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Ladder Corrections to the Static Random-Phase-Approximation
Dielectric Constant and to Positron Annihilation in Metals*
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(Received 10 March 1966)

A calculation of the static dielectric constant of a free-electron gas is made in which account is taken of
repeated (ladder) electron-hole interactions. An analytic approximation is given for the results. The effective
interaction thus obtained is used in a high-order (ladder) perturbation calculation of the two-photon
annihilation rate of positrons in an electron gas. The results agree quite well with experimental data for
r,&5. Comparison is made with similar calculations made using the static random-phase-approximation
and Hubbard interactions.

X. INTRODUCTION

'HE experimental results of Bell and J9lrgensen'
for the two-photon annihilation rate of positrons

in the metals aluminum, lithium, sodium, potassium,
and cesium are shown in Fig. 1. Calculations of theoreti-
cal annihilation rates by determining the electron
density at the positron have been made by Ferrell, '
using (a) a variational calculation and (b) a first-order
perturbation calculation; by Butler, ' using a first-order
perturbation calculation; and by Kahana, 4 using a
Bethe-Goldstone equation. These results are also shown
in Fig. 1. All of these calculations have been more or
less successful in predicting the decrease in the annihila-
tion rate with the decrease in electron density, and
Kahana's results agree well with experiment for r,(4.
However, none of the calculations has been extended to
low electron densities (r,)4) for one or both of two
reasons: (1) at low electron densities, one needs to take
account of repeated, i.e., ladder, electron-positron
scattering before annihilation, and (2) at low electron
densities, one needs to take account of repeated electron-
hole scattering in the dielectric response function of the
electron gas. Reason (1) is related to the increasing
tendency of the electron and the positron to form a
bound state as the density of the electron gas is de-
creased, ' while reason (2) is related to the tendency of
the electron-hole pair to form a bound state at low
densities. ' The Bethe-Goldstone approach of Kahana
is equivalent to a ladder-series approach and therefore
takes account of reason (1). Reason (2), however, must
be taken account of by correcting the random-phase-
approximation (RPA) dielectric constant.
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Recently, Carbotte and Kahana' have carried out a
ladder calculation in which they take account of elec-
tron and positron self-energies in a linear approxima-
tion. They indicate that their results are "of the same
order of magnitude" as those quoted by Kahana4 for
two-photon momentum less than the Fermi momen-
tum. (They also give results for the case where the two
photons carry off a combined momentum greater than
the Fermi momentum. ) Their ladder calculations are
for r, &4, and they include the dynamic RPA inter-
action in a linear approximation.

Our purpose in this paper is erst of all to obtain a
more realistic static dielectric constant than that de-
scribed by the RPA. In this endeavor we will be guided;
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FIG. 2. Comparison of .various theoretical annihilation rates with
experimental results of Bell and Jgrgensen.

r J. P. Carbotte and S. Kahana, Phys. Rev. 139, A213 (1965).
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by the work of Hubbard' and Glick. ' To achieve our
goal we use a Monte Carlo scheme to correct the RPA
dielectric constant by inclusion of ladder interactions
between electron-hole pairs which participate in the
density fluctuations induced in an electron gas by an
external perturbation. The effective interaction ob-
tained from this ladder-corrected dielectric constant is
used to make a high-order perturbation calculation of
the annihilation rate of positrons in metals, again by a
Monte Carlo approach.

In Sec. II we review briefly the theory of the dielectric
constant from a field-theoretic point of view. In Sec.
III we discuss the results of our calculation of the di-

electric constant and summarize the results with an
empirical expression for the irreducible part of the
particle-hole-pair propagator. Comparison is made with
the RPA and the Hubbard' dielectrics, and, incidentally,
we obtain the screening constant of an electron gas.
Section IV is a calculation of the annihilation rate of
positrons in metals using the interaction of Sec. III.

