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The low-frequency behavior of a cylindrical enclosed superconductor (superconducting coaxial cable) is
discussed, with particular attention to the case in which the inner conductor is in the intermediate state.
Preliminary observations of an efkct which is equivalent to the familiar differential paramagnetic effect
(DPE) are reported. A qualitative explanation is developed by a detailed analysis of the ideal case, which
corresponds to the limit in which the phase boundaries follow the ac Geld perfectly. For the specimen
studied, in which the DPK is reduced from the ideal value, a model is proposed based on the assumption
that the intermediate state is composed of only a few normal and superconducting regions. In addition to
accounting for the lack of reproducibility of the DPK on different trials, this model makes it possible, in
principle, to relate the DPK directly to the velocity of propagation of the phase boundaries, although the
data are not yet adequate for this purpose. The DPK was observed by means of a coaxial pair of coils wound
directly on the inner superconductor. Under conditions such that the boundary motion led to switching of
the inner conductor from the intermediate to the normal state or from the intermediate to the supercon-
ducting state, a strong harmonic content was observed. A brief analysis of this harmonic content is presented.
Phase-boundary motion was observed directly in an auxiliary two-frequency experiment in which the low-
frequency boundary motion was monitored by a high-frequency signal.

I. INTRODUCTION
' 'N a previous paper, ' referred to hereinafter as I, we
~ ~ discussed the static magnetic properties of the
"enclosed superconductor" which is illustrated in Fig.
j.. This system presents us with an interesting special
case of a geometry in which the superconducting inter-
mediate state will occur. As was shown in I, the effect
of the outer superconductor can be described as giving
an effective demagnetizing coefficient to the inner
superconductor for axial fields, even when both are
infinite in length, The magnetic behavior is analogous
to that of an ellipsoid, with one important difference;
namely, the simple geometry leads one to expect that
the intermediate state of the inner superconductor will
consist of a small number of large normal and super-
conducting regions, instead of a finely divided array of
small regions.

We have begun experimental studies of the dc and ac
magnetic behavior of such a system. The dc measure-
rnents, which will be reported shortly, are in many re-

spects in good agreement with the predictions of I,
although we have not established the structure of the
intermediate state. Our ac measurements, some of which

are reported briefly here and the remainder of which

will be reported in detail at a later date, have raised
several interesting points which have not been discussed
previously. The purpose of this paper is to present an
analysis of the ac effects observed, with particular
attention to their relation to the propagation of
superconductor-to-normal phase boundaries, and we
shall show that the enclosed arrangement has an
important advantage over other geometries in this
respect.

II. THE IDEAL DIFFERENTIAL
PARAMAGNETIC EFFECT

When a superconductor goes from the normal to the
superconducting state in the presence of an applied
field, the Aux threading the specimen is expelled. Imagine
a long, thin rod with a pair of closely wound coils and
with a dc field applied axially by some external sole-
noid. If the dc held is just slightly more than the critical
field of the rod, then a small held applied from one of the
coils can switch the specimen into the superconducting
state. The large amount of Aux expelled from the rod
will induce a large voltage spike in the coils, and the
closely wound pair of coils will behave as if there were a
strongly paramagnetic substance in their core. For this
one small increment of field, a very large ernf is gener-
ated. This is what Bein and Falge' have called the dif-
ferential paramagnetic effect (DPE).

OUTER SUPERCONDUCTOR

FrG. 1. The cylindrical enclosed superconductor. The outer
superconductor, which has the higher transition temperature, gives
the inner superconductor an effective demagnetizing coefBcient.

*This work was supported by the National Science Foundation.' R. I. Gayley, Cryogenics 5, 89 (1965).
2 Robert A. Bein and Raymond L. Falge, Jr., Phys. Rev. 123,

407 (1961).See also M. C. Steele, ibid. 87, 1137 (1952), and Ref. 3.
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where A is the cross-sectional area of the rod and a is the
cross-sectional area of the space between the rod and the
shell.

