity, and where km= kte= kse4 with kt= vt/c and ks= vs/c. These
integrals can be straightforwardly done and on using the relation ro» —

boost
——te» and Eq. (10) one obtains for the

polarization due to the typical term

P,y "(r,t; , e)2=(iI tsrIs'I tssIt'~ (s)e/v )s
XP E„E,E.expi[(k. +k, k„)s —(v.+v—, v„)t]{—$y»+i(v„tost —vk)]-—'

Xfyss+i( v&+v„+—ross)] '$y»+i( v, v, +—v„+—tost+ke)] ')+complex conjugate. (16)

Equation (16) is seen to consist of a sum of terms each of which contains a product of three complex Lorentzians. "
Each complex Lorentzian can have a resonance when the frequency combination appearing in it goes to zero. Tvro
of the resonant frequency terms, (v„—co»—ke) and (—v, —v, +v„+co»+kv), enter as the difference between an
applied-optical frequency field and an atomic resonance frequency. The eQect of the atomic velocity appears in
these expressions simply as a Doppler shift in the applied frequency. The middle complex Lorentzian depends on
the detuning of ~» from the difference of two applied optical frequencies. In taking this difference, Doppler shifting
has cancelled out because of the approximation of Ref. 4.

%hen co32 is close to s 2
—v~

——6, the middle complex Lorentzian will be resonant when the indices p= 2 and p= i.
If we restrict attention to polarization which varies at v~ or v2, then for this choice of p and p, we need 0.=1. This
term in the sum gives

P, ~' (r,lt; e,2) =i
I ts»I 'I ts»I 'Xs(v)Et'Es expi(kss —vst)

X{[p»+i(v,—test —kv)]
—'[ass+i(co» —5)]—'[p»+i(ra» vs+kgb)—] ')+corn—plex conjugate, (1'7)

where g = vs —vt and &s(e) =ps/ys is the steady-state population of level 2 as a function of velocity in the absence
of any applied radiation. For any other choice of lndlces p, p, ~ the middle complex Lorentzlan will not be resonant
For some particular velocity atom one or the other (but, inspection shows, not both) velocity-dependent complex
Lorentzians may then be on resonance. Clearly, though, when we sum (16) over the velocity distribution, the term
written in (17) will be the most important.

two to level three via the two quantum process discussed above. These effects are always called Raman effects. If, however, both ap-
plied frequencies are near resonance at the two optical transition frequencies, the p32(') terms are also responsible for a change of dir-
ect single quantum transition probability. That is, the probability of the 6eld at frequency v& causing a transition from level two to
level one is altered by the presence of the 6eld at frequency v2. This latter eGect is like a usual Raman effect both in its frequency de-
pendence and in its dependence on the product of the two applied intensities. With this in mind, we will continue, for convenience, to
refer to terms due to p32(') as Raman terms.

'r We will refer to a term of the form (y+izp' as a complex Lorentzian since its real part represents a Lorentzian line shape. The
term is resonant when the combination of frequencies represented by x equals zero.
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The appearance of M» in (16) is due to the fact that we have obtained our typical term tor third-order polariza-
tion through consideration of p32('&. The terms so obtained will be referred to as the Raman terms. ' In addition to
these Raman terms are the terms in third-order polarization which come about due to the diagonal density matrix
components in second order. Such contributions are the saturation terms arising because population changes due to
one applied field change the rate of transition due to the other.

As may be verified in Appendix 3, the saturation terms in the third-order polarization will contain two complex
Lorentzians resonant when a Doppler-shifted applied frequency equals an atomic transition frequency (M» or M»).
However, the term corresponding to the middle Lorentzian in (16) will contain simply the difference of two optical
frequencies. Such a term is not resonant. It is large only when the two optical frequencies are the same, and it has
no tunable behavior at all.

K.eeping only the most important terms in the summation over indices, as above, the complete form of third
order polarization due to the Raman terms is

(P ti v) = z(A 2 +1) I tzlZ I I tz31I (El'EZ expi(kls —vlt)

X ['Y32+Z(M32 A)] [712+2(V1 M21 kV)] [Y13+Z(M31 P2+kV)]
—El E2 exp[—z(kls vlt)]['Y32+z(M32 —6)] [Y12+z(vl M21 kv)] [Y12+z(P1 M21 kv)] j

above expression interchange 1 and 2 in E, and v

+i(X3—El)» +complex conjugate; (18).interchange 2 and 3 in or, y, and p

and from Appendix 8, the complete form of the third-order polarization due to the saturation term is"

2lt 12I'Y12
P..z(r, t; v) = i(-4'2 —.4'1) El' exp[—i(kls —»t)]([Y»+i(vl M21 kv)] '

+1+2

2lt 12I'Y12&2'

7&72

X[712+Z(vl M21 kV)] +[712+2(vl M21 kV)] [712+2(M21 Pl+kV)] )

exp[—z(k2$ —P2t) 5([Y12+1(v2 M21 —kv)]—

X [Y12+Z(V2 M21 kV)] +['Y12+Z(P2 M21 kV)] [Y12+Z(M21 V2+kV)] )

+ +1 +2 exp[z(k23 P2t)][Y12+z(vl M21 kv)]

X[Y, + ( „—.,+k.)]-'+[Y„+( „—.,+k.)]-'[Y + (,—.+k.)]-'

+i(X3—Xl) [same replacement as in (18)]+complexconjugate. (19)

As previously pointed out, the terms in (18) contain a product of three Lorentzians, while those of (19) contain
only two. The additional resonance in the Raman terms is the (M» —6) resonance which is unaffected by the
atomic velocity. It should be noted, however, that some of the other velocity dependent products have an implicit
dependence on the difference (M32

—A) in that they depend on both M21—vl and M31—v2. The above equations are
consistent with previous treatments of the interaction of three levels with two fields for stationary atoms.

Let us now consider what happens when we integrate (18) and (19) over the velocity distribution. Let up suppose
that the width of the velocity distribution is characterized by e and that kg))p, i.e., there is large Doppler broaden-
ing. (According to this notation, kl determines the exact Doppler width. The linear polarization terms, not dis-
cussed here, depend on kzz in the form of exp —[(v—M)/kN]2 with v representing the frequency of one of the applied
6elds and M, one of the atomic resonances. ) Furthermore, for the sake of simplicity, we assume lvl —M»l and

lv2 —M31I«kzz, the detuning from resonance is small compared to the Doppler width. (We discuss the results
without this latter restriction in Appendix C. It is shown that the important conclusions of this section are un-

changed. ) We now assert that when we sum over the velocity distribution the terms in (18) and (19) in which the
velocity has the same sign in each of the product of Lorentzians will be smaller by a factor Y/kN than the terms for
which the velocity enters with opposite signs. "

A complete discussion of the integrals which arise when a Maxwell velocity distribution is assumed is given in
Appendix C. Also in Appendix C, it is shown that the above assertion is due to the contribution from atoms which
are not exactly on resonance. For the larger terms these atoms contribute in phase with each other, while for the
smaller terms they tend to cancel out each other.