where

p;„(x)= d x'F(x—x') U, (x'),

V, (x') = d'x" V(x' —x")p, (x")

and V(x' —x") is the (static) Coulomb interaction. If
we take the Fourier transform of (1), we obtain

p; (k,(o) =F(k,cu) V(k)p,„(kp)), (3)

and since

p,...i(k,cv) =p, (k,cu)+ p;.(k,co) =p,„(k,(a)/e(kp&), (4)

II. REVIEW OF DIELECTRIC THEORY

In calculations' of the dielectric properties of an
electron gas, the quantity of importance" is the ir-
reducible polarization part of the electron-hole-pair
propagator F(x—x'). This propagator, which is closely
related to the linear response function of the electron

gas, is the kernel expressing the linear relationship be-
tween p;„(x),the electron density induced in the gas at
x, and V,„(x'),the potential produced in the system at
x' by the external perturbing particle density p, (x")
at x", i.e.,

Q{k,(v)= + -- + + +

Fxo. 2. The irreducible part of the particle-hole-pair propagator.

the particle-hole propagator F(x—x') is given by

F(x x') =—(ih) '(yp[ Tp(x)p(x')
~ yo), (6)

where ~po) is the Heisenberg exact, normalized ground
state of the interacting system, p(x) is the electron-
number-density operator, and T is the time-ordering
operator. If we write (6) in the interaction representa-
tion and perform a Fourier transform, we And that

F(k, r)=(iM) ' Q(O~T{S(~,—~)a, g,.(tr)
DiP,
0', 0'

X~,.(.)~,.„...&(0)a, ...(0)) lo)„(7)
where $(~, —~) is the scattering matrix, ~0) is the
noninteracting ground state, and 0 is the quantization
volume. The operators g~, t(r) and a~,(r) are electron
creation and annihilation operators, respectively, and
the subscript I. indicates that we must consider only
linked diagrams. On expanding (7) by means of many-
body perturbation theory and Fourier transforming, it
is found that

F(k,a)) =Q(k, co)+ V(k)Q'(k, (u)+ U'(k) Q3(k, (a)+
=Q(k, (u)/L1 —V(k) Q(k, (u)j, (8)

where Q(k, co) is the irreducible polarization part of
F(k,ar) and is the sum of contributions from diagrams
which cannot be cut to produce other diagrams.
Symbolically, Q(k, cu) is given by the sum in Fig. 2.
Substitution of Eq. (8) into Eq. (5) yields

e(k, (o) = 1—V(k)Q(k, (u) .

The simplest approximation to Q(k, u&) is the RPA'.
in which one keeps only the erst diagram in Fig. 2'
This diagram is the basic polarization diagram in which
an electron is excited out of the Fermi sphere and subse-
quently recombines with the hole which it left. To this
approximation, the effective interaction V(k)/e(k, co)

is obtained by performing the sum indicated in Fig. 3.
This interaction is exact for an infinitely dense electron

we have

g
—'(k, co) = 1+U(k)F(k, ~),

x~~& — x---- x + x— —-x +
x—-~ ~-—x

where e(k,&o) is the wave vector- and frequency-de-

pendent dielectric constant.
A fjrst-order perturbation calculation reveals that

+ I ~ ~ ~ ~

FIG. 3. The RPA interaction.

' J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1958).
'cf. T. D. Schultz, Quantum Field Theory and the Many-Body

Problem (Gordon and Breach, Science Publishers, Inc. , New York,
1964), pp. 79—96."D F. DuBois, A.nn. Phys. (N. Y.) 7, 174 (1959).

"The RPA dielectric constant was erst obtained by J.
Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 28,
No. 8 (1954);see also P. Nozieres and D. Pines, Nuovo Cimento 9,
470 (1958); G. Rickayzen, Phys. Rev. 115, 795 (1959); and H.
Ehrenreich and M. Cohen, ibid. 115, 786 (1959).
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gas, but it is not exact at densities corresponding to
those existing in the conduction band of real metals.