The system to be considered is shown in Fig. 2, with
the dimensions defined as indicated. We assume that a
field IIz has been trapped by the shell and that we have
cooled to a temperature such that the rod is in the inter-
mediate state.

In the absence of an ac field, we suppose that a frac-
tion xo of the rod is normal. We assume that the shell
acts so as to keep the net flux in its interior constant,
so that xo is given by the conservation of-flux-equation
(in Gaussian units, with H=B ie vucuo)

rrR'Hr rrHs(R' ——r')+rrH —(r') xs (2)
Fro. 2. A cross sectional view of the system under study, show-

ing the locations of the search coils. The normal-state penetration
of the ac field into the rod is indicated schematically by the dashed
circle.

If, instead of a rod, we have an ellipsoid or other
specimen of nonzero demagnetizing coeS.cient, then
there is a range of GeIds over which the DPK is ob-
served, and the strength of the DPE is simply related
to the demagnetizing coefIIiciemt. This eRect was Grst
observed and explained by Shoenberg, ' who studied a
spherical specimen. We have observed what we con-
sider to be the same eRect in an enclosed superconduc-
tor, although in this case a discussion in terms of de-
magnetizing coefficient is not convenient because the
coils are inside the shell. Instead, we will proceed in a
more straightforward way to analyze the emf in the
secondary coil.

By an enclosed superconductor we mean one that is
enclosed by another superconductor, in particular, the
coaxial arrangement of Fig. 1. The transition tempera-
ture of the outer cylindrical shell is supposed to be
higher than that of the inner rod, so that at any tem-
perature the critical Geld of the shell is higher than that
of the rod. If an axial magnetic Geld is applied while the
entire system is normal, and the system is then cooled,
the shell will trap whatever flux lies within its hole. '

On further cooling, as we have shown in I, there will

be a broad temperature range in which the rod will be in
the intermediate state, even though the rod, by itself,
has a zero demagnetizing coeKcient. This may be de-
scribed by saying that the effect of the shell is to give to
the rod an effective demagnetizing coefficient

D=A/(A+a),
' D. Shoenberg, Proc. Cambridge Phil. Soc. 33, 559 (1937).
4 It has been shown that the strength of the trapped field will

actually be somewhat higher than that of the applied field, since
some of the Qux in the walls of the shell will. go into the hole. This
e6ect is not large if the walls of the shell are thin compared to the
radius, and in any case this effect is not important for our purpose.
We shall speak of the trapped fieM Hz, recognizing that it may be
larger than the applied field. See T. I. Smith and H. F. Rorschach,
Jr., Rev. Mod. Phys. 36, 277 (1964); R. I. Gayley and E. F.
Young, Phys. Letters 20, 104 (1966).

The field H2 produced by the shell when superconducting
will be equal to II&, the critical Geld of the rod. The first
and second terms on the right are the flux contained
between the shell and the rod and the Aux contained in
the normal part of the rod, respectively.

In order to treat the ac behavior of this system, we
must consider the normal-state skin effects. It will turn
out that for the ideal case, in which the phase boundaries
follow the fluctuations of the ac field perfectly, the re-
sults for the intermediate state are independent of the
treatment given to the normal-state skin effects. How-
ever, the skin eRect is important when the rod is fully
normal and also, since the boundaries do not in fact
follow perfectly, in the real intermediate-state case. We
will, therefore, write down the general equations in-
cluding what we regard as a reasonable treatment of skin
eRects.

When the rod is in the normal state, we will use the
solutions for the ac fields given by Landau and Lifshitz'
for low frequencies. When the rod is in the intermediate
state, we assume that the dimensions of the normal re-
gions are large compared to the normal-state skin
depth. Then we can treat the specimen as divided into
regions in which the field penetration is exactly as in the
fully normal case, plus regions in which the Geld does
not penetrate, with moving boundaries between these
regions. If this is the case, then the response of the rod
can be discussed directly in terms of phase-boundary
motion. Such a treatment is physically more interesting
than Shoenberg's' description of the response of his
spherical specimens in terms of an eRective conductivity
of the specimen as a whole. The effective-conductivity
concept should be most appropriate to a case in which
the specimen is divided into many very small normal
and superconducting regions, as was undoubtedly the
case for Shoenberg's spheres. In the enclosed super-
conductor, we Gnd a system in which we can hope to
give a simple interpretation of the DPE in terms of
phase-boundary motion.