'2 We have written only those saturation terms here in which both complex Lorentzians are resonant for the same velocity atom.
'3 This assertion is similar to the 5-function approximation made by Lamb in Ref. 3.
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For a Maxwell distribution
ly

iV (v) = exp( —v'/u')

a term of the form

7+i(x+kv) y'+i(y k—v)

[where x and y may stand for &(vq —a&2r) or &(v2—co»)5 leads to an integral of the form

1 " dv exp( —v'/u')

v'"u „[y+t'(z+kv)5[y'+i(y kv)5—

It is shown in Appendix C that such an integral to order y/ku and for )x( and ~y~ less than ku is given by

ku y+y'+i(x+y)
(20)

Using formula (20) in expressions (18) and (19), after some slight algebra we get the complete expression for the
third-order polarization to order y/ku

2m'~'
P"'(r,t) = t(cV2—1V~) [E~' exp( —i(kqz —vent))+E2' exp( i(k2z—v2t))—5kl +1+2

+ E~2E2 exp[i(k2z v2t)5[—2y+Z(era~ h)5 '—[I+yi[y23+z(cog2 —h)5 '5

in above, interchange 1 and 2
2x'~'

+ t(E3—Xq)» in E, v interchange 2 and 3 «+complex conjugate, (21)
kl

ln p~ coq and 'y

where we have let 2y=y~~+yqa.
Expression (21) shows the behavior described earlier

in this section, namely, in addition to ordinary satura-
tion terms, there appear cross terms in the mode ampli-
tudes which show a resonant behavior near A&32= A. Ke
discuss the line shape due these terms in an absorption
experiment next. Although at first glance it would ap-
pear from (21) that this line shape would be rather com-
plicated, it will turn out that cancellations occur which
make it simple with interesting implications.

B. Discussion

An important feature of the expression for third-
order polarization given by (21) is the fact that reso-
nances appear only in terms of the difference frequency
v2 —v~ ——D. According to this expression, the exact fre-
quencies of the two applied 6elds as referred to the center
frequencies of the atomic transitions, ~2~ and cv31 are
unimportant.

We shall again point out that (21) is obtained for
)v&—ar») and ~v2

—
cu3&) much less than ku; namely,

that v~ and vg are assumed to be close to the center fre-
quencies of the Doppler-broadened atomic transitions,
a&2~ and aosq. For large ku, (i.e., large Doppler width),

this condition may remain valid even for v& and v2

appreciably detuned from the peak frequencies of the
atomic transitions, and expression (21) will hold. (It is
shown in Appendix C that for ~v~

—co.~~ comparable
to ku but

~
a&32—6 ~((ku, the resulting polarization, for

this case of two traveling waves, is merely multiplied
by an over-all factor exp[—(v~—co»)'/(ku)'5. ) This fac-
tor remains nearly constant for changes in v& and
v2&(kN. As a result of this, as long as the frequency
v2—v~= 6 remains Gxed, the absolute frequencies of the
applied 6elds may be detuned appreciably without in-
Ruencing the size of the third-order polarization. This
fact has an important bearing on the necessary experi-
mental condition for observation of the resonances in-
volving 3,—~32 appearing in (21).

In most gas lasers, unless special care is taken, the
exact optical frequencies v~ and v2 do not remain stable.
Rather, they Quctuate throughout the entire portion
of the Doppler response which has suf6cient gain to
allow oscillations. These Quctuations in frequency
are due to external disturbances which cause Auctua-
tions in the length of the Fabry-Perot resonator. How-
ever the magnitude of the fluctuations of the difference
frequency, v2 —v&=D, is much less than those of the
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Fxo. 2. Simpli6ed experimental arrangement for
observation of effects discussed in Sec. 2.

and imaginary part of the susceptibility at the fre-

quency v&. Similarly C&E&2 and $&L&' at frequency v&.

If we substitute this expression and (23) into (22),
integrate over the length of the cell and average over a
long time compared to 1/(vg —vi) we obtain for the total
absorbed power:

W = vtA—E12I'.p(S1+S2) (25)

dW/dz=AP E (22)

where A is the cross-sectional area of the beam, I' is the
time derivative of the total polarization vector, and E is
the total electric field. For the two traveling waves we
take as before

E(s,t) =2E1 cos(vit —kis)+2E2 cos(v2t —k2s). (23)

Absorption due to linear polarization in the sample
will be characterized by the Doppler width kN, and thus
will remain approximately constant for small magnetic
tuning. If the 6eld strengths are large enough to cause
appreciable saturation in the sample then changes in
absorption will be observed for small tuning (of the
order of the natural linewidth) due the terms in
the third-order polarization which show the co3~—6
resonance.

Let us write the part of Eq. (21) which shows this
resonance as

P "&(r)t) =C1E1E2' cos(vit —kis)

+S1E1E2 slil(vit —kiz)

+C2E12E2 COS(v2t —4S)
+SgE1'E2 Sin(vent —k2Z) . (24)

The quantitites C&E2' and S&E2' are, respectively, the
contribution of the third-order polarization to the real

absolute frequencies, v~ and v2. Consequently, while v~

and v2 may suRer appreciable fluctuations, 6 remains
nearly fixed. This relaxes considerably experimental re-
quirements of frequency stability for observing the
narrow resonances in expression (21).

Let us now consider, as an example, the simplified
experimental arrangement shown in Fig. 2. The output
from a Brewster-angle gas laser oscillating in two modes
passes through a sample gas and then onto a detector.
The sample gas is assumed to have an atomic or molecu-
lar transition frequency which coincides closely with
the laser frequency. It may be in either an absorbing
or an emitting state. The sample gas is subjected to a
magnetic field, either axial or perpendicular to the plane
of the drawing. We will discuss the applicability of the
three-level model we are using to more general level
structure in the next section. For now we assume one
can isolate three pertinent levels and that the spacing
between the upper two (for example Zeeman sublevels)
can be magnetically tuned about the value determined
by the laser cavity. We consider the power absorption
in the cell as ~32 is tuned about A.