Hubbard' attempted to correct the RPA dielectric
constant by replacing the basic-polarization bubble in
Fig. 3 by the infinite sum shown in Fig. 4. If we express
the RPA approximation to Q(k, o&) as QRp~(k, o&)

=F"&(k,p&), then the analytic approximation obtained
by Hubbard can be expressed

Q (k, )=Ji"&(k, )/{1+-,'V'(k)F"&(k, )}, (10)

where V'(k) =4&re'/(k'+k&, ") and kF is the Fermi wave
number. The static limit (o&

—+0) of this propagator
yields a negative dielectric constant for r,&3 when k
is small.
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III. CALCULATION OF AN INTERACTION
TAKING ACCOUNT OF ELECTRON-

HOLE SCATTERING

If we expand Eq. (7), keeping only the terms shown
in Fig. 4, and replacing the Coulomb interaction in Fig.
4 by the RPA interaction, ' then in the static limit we

0.2

O. l

~~p = + --- + + =- +
0

0 I.O 2.0

FIG. 4. Ladder correction to the RPA polarization.

have for our improved propagator

, fo(y) —fo(y —k)
QLgr&(k, o) = —2n d'p

k. (k—2y)

fo(y') —fo(y' —k)
X 1+n d'p'xnan„(ly' —yl, O)

k (k—2y')

+~' d'p' d'p"&»~(ly' —yl, o)v pp(ly —y I, o)

FIG. 5. The improved static interaction calculated
by Monte Carlo techniques.

function of the momentum s=k/k&; and for various
values of r,. Figure 6 shows a comparison of our cal-
culated interaction with the RPA and Hubbard static
interactions for r, =3. We note that for 2&x, the RPA
is quite adequate; for 1&s&2, the Hubbard interaction
is valid; but for a&1, both RPA and Hubbard interac-
tions are inadequate. To a good approximation, our cal-
culated results for the irreducible part of the static-
particle-hole-pair propagator may be expressed by the

fo(y') —fo(y' —k) fp(y") —fp(y" —k)
X + , (»)

k (k—2y') k (k—2y")

where n=2rg/h'(2s-)' and 'URpg(k, o) = V(k)/I 1—V(k)
&(F&o&(k,o)j is the static RPA interaction. fp(y) is the
Fermi distribution function,

fo(y)=(olapta, lo)=1, p&k&;

=0, p) k&. . (12)

Equation (12) can be evaluated by means of Monte
Carlo procedures. " The results of such a calculation
are shown in Figs. 5, 6, and 7. Figure 5 shows the
effective interaction 'UL&rr&(zkP 0)=0'(s'e't&o')/{(s/2)'
XeL»(sk&, ,0)}, (p=0.166r,) in units of (m'e'&o') as a /
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5.0
z=k/kF
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"Details of the Monte Carlo calculation are discussed in Julian
Crowe11 and R. H. Ritchie, Oak Ridge National Laboratory Re-
port, ORNL-TM-1443 (unpublished).

FIG. 6. Comparison of the RPA {Lindhard), Hubbard, an/
improved dielectric constants for r, =3.
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0.5

fs =3
This quantity is plotted in Fig. 8 in units of the Fermi-
Thomas screening constant CFT=4P. For the sake of
comparison, we also plot DuBois's equation'4 (4.14)
which includes, to Grst order in r„the erst four diagrams
in Fig. 2. In our notation, DuBois's screening constant
CD.&. may be written

04
Cn.n, /C~= 1+P= 1+0.166r, . (17)
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IV. POSITRON ANNIHILATION IN METALS

The two-photon annihilation rate for thermalized
positrons in an electron gas may be obtained from the
equation

0.2

O.I

where

T/2

—T/2

d~1 ~ ~ ~

1(1)"

T/2

—T/2

dt.Pf V(t&) .V(t„)) (19)

0
0 I.O 2.0

I

5.0

Z ~ k/kF

Fxo. 7. Convergence of the ladder series used in
calculating the improved dielectric constant.