Ke need an expression for the ac flux contained in
the rod, and this is easily obtained when the magnetic
field is known throughout. According to Landau and
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and then

I.ifshitz, for a long, isotropic cylinder, subject to a low- For H&, the Geld produced by the primary, and H& we
frequency, axial, sinusoidal magnetic Geld, with the write
condition that the skin depth is much smaller than the Hg =H~e'"'
radius of the cylinder but much larger than the electron '(~~+e& ~ H
mean free path,

2prH(r)r Ji(kr) = 2prrbH(r)
1+ikJp(kr)

(4)

The complex factor in this result shows that the Qux
is shifted in phase by pr/4 relative to the applied field.

If we let the field at the surface consist of a dc corn-
ponent, Hd„plus Hee""t+4't, where He and tttt are real
constants, then the Qux in the rod is

H(p) =H(r) Je(kp)/Js(kr).

H(r) is the instantaneous field strength at the surface
(p=r) Jp is the Bessel function of the first kind and
order zero, k= (1+i)/5, and 8 is the skin depth. Inte-
grating the Qux over the entire cylinder gives

Ht+H2=Hd4+Hee'"'+ '

The conservation-of-Qux equation is then

R'HT =Hd, (R' r'(1 —x)]+—H (R'—P') e'&"'+4&

+ (H24+H2 jre")e'"'f1p' r'+@2—rOX, de 'r f4]. —
(9)

Let us first examine the case in which the rod is
entirely normal, so that x=x,&=1.The conservation of
Qux is then

R'HT Hd Rsy——H224(R2 p')—
)('ei(~t+tt)+(H +H ei8)eittt

)& [p2 r2+%2r8e—'~f4]. (10)

C =prr2Hd, +v2prr5Hee'&" t+4 f4&. (5) We see immediately that

%hen the rod is in the intermediate state, with the
fraction normal x, the fraction normal within the skin
depth x,~, and the trapped Geld Hg, the conservation-of-
Qux equation is

prR2HT prH2(R P )+pr(H1+H2)(P2 r2)

+prr HdcX+i12prrt1XsdHSe ~ +4 rf4 (6)

Hg, =Hp.

Further, if we suppose that we know the primary cur-
rent, and therefore H~ and co, as well as 8 and all di-
mensions, we can solve the above equation for H2~
and 8. The results are

{$(R2 r2) (p2 r2+rg)+rg(p2 r2+2rg)]2+rsg2(R2 p2)2) 1/2

(R'—r')' +2r'8' +2r t(tR' —r')

—rfI(R2 —p')
8—x = arctan

(R' r') (p' r'+r8)+—rb(p' —r'+2r8)—

(12)

The emf in the secondary can be computed most
simply by noting that, if the net Qux is constant, the
rate of change of Qux inside the secondary is just the
negative of the rate of change of Qux outside. Thus, we
see that

8
(emf) N.. .i ——prlVg LH2(R2 —s') ]

Bt

=iotas(R2 s')Hssre""t+'&, (—14)

where the quantity in square brackets is the Qux outside
of the secondary, Eq is the number of turns in the
secondary, and (emf)»»»1 is the emf in the secondary
when the rod is normal but the shell is superconducting.

To Gnd the emf when the rod is in the intermediate
state, we can return to Eq. (6), solve for H2, and substi-
tute H2 into Eq. (14).When the differentiation indicated

' L. D. Landau and E.M. Lifshitz, Electrodynamics of Continuols
Menu (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1960), p. 194.

in (14) is performed, it will be necessary to know the time
dependence of x,~, which means that it will be necessary
to know the equation governing phase-boundary mo-
tion. 6 That the boundaries cannot follow the ac Geld
perfectly is clear because we know that normal-state
eddy currents will damp the motion of flux lines and
thereby impede the motion of the boundaries. ' Inertial
effects due to the currents, restoring forces due to
stretching of boundaries, and heat evolution or absorp-
tion due to the latent heat of transformation can also be
expected to have some inQuence on the boundary mo-
tion. Further, in imperfect specimens, Qux-pinning
effects will arise.