The absorption in the cell per unit length and time is
given by

S2——same with (i72—A'1) replacing (Ea—F1) . (27)

The line shape is thus given by the Lorentzian

I y32'+(&v3~ —6)'j '. This expression for line shape has
one remarkable feature. The width of the Lorentzian
y»= (72+&3)/2 is entirely independent of the width of
the lower level. This is quite contrary to what one
would expect from considering, for instance, only the
eRect of saturation of the level populations, since the
broader the lower level, the greater is the range one could
tune A&32 and still be on resonance with both applied
fields (for the same velocity atom).

We may make several remarks with regard to the
above behavior of the line shape. First of all there are
two terms in expression (21) one of which contains a
single complex Lorentzian of width 2y. This has come
about owing to the diagonal density matrix element
p»&') and is thus strictly a saturation eRect. The other
term is a product of complex Lorentzians and has come
about due to p32&2) which is the Raman term. Each of
these terms individually depends on the width of the
lower level through the width y = (y13+y12)/2. However,
in combining them the width y~ has cancelled out of the
line shape.

Second, we note that the above behavior of the line

shape is similar to a behavior involving spontaneous or
stimulated Raman scattering in gases. In an ordinary

type of Raman experiment, one deals primarily with
two energy levels forming the initial and final states of
the transition. In these cases, the presence of a third
energy level enters only as a virtual state and does not
satisfy any resonance condition. The atomic system
undergoes transitions by absorbing a photon from a
pump Geld at frequency v and emitting a photon at a
displaced frequency v'. The frequency diBerence v —v'

is roughly equal to the level spacing of the initial and
6nal state of the atom.

Consider the case of spontaneous Raman eRect in
which only the pump Geld is applied externally. It can

where / is the length of the sample, v= v~= v2.

The line shape of this absorption, then, is contained
in $1 and S,. To put the expression (21) in the form

(24) involves a straightforward algebraic manipulation.
When the definitions 2y=y12+yis and yo ——(y,+y;)/2
are substituted, however, the result comes out in a re-
markably simple form. The result is
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2

Fre. 3. Energy-level scheme shooting
Zeeman levels which are connected by
matrix elements in an experiment as in Fig.
2. (a) j=1 to 0 transition (b) J=2 to J=1
transition.

(b)

readily be shown that the Doppler width of the spon-
taneous Raman scattering in the forward direction is
(v —v')u/c with I as average velocity of atoms. (In the
backward direction the Doppler width is much larger,
(~+v')u/c. ) For cases where the Raman displaced fre-
quency, v —v, is in the far infrared or submillimeter
range, (v —p')I/c may be less than the natural or col-
lision widths of the initial or final levels. In that case
the Raman scattering in the forward direction will show
no Doppler broadening but its width will be determined
by the individual widths of the initial and final states.
(But it is independent of the width of the virtual state. )
The above shows that in the case of stimulated Raman
effect in the forward direction, where in addition to the
so called pump field at frequency v there is an additional
applied field in the same direction at a frequency close
to v', the width of the Raman resonance will be the same
as that in the spontaneous case, namely limited by the
width of the initial and the final state only.

In our case, our fields at frequency v& and v& are in the
same direction and we assume v2 —v~ to be close to co32.

We note that atoms whose velocity is not such as to
Doppler shift vr close to cost (or, therefore, to Doppler
shift ps close to a&sr) will undergo stimulated Raman
transitions entirely identical to the case of ordinary
Raman effect described above. For these atoms, level
one plays the role of a virtual level. Hence, their stimu-
lated Raman response will have a width given only by
the natural widths of levels 2 and 3. However, atoms
whose velocity is such that the Doppler shifted v~ is
dose to co2~ will show a Raman behavior with a different
frequency response. And for these atoms, the effect
arising from saturation of population should also be
considered.

From the above mentioned cancellations and the
similarity of linewidth behavior with ordinary stirnu-
lated Raman effect, we note that there has been a
cancellation of the saturation terms and "resonant
Raman"5 terms for those atoms whose velocity makes
level one a resonant level leaving only the contribution
of those atoms which are somewhat off resonance.

It should be noted, however, that our over-all result
is quite different generally from usual discussions of
stimulated Raman effect due to the previously men-
tioned loss of some terms by destructive interference
in integrating over the velocity distribution.

It should also be pointed out that the frequency be-
havior of the nonlinear part of the dispersion of the
atomic resonance behaves similarly. This may be shown
by inspecting the in phase, CiE~E2' and C2Ei'E2 of
expression (24) through the terms appearing in Eq.
(21). The width of these dispersive terms also depends
only on the radiative width of the upper levels.

3. MORE GENERAL LEVEL STRUCTURE

Before we undertake the treatment of a more com-
plex form of the radiation field, let us examine the
applicability of our treatments in cases which involve
more complex level structure. For this, we proceed by
examining several specific examples where the level
structure is assumed to arise from a Zeeman splitting
of simple paramagnetic levels. Suppose first that transi-
tions occur between atomic states of tota, l angular mo-
menturn j=1 to j=O. Then in an axial magnetic field
the energy levels are split as in Fig. 3(a). Consider the
laser fields to be linearly polarized perpendicular to the
direction of the magnetic field. In this case only the
m;=&1 Zeeman components of the j=1 level have
matrix elements connecting to the j=O level. The
j=1, m=&1 and j=0, m=0 set constitute a three
level system of the type we have analyzed. Accordingly
when the frequency splitting of the m=+1 and m= —1
components becomex very close to the frequency separa-
tion A=v2 —v~ resonant behavior should occur in the
coupling terms of the third-order polarization in a
manner described in Sec. 2.