I

4.0 and T is a time much greater than any periods of the
system; the initial state li) is the unperturbed Fermi
sphere plus one positron, and the final state

I f) is the
unperturbed Fermi sphere with one hole. The summa-

equation

QLgD(k, O)

=F&'&(k,O)/{1+L2we'/(k'+ Pk p') jF&'&(k,O)}, (13)

where $= 1.5+0.6r,.
Figure 7 demonstrates the rate of convergence of the

series in Eq (11) fo. r r.=3. From the rather rapid con-

vergence we may conclude that, although the first two
or three electron-hole interactions represent important
corrections to the static RPA, there seems to be little
tendency for the formation of electron-hole bound
states.

Before proceeding to a discussion of positron annihila-
tion in metals, we note that the results of this section
can be used to obtain the screening constant of an elec-
tron gas. The effective interaction can be written

ULLED(k, 0) =4m e'/(k'+k '(k)) (14)

where k, is the screening wave vector. We have, tak.ing
k, =sky,

s'= s'I eL~D(sk p,0)—1j. (15)

2.0—

I.7—

l.6—

l.4—

I.2

NT
S

In the RPA approximation as s ~ 0, we have
s=2+P—=spT, where sFT is the Fermi-Thomas wave
vector. "We may de6ne the screening constant C by
the equation,

C=—lim s'(s) .
z~0

&& Cf. D. Pines, E&lemenkary Exc&a/ions in Solids (W. A.
Benjamin, Inc. , New York, 1963), p. 96.

I i I i I i I i I i I

I 2 3 4 5 6
r

Fzo. 8. The screening constant of an electron gas in
units of the Fermi-Thomas screening constant.

"D, F. DuBois, Ann. Phys. (N. Y.) 8, 24 (1959).
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(a) (b) (c)

(e)

(g)

Fze. 9. First-, second-, and third-order Coulomb-scattering
events between the electron (and/or hole) and the positron before
annihilation.

where b', , is the three-dimensional Kroenecker-delta
function. The operator VR~D is assumed so small that
we need retain only terms linear in it in the expansion of
the 5 operator.

An expansion of the 5 matrix in (18) could include
many diBerent kinds of terms, some of which are shown
in Fig. 9. We have not included any mass-renormaliza-
tion terms, and they will not be studied in this paper.
There is some indication' that m*jm is nearly unity for
the electron, but may be appreciably larger for the posi-
tron. "We have assumed in this paper that m*/m~1
for both the electron and the positron. " Further, we
will restrict ourselves to diagrams of the type (a),
(b), and (d), i.e., we will assume that the positron scat-
ters the electron out of the Fermi sea and interacts
repeatedly with it outside the sea before annihilating
with it. This means that we will ignore diagrams such
as (c), (e), (f), (g), (h), and (i). The omission of these
exchange terms can be at least partially justified by
studying the second-order annihilation rate. In Fig. 10
are shown the (summed) contributions to the annihila-
tion rate of diagrams (a), (b), and (c) along with the
zero-order Somrnerfeld annihilation rate. This particular
calculation assumes that the annihilating electrons have

IOO

tions in (18) are over final two-photon momenta K and
energies co(K), and over initial electron momenta p.

The interaction V(t) which we shall use is given by

V(f) = (V.,(t)+ VR»(f) }e-&~'~, (20)

where V,v(f) is the electron-positron interaction,
VR»(t) represents the interaction of the positron and
the electron with the radiation field, and if =0+.

The electron-positron interaction is

«' Z & g rgil'U(*-*')
I gsPs)

IQ2 Q1Q2

Xai '(f)dQ '(f')dQ (f')a~ (f), (21)

where art(f) and ai(t) are electron-creation and de-
struction operators, dot(t) and dQ(t) are positron crea-
tion and destruction operators, and P= (p,o). The inter-—
action 'U(x —x') is the screened Coulomb interaction, i.e.,

'U(x —x', t—f') = p 'U(k, o~)
QT

V)I- 10—Z

z
O
I-

Z l—
R'

LL S
CAN.