Our purpose in this section is to develop the formulas
for what we will call the ideal DPE, which is the DPE

4In addition, note that Eq. (6) contains the product of 2:.4
and fI(r), both of which in the general case are time-dependent.
This means that H2 and fI(r) will contain harmonics of co, which in
turn means that we cannot speak of a single skin depth b. In the
ideal case treated in this section, H(r) is time-independent, and no
harmonics will appear.
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of the coil. Notice that Eq. (14) is independent of choice
of model for the details of what is going on inside the
rod, requiring only the assumption contained in (15).

Equation (16) is the equation of the ideal DPE, and
we see that we can make (emf); «„ as large as we please
by making the shell larger and larger. In the limit as E
becomes verv large, the behavior of the system goes
over to that of a bare rod, for which we expect an infinite
spike of zero width in the emf of the secondary as the rod
passes through the transition.

When the rod is completely superconducting we can
set the x's in Eq. (6) equal to zero, and it is easy to show
that

so that

(elllf) super
= (17)

dt
'(R'—r')

AN,—(p' r') (R—' s') d—ar

(enlf);„«„/(emf), „~„=(R'—r')/(p' —r') . (18)

that would be observed if the boundaries could follow
perfectly. In other words, me assume that the systemis
&s thermodynamic egulibrium at each iestmt and, in
particular, that the temperature is constant and that
the field at the surface of the rod is exactly H& as long
as the rod is in the intermediate state. This is what
Shoenberg' referred to as "static case" behavior. The
ideal DPE can be expected to correspond to reality only
for perfect specimens and in the limit of low frequency.
Ke have then, by assumption,

H2 —Hg Hg ~ (15)

and Eq. (14) becomes

where the subscript "inter" means that the rod is in
the intermediate state.

It is interesting to notice that, since H~ is the field
strength produced by the primary, it appears as if the
coil were turned inside out. It is as if the area outside of
the coil (and inside the shell), ~(R'—s'), were the area

I

8
THER NIOMETER VOLTAGE

(T =)

FIG. 3. The variation of the amplitude of the secondary voltage
with temperature. The ac frequency was 10 cps, and the specimen
was cooled in a field of 25 G. At point A, the shell entered the
superconducting state; at point 8, the rod entered the intermedi-
ate state; and below point C, the rod was fully superconducting.

Equation (16) expresses the DPE in a way that shows
the large increase in emf that may occur when the rod
goes from the normal to the intermediate state. Equa-
tion (18) has the feature that it is independent of the
frequency and amplitude of the ac 6eld.

III. THE DPE IN REAL SPECIMENS

We have made some preliminary observations of the
DPE in a system like that shown in Fig. 2 with a tin
shell and an indium rod. The dimensions were

8=1.130 cm, r=0.798 cm,

p=r+0 0038 cm, .s=r+0.0076 cm,

8=0.15 cm at 1 cps, and 0.05 cm at 10 cps.

~ith these parameters, (emf); «„/(emf), „„., should be.
very nearly 100. The observed values were not very re-
producible, but typical values were 20 at 1.5 cps and 10«

at 10 cps. The largest value observed was 32, which
happened to be obtained at 2 cps and also at 10 cps. At.
1000 cps, (emf);~«er was never larger than (emf)„«~s«,
and this was sometimes true at 10 cps.

In Fig. 3 we show an example, traced from an X-V
recorder chart, of the amplitude of the emf in the.
secondary versus the voltage across a resistance
thermometer. The enhanced signal found in the inter-
mediate state is shown quite clearly, although, as in all;
of our observations, it is not as large as would be pre--
dicted from Eq. (16).