Consider now a more complex system, the j=2 to
j= 1 transition shown in Fig. 3(b). Let m„, g„and mt, g&

represent the m and g values of the j= 2 and j= 1 state,
respectively a,nd suppose g&&g„. The applied field will
be again considered as linearly polarized and perpendicu-



H. R. SCHLOSSBERG AND A. JAVAN

lar to the H field. Lines drawn in Fig. 3(b) between the
components with matrix elements connecting them. As
the magnetic field is increased from zero the first match-
ing occurs when nz„= —2 and m„=+2 are separated by
A. But these two components do not have a common
lower level. Furthermore, because of the different g
values of the upper and lower levels, the frequency
spacing of all the allowed transitions indicated in Fig.
3(b) are different. As a result, the Doppler effect will
lead to a, situation where a given atom can interact with
the applied fields through coupling via only one of these
transitions. Thus nothing interesting happens. As the
magnetic field is further increased the m~=&1 com-
ponents are separated by A. These both are connected
to nz„=0 and resonant behavior is observed in the out-
put, from which g~ can be measured. Finally the separa-
tions between m„= —2 and m„= 0, between ns„= —1 a.nd
nz„=+1 and between nz„=0 and m„=+2 are separated
by ~. The m„= &1, m& ——0 clearly form a distinct 3 level
subsystem. Furthermore since the "g" values are differ-
ent it will always be different atoms in the velocity dis-
tribution which are coupled to the two fields via the
three levels (m„= —2, 0;nz~ ———1) or via the levels
(nz„=0, +2, m~=+1). En other words, transitions are
induced within the (nz„= —2, 0, nz~

———1) set of levels
separately from those induced within the (nz„=0, +2,
nz~=+1) set. These two sets of levels are not coupled
together insofar as the Zeeman splitting of the lower
level is appreciably different than that of the upper level.

Similar arguments to the above may be advanced to
show that our analysis may be directly applicable to
resonances with more complex structures such as those
arising from fine or hyperfine interactions. The condi-
tions for interactions involving three levels at a time
may be readily inspected in each case as was done in
the above.

4. STANDING-WAVE RADIATION FIELDS
A. Theory

In this section we treat a case where the two mono-
chromatic fields are in the form of standing waves. The
atomic resonance will be assumed, as before, to consist
of two transitions centered at frequencies cv» and co».

(See Fig. 1.) The Doppler widths of these two transitions
may be overlapping. However, as before, we consider
the transitions to be well resolved with respect to their
natural widths. This problem is, in particular, applica-
ble to a case where the atomic system is placed within
the resonator of a laser oscillating in two Fabry-Perot
modes at frequencies v~ and v2.

In cases where an active laser material itself consists
of two closely spaced transitions, the calculated polariza-
tion may be used to obtain details of operation of such a
laser. Such details would be obtained by self consistency
arguments„as in the treatment of Lamb. '

Each of the standing waves in the applied radiation
may be decomposed into two traveling waves of half
the original amplitude in opposite directions. Therefore,
the third-order polarization will again show resonances
of the form we have just discussed for traveling waves.
In addition, a number of new resonances will appear.

These additional resonances are of similar origin to
the effects described by I.amb' for a two level laser. An
atom of velocity v sees the right traveling component
and the left traveling component of a standing wave at
different frequencies due to the Doppler effect. There-
fore, in general, different atoms within the velocity
distribution will interact resonantly with the right and
left traveling components. For our three level system
there are two atomic transition frequencies ~» and co».
For two standing waves, at frequencies v& and v&,

generally, there will be eight different sets of atoms
within the velocity distribution which can interact
resonantly. Each set is centered about one of the veloci-
ties vg determined by vz(1& viz/c) =&oz~, v&(1+vs/c) =~zz

or vz(1&vg/c)=razz, vz(1&v~/c)=razz. When vz and rz

satisfy one of several easily determined relationships
with respect to &ozz and cozz (we will point out these rela-
tionships in Subsec. B, below), two bands in the ve-
locity distribution will overlap. In this case the same
a,toms will interact resonantly with tv% o traveling-wave
components in opposite directions (except for the one
case described in the previous sections). Because of the
saturation of level populations each overlap condition,
as previously discussed, is characterized by a resonance
in the nonlinear polarization of the atomic medium.

AVe may take over the treatment of Sec. 2A up to the
typical form given in Eq. (14). At this point instead of
expression (3) for a traveling wave, we must substitute
the standing wave

2

E(s,t) = P 2E„cosv„t sink„s
ttt=1

=P E„(e'"~'+e '"~') sink„s (28)

into perturbation V(t) given by Eq. (6).Here k„=zrn„/L
with L the length of the optical resonator and n„a
large integer. The functions sink„s are taken to represent
approximate normal modes of the Fabry-Perot reso-
nator. ' On making the rotating wave approximation we

have from (14)

o zz,r, "'(r,t) v)2) = (z I tz» I
'tzza/yz)Q E„EpE. dt' exp f —Li(v %21) (71z +32)7t'} sink„(s —vt —vt')

dt" exp( —Li(vp 'Mzz) —(F32 7zz)7t"}»nkvd(s —vt —vt")

dt"' expLi(v„—a&zz)+yzz7t"' sink„(s —vt —vt"') . (29)
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It is convenient to remove the variable limits in Eq. (29) by introducing

Making this substitution and using (8) and (10) we have for the polarization (after slight algebra) due to the typical
term

Pi»~@(r,&; i,2) =i
~
pi2

~
'p3iXg(v)P E,E,E„exp[i( v,—v,—+v„)t]

dr' d7" dr"' exp( —[pip+i( —v, v~+v—„+&d3&)]r') exp( —[y32+i(v„—v~+&v32))T )

Xexp( —[y&2+i(i „—~2i)]r"') [sink (z—vr') sink, (z—v~' —vr") sink„(s —&r' —&r"—&&'")] (30)

By making use of the identities for products of trigonometric functions the product of three sine functions in (30)
is equal to

4 (—sin[(k, + i„+k„)z—kv(3r'+ 2r"+r"')]+sin[( k,+k, +—k„)z kij(r'+ 2—r"+r"')]
+sin[(k, +k,—k„)z—kv(r' —r"')]+sin[k, —k, +k„)z—kv(r'+r"')]) . (31)

The first term in (31) varies spatially as three times the optical wavelength X. Therefore the contribution of this
term to absorption will be of order X/l(/= length of cell) compared to the other terms.

We assume X/l is small and neglect the first term of (31).The remaining terms can be written

~(sin( —k,+k,+k„)s exp$ikw(r'+2r"+r"')]+sin(k, +k, k„)z exp—(ikv(r' T)]-
+sin(k, —k,+k„)z exp[ikv(r'+r"')]+(terms odd in n). (32)

The terms odd in z will clearly not contribute to over-all polarization if the atomic velocity distribution is
symmetric.