( I 960)

ORDER
ONLY

ORDER
PLUS

ANGE

RDER

where
Xexp Lik (x—x') —io&(t—t')j, (22) O. I

0 I.O 2.0 3.0 4.0 5.0 6.0

(23)'U(k)e~) = —4s.esLk'e(k, o&)$-'.

VR»(f) may be represented here by
FzG. 10. Second-order perturbation-theory annihilation rate

in a static RPA electron gas. Electrons are assumed to have zero
momentum.

a rase) '~s

Va»(t) = h
l Z Q 6'K, p+sQT) ~ Q

"A. T. Stewart and J. B. Shand, Bull. Am. Phys. Soc. 10, 2 i
(&965)'"For discussion of the eRect of self-energies on the annihilationXe+'" I 'ar(f)dQ(t), (24) rate, see Ref. 7.
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free-electron gas; i.e., it is the Sommerfeld amplitude
and is given by

(f I
S '

I i)= i (7—rrsscT/0)'I'8'I see(K) co(y) (27)
I

The integral equation (26) lends itself to a calcula, -

tion by means of a Monte Carlo "transport game. "
The results of calculations of the annihilation rate by
this method are shown in Fig. 11, where the three dif-
ferent curves were obtained using the RPA interaction,
the Hubbard interaction, and our own interaction from
Sec. IV above.

V. CONCLUSIONS

O
I-

zzz

ROVED

I I

I.O 2.0
I I

3.0 4.0
r,

I I

5.0 6.0

FIG. 11.High-order perturbation calculation of the annihilation
rate using (1) the RPA interaction, (2) the Hubbard interaction,
and (3) the improved "ladder" interaction. Dashed line—
experimental results of R. E. Bell and M. H. Jgrgensen (Ref. 1)
Dot-dash line —theoretical results of S. Kahana (Phys. Rev. 129,
1622 (1963)j.

(flsli)=(fls
1 d'h 'U(k —p, 0)le(k)

X 1+ (25)
(2m)'h to(p) —(o(k) —co(k—p)

where ro(p)=hpsj2m, and

H(k) = 1+
(I I, ) ()

(2s ) 'h te(y) —(o(k') —to(k' —y)

d'h"U k' —k 0 H k'
(26)

The matrix element (f I

S"'
I i) is the two-photon

annihilation amplitude for a positron in a noninteracting

zero momentum. Carbotte and Kahana' also conclude,
on the basis of the almost complete cancellation of
positron-hole contributions with electron-hole contribu-
tions, that the exchange terms are unimportant.

We then return to our expansion of (fl Sli) and keep
only the direct ladder terms, such as (a), (b), and (d)
in I ig. 10. This leads to the following result:

In the previous sections it has been shown that ladder
interactions represent important corrections to both the
static dielectric constant, where account must be taken
of repeated hole-electron interactions in the density
Quctuations, and to the positron-electron annihilation
rate, where account must be taken of repeated inter-
actions between the electron and the positron before
annihilation.

Our inclusion of electron-hole interactions led us to a
dielectric constant significantly different from the RPA
and the Hubbard approximations for k& 2k'. This di-
electric constant should be useful in the calculation of
the effective mass of a charged particle and in other
applications.

Our calculated annihilation results are in good agree-
ment with experiment in the range 2&r,&5, and in-
deed, should the conjecture' prove correct that 15% of
the annihilations in metals take place with core elec-
trons, then our results using our improved interaction
agree quite closely with experiment.

The upturn in the theoretical annihilation curves in
the neighborhood of r,~6 may be real or may be due to
statistical errors in the calculation. At low electron
densities the probability of positronium formation in-
creases, and more terms are required for convergence
of the perturbation series. This in turn leads to a magni-
fication of statistical fluctuations in the Monte Carlo
process. Approximate calculations" indicate that a
bound state does exist for r, just greater than 6 in the
RPA and Hubbard electron gases. So it may well be
that the upturn is evidence for an incipient bound
state. '
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