The failure of a real specimen to achieve the full DPK
is perhaps more interesting than the DPE itself. In
principle, the deviations of the DPE from ideal be-
havior give information about phase-boundary motion,
although there are certain experimental difBculties that.
may make it diflicult to obtain quantitative results.
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Hg+H2= Ho+H', (&9)

so that H' measures the amount by which the field
departs from Hg.

7 T. E. Faber, Proc. Roy. Soc. {London) A219, 75 (1953);T. K.
Faber, ibid. A223, 174 (1954). See also T. E. Faber and A. B.
Pippard, in Progress irI, I.om Temperature Physics, edited by C. J.
Gorter (Interscience Publishers, Inc., New York, 195/), Vol. 1,
p. 159; H. Cohen and F. Odeh, J. Math. Phys. 6, 1411 (1965).

We suppose, as Faber has found for a different situa-
tion, ' that a boundary at a given depth from the free
surface moves at a certain velocity ez(H') when the .

applied field deviates from its equilibrium value H& by
certain amount H'. If the applied field suddenly changes
from Ho to Ho+H', the rate at which boundary motion
can expel or admit Qux depends on e~ and also on the
number of boundaries. If there are many boundaries,
the system will be able to follow fairly rapid changes in
field. If there are few boundaries, there will be apprecia-
ble departures from equilibrium, even at relatively low
frequencies.

In most familiar intermediate state situations we can
expect the number of normal and superconducting re-
gions to be very large, so that a small variation in the
number present will not be of great importance. For
example, in studying spheres, Shoenberg' apparently
found the DPE to be fairly reproducible. In the case of
the cylindrical enclosed superconductor, on the other
hand, we showed in I that there is good reason to ex-
pect that the number of regions will be of order unity.
If that is so, then a change of one or two in the total
number of regions will result in quite a different over-all
behavior. The system may behave quite differently on
different trials, and extracting information will be cor-
respondingly dificult.

However, it is perhaps not unreasonable to hope that,
after the system has stabilized at some temperature, the
number and distribution of superconducting regions will
remain constant while the DPK is measured as a func-
tion of frequency. It may then be possible to determine
in some detail the law' governing the motion of the phase
boundaries. With this in mind, we give an indication of
the way that an approximate theory could be developed.

We will assume, as before, that the net Qux within the
shell is always constant and equal to the initially trapped
amount, xHzE. '. We will, however, drop the restriction
that the field at the surface alv ays be Hg while the rod
is in the intermediate state. The reasoning behiod this is
that the constancy of the net Aux is maintained by
supercurrents in the outer shell, while the tendency of
the system to keep the field at the rod at the value H~
is due to the fact that the phase boundaries will move
when this is not the case. The latter process is the one
that we suppose requires a significantly long relaxation
time.

The Geld at. the surface of the rod is H~+Hg, and we
define the quantity H' by the equation

We assume that the normal regions are large compared
to 6 so that Eq. (9) can still be used. x,~ is a function of
time, and if we assume that e& is always directed
tangentially,

dSs(g lV
sgdp )

dt ~r'
(20)

where X is the number of boundaries in the skin-depth
region and p is the radial cylindrical coordinate. ~& is
presumably given by a relation of the form

»=f(H', p), (2&)

where f is the unknown function that is to be determined.
It Eq. (9) is differentiated once with respect to

time, Eq. (20) is used to eliminate dx,~/Ch, and Eq.
(9) is then used to eliminate x,q, we can obtain an
integro-differential equation in the fields. Ultimately, a
given f(H', p) will lead to a speciGc prediction, of the fre-
quency dependence of (emf); &„which can be compared
with experiment.

Since Faber's work' has shown that different functions
f(H', p) will be appropriate under diferent conditions,
and since it is not yet clear that the value of E can be
stabilized well enough to allow meaningful measure-
ments to be made, we will not carry this analysis any
further at this time.

We should point out that of the others' ' who have
made theoretical and experimental studies of boundary
motion, only Shoenberg's work applies directly to the
problem studied here, and his analysis is not in terms
of phase-boundary motion. The other workers have not
dealt with a steady-state oscillatory motion, with the
system never very far from equilibrium. In addition, the
emf measurement considered herein senses the rate at
which Aux moves in and out of the specimen, rather
than boundary motion itself. The rapid propagation of a
thin finger which displaces little Qux, such as has been
observed by Faber, ~ is relatively ineffective in producing
an emf or in bringing the system closer to equilibrium.