Consider the result of substituting (32) back into (30). It is easily seen that each r integral gives a complex
Lorentzian and thus each term in (32) leads to a product of three complex Lorentzians. In particular the r" in-
tegral applies to the resonance involving co» and differences in applied frequencies, v2 —v&= h. The three terms of
(32) may be related to diferent Doppler effects in the individual Lorentzians due to the presence of standing
waves. Thus, for our typical term the exp[ikv(r' —r"')] leads to the terms we have already encountered in the
traveling wave treatment. They thus represent the eGect of traveling wave components in the same direction.
The resulting expressions are identical to those obtained in previous sections. The exp[ikv(r'+r"')] changes
the sign of one velocity term thus making it represent an interaction with a traveling wave in the opposite direc-
tion. The exp[eke(r'+2r"+ r'")] terms represent, in additions, the occurrence of the (~32—6) resonance for travel-
ing components in opposite directions.

We now consider integrating over the velocity distribution. The interpretation of the terms in (32) as to direc-
tions of standing waves is, of course, not unique. Vfhen we consider other than our typical Raman term, the inter-
pretation will depend on how the applied frequencies enter into the expressions (see Appendix B). However, the
exp[ike(r' —r'")] will always involve two Lorentzians featuring Doppler shifts and the sign of m will always be
different in the two. The exp[ik~(r'+r"')] likewise involve two Doppler shifts but the sign of v is the same. We
have already mentioned (see Appendix C) that the former (opposite sign of it) terms contribute more than the
latter term by an order p/kN after integrating over the velocity distribution. It is shown in Appendix C that the
terms arising from e p[ixkn( '+i2r"+r"')] may also be ignored under the same conditions (and to the same order
p/kg). We may evaluate the only important contribution, then, using formula (20).

When we apply formula (20) to all the third-order contributions of Appendix B, and keep only those values of
the indices p, , p, cr which lead to possible resonant forms at frequency v& or v2 we get the following expression for the
third-order polarization:

where
P&'&(r, t) = expivit[Pi sinkiz+Pi' sink+z]+expiv2t[P2 sink2z+P2' sink z]+complex conjugate,

ki K%1/L ) k2 KN2/L ) k+= 2k2 kl ) k = 2kl k2i
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and with

P, ,lr ir2/(2p„)

X {[)p»( (&2 &l)/(7272)]&1 [1+732[712+2(A)21 vl)] ]
+(I~»l'/72)&2&2 [(732/7i)(+2 +l)[7»+2(~21 vB)] +(718/78)(+8 +1)[718+2(~81 vB)] ]
+((P12p31( /271)(+3++2 2+1)Pl [7+2(~B vl)]

+ ( ~
P12P81~ /71) (+8++2 2+1)@1+2 [27+2(~B vB)]

+(l~i2»I'/72)(& —&)& & [27+3(~ —~)] 'L1+7 [7 +2(~ —~)] '])
Pl —[32r /(4kg)]El E2[712+Z(0721 vl)] [782+2(~32 ~)]

interchange 2, 3 in X, co, p, y same
P2=P» P2'= P»'

(33a)

(33b)

(33c)

(33d)

(33e)

(33f)
interchange 1, 2 in E, v interchange.

vB (vl+v2)/2 | ~B (~21+~31)/2 ~

B. Discussion

The resonant terms in the expression (33) may, as
discussed previously, be divided into two classes. The
first class are the terms which do not depend on the
sta ding-wave nature of the field. These are the terms
in Pl and P2 represented by line (33e). They are identi-
cal in form with the resonant terms derived in Sec. 2A.
In particuLar, their resonant form does not depend on
the exact optical frequencies v» and v~, only on the

difference

frequency 6= v~ —v».

The o ther class of resonant terms consists of the ones
which arise because of the standing-wave nature of the
field. It can be seen in (33) that all of those resonant
forms do depend on the exact optical frequency v» or v2.

The distinction between the frequency dependences of
the two classes is of experimental importance for the
reasons discussed at the beginning of Sec. 2B. Observa-
tion of the class which depends on standing wave features
would require a more elaborate laser system to achieve
necessary frequency stability of v» and v&. A more con-
ventional laser with less frequency stability averages
out the standing-wave class of effects but is generally
quite adequate for observing eRects of the other class
[those appearing in (33e)].

It should also be noted that, in contrast to the other
class, the width of the standing-wave class of reso-
nances depends on the natural width of the lower, as
weQ as the upper levels.

The standing-wave resonance terms may be described,
with reference to the line designations (and their coun-
terparts in the interchange instructions) in (33), as
follows:

(a) The resonance is the usual Lamb dip effect, e.g. ,

when v» ~» atoms of zero velocity resonate with both
traveling-wave components at v».

(b) The resonance occurs when the frequencies of
the two applied fields are symmetrically located with re-

spect. to 4)21 (or M32)' 111 tllls case the same atoms can
resonate on A&22 (or &o8i) with the right traveling com-
ponent at v2 and the left at v».

(c) One of the applied frequencies (e.g. , vl) is half

way between ~» and cv». In this case the left traveling
component at v» is Doppler shifted to or3» for atoms of
proper velocity, and for the same atoms the right travel-
ing component at v» is Doppler shifted to ~2».

(d) The frequency midway between vl and v2 is
also midway between ~» and cv». In this case, the right
traveling component at, for example, v» is Doppler
shifted to ~3» and the left traveling component of v2 is
shifted to o)2».

(f) This term is a complicated term representing a
combination of Lamb dip and Raman effects. %hen
vl=~2l and v2=a&82 (which implies 6=&a82), then several
bands in the atomic velocity distribution overlap. The
Lamb dip effect is due to traveling components in dif-
ferent directions at the same frequency, while the
Raman eRect is due to traveling components in the
same direction at different frequencies. Note that
these terms vary at a frequency of one of the applied
fields (vl or v2) but their spatial variation is characterized
by an allowed k vector which is not that of an applied
field. Thus the absorption or emission due to this term
in the polarization depends on where the material is
placed within the resonator. Also the eRect of this term
becomes small when the length of the sample becomes
an appreciable part of the cavity length.

The power amplified. or absorbed due to the polariza-
tion (33) is found from (22), with the electric field given

by (28). If, as in the traveling wave case, we consider
the average power absorbed in a time long compared to
1/(v2 —vl), then we may consider the effect of the fields
at frequencies v» and. vg separately. In particular we

again need the component of the polarization at fre-

quency vl (or v2) which is out of phase with the electric
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Wi=iiEiA
a+l/2

(Si sinkiz+Si' sinkqs) sinkisds (35)
a—l/2

where u is the location of the center of the sample with
respect to the end of the resonator, / is the length of the
sample, I. is the length of the cavity. A similar expres-
sion may be obtained for the power emitted or absorbed,
W2, at frequency i 2. It is convenient for later reference
to rewrite (35) and the similar equation for frequency i 2

symbolically as

Wl =pl(N)E1 +$12(N)E1 E2

W2 —$21(~)E1 E2 +p2(&)ER ~

(36)

Identification of the terms in (36) with (35) and its
counterpart in im defines the quantities pi(~), p2(~),
t»(~), bi(+). Again, the explicit form of the expressions
will not be required here. We have written in the ao

dependence to emphasize that the quantities are sharp
functions of ~2q, co3~, eo32, for given vq and v2.