There is an interesting variation to the approach de-
scribed up to this point, involving a two frequency sys-
tem. If a signal with frequency high enough so that the
boundaries cannot follow it at all is superimposed on the
low-frequency signal, then the high-frequency output
will be modulated by the low-frequency boundary mo-
tion due to the corresponding change in inductance.
We have tried this in a preliminary way, and the low-
frequency inductance variation produces an easily ob-
servable modulation in the output of a detector that is
tuned to the high frequency.

It should be noted that in this two-frequency method
one sees the average boundary motion within the high-
frequency skin depth. Since, as Faber has shown, 7

boundaries move more freely near a free surface, this
may give a different picture than a method which aver-
ages over the low-frequency skin depth.
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analysis such as has been suggested in this section
enables one to more readily separate eRects due to
phase-boundary motion from those due to penetration
of the field into the normal regions.

The studies discussed in this paper can be extended in
an obvious way to the investigation of Qux-tube motion
in type-II superconductors or in Glms, and in fact
measurements of this general type have recently been
reported by Gittelman and Rosenblum. ~

tV. HXRMONrC GENERATrom

There are two causes of harmonic generation in the
system we have been studying. One of these is switch-
ing of the specimen from one state to another during the
ac cycle, and the other is the inability of the boundaries
to follow an ac Geld perfectly.

If the boundaries follow perfectly, the Geld strength
inside the primary does not change. Only the area in-
side is changing, and this is the only source of change of
Qux in that region, i.e.,

d4'p
=—fmA„.. .i(Hg+EI2)]=~V,—(2 .. .i) . (22)

dt dt dt

I io. 4. The variation with temperature of the amplitudes of the
first- and second-harmonic components of the secondary voltage.
The specimen was cooled in a field of 25 G, with an ac frequency of
20 cps and an ac amplitude of 2 G. The vertical scales for each
component are uncalibrated. The first harmonic shows the DPE,
and the second harmonic has the structure expected when state-
switching occurs.

The above discussion has presumed that the boundary
motion is determined by a relation between ~~ and H',
due mainly to eddy-current damping. However, a most
intriguing possibility is that the bound. aries can be
Inade to act as a taut membrane. If a specimen can be
made which has a low enough conductivity to signifi-

cantly reduce eddy currents, but in which the boundaries
are not pinned by d.efects, the surface tension of the
boundary may become important. If the ac field is
applied. only to the center of the rod, so that the
bounda. ries stretch in the center rather than move as a,

unit, the analogy with the taut membrane should be
very close. In a pure indium specimen, such as we have
examined, the membrane is most likely heavily over-

damped. If an underdamped condition can be achieved,
jt should be possible to determine the surface energy of
the boundary from its resonant frequency.

Before concluding this discussion, we should point out
an advantage of the ac approach over simply applying
a dc current to the primary and watching the emf in the
secondary as the system relaxes. If a dc field is applied,
the phase boundaries will redistribute themselves
throughout the body of the specimen, and the time con-

stant exhibited will be in part that associated with the
penetration of the GeM into the normal interior, in

addition to that associated with boundary motion. In
the a,c case, after a steady-state has been achieved, an

The normal area inside of the primary, A„„,i, will be
changing at the applied frequency, and no harmonics
will appear.

When the boundaries do not move at all, A „,i is
constant and it is (Hq+H2) that changes. (Kg+Eh) will

vary at the applied frequency, and again no harmonics
will appear.

If, on the other hand, the boundaries follow, but only
partially, then both A», ~» and (H&+H&) will change
with time. Since the product of these quantities appears
in Eq. (22), it is clear that harmonics will be generated
in the emf of the secondary. The harmonics that we
have observed in our measurements, however, appear
to be due primarily to state-switching.

Our analysis of harmonic generation due to state-
switching assumes that the coils can be characterized
by a. mutual inductance M, which has the values Mz,
Mq, and Ml when the rod is in the normal, super-
conducting, and intermediate states, respectively. The
values of these quantities will be computed from the
observed emfs.

Ke suppose that at some particular primary current,
the value of which will depend on the trapped field, the
temperature, and (when the boundaries do not follow
perfectly) the frequency, the inductance switches
abruptly from one value to another. If we examine the
second harmonic as a function of temperature, there will
be two temperatures at which the second harmonic is a
maximum. One of these will be when the rod is normal
during one half-cycle and in the intermediate state
during the other. The other maximum will occur when

g Jonathan I. Gittelman and Bruce Rosenblum, Phys. Rev.
Letters 16, 734 (1966).
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FIG. 5. Secondary emf versus time,
traced from a recorder chart. (a)
Warming in a 5 6 Geld, with a 3-cps
signal. (h) Warming in zero Geld, with
a 2-cps signal. Note the absence of the
DPE and of second harmonic.
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the rod is in the intermediate state during one half-
cycle and superconducting during the other. Elementary
Fourier analysis shows that the ratio of the height of the
former maximum to that of the latter is (Mr —M+)/
(Mr Ms), wh—ich is equal to

P(emf)inter (emf)nermaij/$(emf) inter (emf)enperj ~

In Fig. 4 we show the results of a measurement of the
Grst and second harmonic as a function of temperature.
The trapped Geld was 2S 6, the ac frequency was 20
cycles, and the ac Geld amplitude was approximately
2 G. We see that

L(emf); „,—(emf) „,i1/$(emf);„t„—(emf).„p„$=0.53.

This is in close agreement with the ratio of the heights
of the two second-harmonic peaks, which is 0.58. Thus
the location and relative strengths of the peaks indicate
that they are in fact due to state-switching, although
the peaks are shifted slightly closer together than our
simple analysis predicts.

This shift in the position of the peaks may be due to
supercooling and superheating. For example, at the
high-temperature end of the transition, supercooling
will delay the transition from the normal to the inter-
mediate state until the Geld is somewhat less than H~.
It is easy to show that this will shift the second-harmonic
maximum to a lower temperature. Similarly, super-
heating at the low-temperature end of the transition
will shift that peak to higher temperatures. The ratios
of the heights of the peaks will be unaffected, however,
in agreement with Fig. 4.

The harmonic content is also displayed in Fig. 5(a),
where we have put the secondary voltage directly onto
an X-I' recorder, with a time sweep on the horizontal
axis. The input signal had a frequency of 3 cps. Such a
trace cannot be used for quantitative measurement of

the harmonic content unless the frequency response of
the recorder is taken into account, but it does show the
general behavior quite clearly. We see that at the low-
temperature end of the transition the second-harmonic
amplitude is comparable to that of the Grst.

In Fig. 5(b) we show the behavior when there is no
dc Geld trapped in the specimen. In this case the fre-
quency was 2 cps. We see that there is no DPE, and
that there is third harmonic but no second harmonic.
There can be no second harmonic, since the rod cannot
distinguish between the positive and negative halves of
the ac cycle in the absence of a dc bias Geld. In this re-
spect, the behavior of the system is much like that of a
Qux-gate magnetometer.

V. CONCLUSIONS

The similarity shown in I between the enclosed
superconductor and an ellipsoid extends to ac properties,
since in both of these types of specimen the differential
paramagnetic eBect is observed. The qualitative features
of the ac behavior of the enclosed superconductor can be
understood in simple terms by analyzing the ideal case.

The observed DPE is less than ideal, presumably be-
cause phase-boundary motion is retarded by eddy-
current damping. A model is proposed, based on the
assumption that the intermediate state consists of a few
large, normal regions, which, in principle, allows one to
relate the DPE directly to the velocity of the boundaries.
This simple model is expected to apply only to the en-
closed arrangement.

Harmonic generation can be expected due to de-
partures from equilibrium and due to state-switching.
The observed harmonics are due primarily to switching
and give a behavior much like that of a Qux-gate
magnetometer.