First consider the case that an active laser material
itself is, for instance, placed in a magnetic Geld which
tunes the level spacings. Assume that a suitable set of
three tunable energy levels can be isolated.

The nonlinear polarization of the active medium
governs the steady state power emitted from the laser. '
The resonances in the third-order polarization will

therefore manifest similar resonances in the output
power. From an observation of the output power' as a
function of magnetic Geld strength, then, one can, using
the general theory of two mode laser behavior, work back
to obtain values of parameters appearing in Eq. (33).

In practice the above experiment is a good one to
observe the resonant eGects qualitatively. Its details,
however, involve additional complications because the

"One couM also observe these eGects by looking from the side
of the tube at spontaneous emission which involves one of the
laser levels. KGects of this kind have been discussed by R. L.
Fork, L. E. Hargrove, and M. A. Pollack, Phys. Rev. Letters 12,
705 (1964).

Geld at that frequency. Let us take for these out-of-
phase parts of the third-order polarization

S(z,t) = sini it{Sisinkis+Si' sink+s)

+sinvmt(Si sinks+ S&' sinks},
as before,

ki= rini/ L, km=nn2/L. ,
(34)

k+.=2k2—kg) k =2k' —k2,

where Si, Si', S2, Si' are obtained from (33).The general
form of these expressions will not be needed in the fol-
lowing arguments. Explicit reference will be made only
to the resonant terms involving (coai—6) and for these
Si=SiEiE2'/4, Si=SiEi'E2/4 where Si, S~ were cal-
culated for traveling wave case and given by (26)
and (27).

The ampliGcation or absorption at frequency v~

(aside from the linear part) is thus given by

laser output is not directly proportional to the nonlinear
polarization parameters. Instead, the functional de-
pendence of the output power on the nonlinear polariza-
tion terms appears through a set of straightforward but
algebraically complicated expressions. ' For this reason,
a simple Lorentzian dependence appearing in the
polarization terms, manifests itself in the output power,
in a way which is highly distorted and non-Lorentzian.
This fact can make working out the parameters of the
polarization dificult. The procedure described below,
however, avoids these complexities.

Consider, a case in which a cell containing a sample
gas is placed within the laser resonator in addition to
the active laser material. Suppose the sample gas but
not the laser material, to be subjected to a magnetic Geld.
It is shown in Appendix D that under certain conditions
the sample may be considered a small perturbation on
the operating conditions of the laser. In particular this
is the case when the sample saturates less readily than
the active laser material. It is also true if the sample
saturates comparable with the laser material, providing
only a small quantity of the sample is used. Under these
conditions it is shown in Appendix D that the change in
power output due to the nonlinear resonse of the sample
is given by

~~out ~[pl(&)E10 +$12(~)E20 )
+DL6i(&)E» +p2(~)E20 ]y (37)

where 8~0 and E20 are the unperturbed Geld strengths in
the cavity obtained in the absence of nonlinear coupling
to the sample. D and 8 are parameters which relate only
to the behavior of the laser under completely general
operating conditions (that is, even when the laser
operates well above threshold and the active material
is no longer desirable by standard perturbation theo-
ries). Equation (37) shows that, for small tuning of the
sample, the resonant behavior in the polarization will be
directly observable as a change in laser output power.

It is interesting and, for reasons we have discussed,
experimentally important to consider a case in which the
frequencies v& and v2 Quctuate slowly by amoun ts greater
than the natural linewidths of the sample gas. As we
have repeatedly emphasized, in this case only the reso-
nance in ~32—6, which does not depend on the exact
value of v~ and v2, will be observable.

Suppose that the fluctuations in v~ and v~ d&e to
thermal effects or microphonics are stationary (in the
statistical sense). Let the highest frequency of modula-
tion of v~ or v~ be Svf. While we do not restrict the modu-
lation amplitude (except insofar as the laser should keep
oscillating in two modes), we shall require that bvf
be much less than the three quantities, y„vg —v~ and
1/rr, . Here y, is the smallest of the three natural line-
widths in the sample gas and vl, is the characteristic
time for the laser to reach a steady state. Clearly an
atom will see a "Quctuating single frequency" rather
than a broad spectrum only if bv~&&p, . This will usually
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be the smallest of the three quantities. If v~ and v2

are closely spaced modes of the Fabry-Perot cavity then
vo —vi and 1/rr, will be about the same order of magni-
tude. Both are related to the transit time of light across
the cavity. Under these conditions, we may still apply
all of the considerations leading up to Eq. (37) and that
equation will still hold but all quantities appearing in it
will be random functions of time.

Let us now consider that some standard sort of noise

smoothing circuitry is associated with the detector. The
dependence of detected power on cv (magnetic field)
can then be obtained by taking the time average of both
sides of Eq. (34) over a time r long compared to im-

portant Quctuation periods and of the order of the
(adjustable) integration time of the detector.

We will now make our only assumption in this sample
cell case about the nature of the active laser material.
Let us assume that it has a symmetric atomic line shape
(remember it is not in the magnetic field). Then, there
should be no distinction in the behavior of the laser at
the frequencies v~ and v~ on the average. In particular,
we must have in Eq. (37) AEoo'=BE&o'." We thus

arrive at a simple expression for the over-all resonant be-

havior of the sample with magnetic GeM. We have,
from (37), for the field dependent part of the output
power

8P,„&
——constPio(a))+ bi(cv) j, (3g)

S. CONCLUDING REMARKS

There have appeared previously a number of papers
dealing with the inQuence of a magnetic Geld on the
behavior of a gas laser. ' "The authors of these have

"This may be somewhat clearer from the expressions in
Appendix D.

'6 A. Szoke and A. Javan, Phys. Rev. (to be published)."C. I.. Tang and H. Statz, Phys. Rev. 128, 1013 (1962).
' W. Culshaw and J. Kanneland, Phys. Rev. 133, A691 (1964}.

where now bio(oo) and for(co) refer only to the terms in

(&uo&
—6), the only terms which retain a tunable be-

havior after averaging. In fact, for our present result we

may set $io+$oi ——(Atv/8)(Sr+So) where Si and So are
the quantities given by Eqs. (26) and (27). That is to
say the line shape in the present case is identical to
that in the case of two traveling waves.

This result enables one to take advantage of high field

intensities within the resonator of a conventional gas
laser in order to induce sizable nonlinear polarization.
But at the same time, the simplicity of the frequency
behavior exhibited in the traveling wave case is retained.

It should also be pointed out that the terms involving

the standing wave nature of the Geld as described above
are also of considerable interest. They could sizably
inQuence the behavior of a laser operating between

energy levels involving splittings. Their observation,

however, requires frequency stability of the type needed

in previous experiments with the Lamb dip eGect in a
single mode laser. "

discussed various eA'ects all of which are different from
the effects discussed in the present work. Most of the
previous investigations start from a set of density
matrix master equations similar to our Eqs. (4). How-
ever, a general treatment of complex level structures,
arbitrary magnetic Geld and arbitrarily polarized radia-
tion in many cavity modes involves a great deal of
algebraic complexity and the resulting general expres-
sions are not amenable to a description of specific physi-
cal effects. Thus the various authors have emphasized
different specialized aspects of the problem.

The discussions of Ref. 18 are primarily concerned
with a small Geld and its inQuence on the rotation of the
plane of polarization of the laser oscillations. References
17 and 19 are also primarily concerned with beat fre-
quency phenomena as well as mode competition effects
associated with the polarization of the laser radiation,
and Ref. 21 is an experimental presentation dealing
with the same effects. These aspects have not been con-
sidered here. Reference 20 has given a more general
(and hence more complex) treatment, but has ulti-
mately specialized detailed dis cussions of laser operation
to competition phenomena among various polarizations,
for levels with arbitrary J values.

The analysis of the present paper is not applicable to
effects of small magnetic Gelds since then degeneracy
of the level structure is important. Furthermore, we
have not considered the inAuence of the magnetic Geld
on the general behavior of a laser system including its
polarization. Our treatment deals with an examination
of the effect of difference frequency crossing and the
seemingly anomalous behavior of the linewidth of the
resulting resonances. These eRects have not been
dealt with in previous work. In particular the behavior
of the line shape of the difference frequency signal has
important implications for spectroscopic application.
For instance, in a large number of atomic levels in-
volved in laser transitions, the radiative lifetime of the
upper levels is much longer than that of the lower levels.
According to our discussions, the widths of the difference
frequency signals arising from structure of the upper
level will not be dependent on the radiative widths of
the lower levels. In these cases, extremely narrow
resonances may be expected. This feature would bc use-
ful, for example, in studies of hyperGne structure of
excited laser states.

In xenon, for example, the 5d levels, which are the
upper levels for many laser transitions, have lifetimes
estimated at microseconds or tens of microseconds. "
The lower levels for these transitions are the 6p levels,

"R. L. Fork and M. Sargent, III, Phys. Rev. 139, A617
(1965); also in Proceedings of the Conference on Quantum E/ec-
tronics, Puerto Rico (McGraw-Hill Book Company, Inc. , New
York, 1965).' C. V. Heer and R. D. Graft, Phys. Rev. 140, 1088 (1965).

2' P. T. Bolwijn, in Proceedings of the Conference on Quantum
I"lectronics, Puerto Rico (McGraw-Hill Book Company, Inc. ,
New York, 1965).

~'F. Horrigan, Raytheon Company, Waltham, Massachusetts
(unpublished).
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which may be hundreds of times shorter lived. In this
case the difference frequency crossing resonance arising
from the 5d levels will be on the order of hundreds of
kilocycles per second.

Experiments using the difference frequency crossing
technique for high resolution studies of hyperfine struc-
ture of the excited atomic levels are now in progress and
will be reported on in a future paper.

APPENDIX A

The general form of the density matrix equations with
respect to the unperturbed states is

+z,+1—,)p;= —Z zp(t)(p p;—p p ). (zlt)
I dt

Multiplying both sides by exp(i&d»+p»)t, we find
that the left side becomes the total derivative (d/dt)
pi; exp(i&d2, +yq;)t. Defining &J» = p2; exp(items, +pi, )t
and using &d}4 =&d2 —

&d; (A1) gives

d0 Ic~ = —g„iv(t)Lt42 ~,e' " te&»t —&- )'

—Cr tt eizpmite&». i »m) tj (A2)

which leads to Eqs. (11).

APPENDIX B

To show that it is sufFicient to consider atoms start-
ing in state 2, we first note that Eqs. (11a)—(11f) are
invariant if we change all twos to threes, threes to twos,
and take complex conjugates. Therefore, we can obtain
the solution of (11) for an atom which starts in state
3(n=3) from the solution for an atom which starts in
state 2 by the same interchanging and complex
conjugation.

Next we note that if we had let the atom start in
state 1 in the calculation of our typical term, there would
be an over-all change in sign and the factore xpy2(t() t'—")
in Eq. (13) would be replaced by expyi(tc) —t"'). This is
due to the different factors multiplying o-~~ and 0.22

in (11a) and the different initial condition (12). In
integrating over initial times we would then get (15)
except with y~ in the denominator and an over-all sign
change. On multiplying by Ai(v) t this would give—iVi(&)) replacing 1V2(2)) in (17). On considering effects
of atoms starting in both states we may, therefore,
simply let 1V2(i)) go to X2(i))—1Vi(v). It is clear this re-
sult depends only on the initial condition and first-order
approximation and therefore holds for any third-order
term. Further, from the symmetry of states 2 and 3 de-
scribed above or from considering (11b) and (12) we get
the complete effect of level one by also letting
N2(()) -+ 1V2(~)—iVi(&)).

We will solve (11) and (12) for all third-order terms
in p~2 and p3~ in Table I in the following shorthand nota-
tion. In the table below". we write 0;;(')0~ (2)o.,&&') to
represent the third-order term in 0-;; which comes about
because a erst order o„produces a second order 0-~ .
(In all cases the atom is assumed to start in state 2.)
Underneath this term designation we write on three
successive lines t with reference to the typical calcula-
tion in the text, Eq. (13)) the factors multiplying t"',
t", and t', respectively, in exponents appearing in the
triple integrals. Underneath, on the next three succes-
sive lines, we write the denominator of the three complex
I.orentzians which will occur after performing the
integrals over t', t", t'". We leave the Doppler shift un-
derstood in writing thes" that is, we write v„ to mean
P„—Iei. Finally on the next line t with reference to
Eq. (16)j, we write the multiplicative factor and the
frequency dependence of the polarization. In every
case, the product of three E's, the factor i/2(i)), sum-

TABLE I. Third-order terms.

(&)

(2)
(3)
(4)
(5)
(6)
(7)

(&)

(2)
(3)
(4)
(5)
(6)
(7)

2(Vp Cd21)++12

2( Vp+Cd21)+'Y2 'Y12

2(v cd21)+'r12 'Y2

s(v„—co21)+y12''(-",+.)+ ~

2(Vzz Pp+Vp Cd21)+i'12

! I

4ez(vzz vp+vp)tP12

g12 g32 &12

2("p Cde)) +'Y»
2( Vp+Cdel)+r32 r12

1 (Vzz Cd 31)+'Y12 Y32

$(vs %21)++12
2( Vp+Vp+Cd32}+ Y32'(.-',+..---)+-

!
4ez(vzz vp+v»t

g12 g22 g21

&(—Vt +~21)++12
2(V p

—4421}+y2
2(Vzz Cd21)+ Y12 |'2
&( Vte+21) ++12'{,-"..)+ ~

'(.'.+.",—..--.)+-
! I

4ei(zzz+Pp Pp)t@12

g 31(3)g 11(2)g 12(1)

2(Vp Cd21)+r&2

2( Pp+Cd21)+ Yl Y12'(-..'+-")+ -- ~

$ (V]a &21)++12'(-",+.)+ ~

'(- .'- ",+.+--)+-
—It)4»443)

I

te'&-"p "p+"»'-

tT12 g11 g 12

2(Vp Cd21)+ Y12

2( pp+Cd21)+rl r12

~(V.—~21)+y12—y1
2(Vp Cd21)+AD)2

s(—v p+v„)+y1
.2(Pp Pp+Vp Cd21)++12

p !4e'&"' "'+"»1

g 31(')g 11(2)g 21(')

2(—Vp+Cd21) +'Y12

2(Vp Cd21)+ Yl Y12

i(—v +w31)+y1s —y1
2(—Pp+Cde))+7»
2(v, —v„)+st'(-'.+",—.+-.)+-

I4412)t» I'e'& "'+"' "»'

g12(2)g11(3)g 21(1)

'(-..+-.)+&„
2(Vp &21)+ Yl i'12

$(V 6021)++12 Pl
1( V +(021)+P],2
Z(pp —1 p}+Pt
$(Pp+Pp Vp Cd21)+|'12

I tt)2! e (" +"p "p) t

g3] ( )g3

2(Vp Cd21)+'Y»

2( Vp+Cd31)+'Y32 i'12

2( Vzz+Cd21)+'Y13 'Y12

$(Vp Cd21)+ "r12

~(—v,+v„+o32)+P32
i(—v.—v,+v„+~31)+P,3—IC»t »lee&& "p-"p+"»1
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that the frequency behavior of p„ is characterized by the
Doppler width.

For the laser material we take the relevant out of
phase components of the polarization as

~r 1 EIXI(EI E2 ) Siiivlf

S1,2 —E2X2(EI',E2') sinv2f.
(D2)

We leave the form of the X's unspecified. (The depend-
ence on E&' and E" follows from the symmetry of the
material and the fact that both fields are in the same
direction. ) In other words, while we imply that a per-
turbation expansion in the field strengths is valid for the
polarization of the sample gas, we make no such demand
on the laser material. The laser could be operating well

above its threshold.
The cavity power losses at frequency p, , from the

definition of the quality factor, Q„, are given by

loss„= (v„/82rQ„) E„2LA . (D3)

Tc
&. 2=—(EI2+E22)

Sx
(DS)

where T is the transmission coeKcient of the mirror

[for an otherwise lossless cavity Q;= (v;L/cT)). The de-

pendence of this power on magnetic tuning of the sample
(for small tuning) is given by the I0 dependence in (D4).
We may always relate detected power to stored energy
in the cavity through Kq. (DS) and we will consider the
two interchangably from now on. General solution of
(D4) for the output power versus tuning would necessi-
tate a, knowledge of the laser X's (a good representation
of which is available only for laser operation near thresh-

old) and would require considerable analysis to go from
an observed. power versus Geld behavior to derive the
P(&0) and $(0&) from which natural linewidths and struc-
ture could be inferred. These complications are the
regenerative effects referred to in the text.

Consider the case, however, that the last two terms
on the left of Eqs. (D4) are much smaller than the first
term. Then we may consider the nonlinear behavior of
the sample as a small perturbation on the rest of the

Calculating the gain from (D2) and (D1) via (22) in
the text, and at each frequency setting that equal to
the loss (D3), we arrive at the following two equations:

"(E",E")+"(-)E.
+b2(~) E2'= 2[(1/8~QI) —ni),

(D4)
X2(E1 yE2 )+$21(01)EI

+P2(00)E2'= 2[(1/82rQ2) —~2).

Equations (D4) implicitly determine El' and E22.

The power observed at the detector is the sum of the
power coupled out at each frequency and is given by

( BXI ) (3XI )
Xl(E10 E20')+~ — —

~

&EI'+
'1aEI2i 0 aE22i 0

+PI(~)EI0'+h2(~)E20'= 2~ ni ~,
—

&8 Q, i '

( BX2 ( BX2)
X2(EI0',E20')+

i

— &EI'+
i

i aEI2 0 kaE, 2i,

1
+i ( )& +I ( )'2 '

&l
=—v),

(8m-Q2

(D6)

giving two linear equations for the change in power as
5EI2+bE22:

(
BXI 8XI

~

0EI2+
I

bE
BEI2i 0 BE22i 0

[PI(00)E10 +$12(0i)E20 ) p

(D7)

) ~0, +( ')~0.2

[$21(01)E10+P2(0i)E20 ) .

The solution of these equations for 0EI2+0E22 is given
by Eq. (37), na,mely

ti(EI +E2 ) ~[PI(00)E10 +$12(&)E20 )
+D[$21E10 +P2(00)E20 ) )

with

and

system. The conditions for validity of this are clearly
those described in the text. In this case, we linearize
Eqs. (D4) in the small corrections, 0EI2 and 0Ep, to
the result obtained by ignoring the small terms.

We have, then, to zero order in Eqs. (41),

Xi(Eio',E20') = 2[(1/82rQI) —qi),
X2(E10',E20') = 2[(1/82rQ2) —g2),

which determine the output power, E10'+E20' in the
absence of saturation in the cell. To first order


