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Thin superposed films of two superconductors or of a superconductor and a normal metal are studied
in a parallel magnetic field near a second-order transition. From the linearized integral equation for the
position-dependent order parameter and the boundary conditions for the magnetic-field-dependent kernel
at the interface, an implicit equation for the critical magnetic field is derived under the assumption that
the order parameter has a different but constant value in each film. Near the transition temperature of the
double film T'.ss and at the absolute zero of temperature, the results are expressed in terms of the usual
relevant parameters characterizing the two constituents of the compound film, and are compared with

some recent experimental data.

I. INTRODUCTION

ARIOUS theories for the transition temperature of
superposed films have been proposed. The formu-
las found by de Gennes,! Werthamer,? and Silvert and
Cooper® can explain the experimental observations
quite well. Recently, proximity effect studies in a
parallel magnetic field* have also been made, and de
Gennes and Hurault® were able to give a theoretical
interpretation for the observed “breakdown’ fields
above which a normal layer appears at the “normal
metal” surface of the sandwich.

In this paper the critical magnetic field is calculated
for a sandwich consisting of two adjacent thin films of
“dirty”” material. The results are discussed in connection
with experiments on the transition temperature 7
and critical fields H, for very thin aluminum and tung-
sten films. The large values for 7. and H. found by
Kammerer et al.’ have been interpreted as evidence for
Ginzburg surface superconductivity.” Kammerer e al.
have interpreted their results for T'. in terms of de
Gennes’s formula in the thin-film limit. We show that a
generalization of the thin-film model to include the mag-
netic field can also explain a raise of the critical field H,
above the value obtaining for a homogeneous thin film.

II. DERIVATION OF THE CRITICAL
MAGNETIC FIELD

We start from the linearized integral equation for the
position-dependent order parameter in the vicinity of a
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second-order phase transition:
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where V(r) is the effective interaction potential,
8= (kT)~L, and w=m(2n+1)/8, =0, £1, £2,- - -. The
integral kernel K (r,r'») is given by the product of two
Green’s functions for electrons in the normal phase of
the metal,

K, ,w)=G( w)G(rr, —w). (2)
G(r,r',w) is a Fourier component of the imaginary-time
Green’s function in the presence of impurities and mag-
netic field. These functions have been calculated by
Abrikosov and Gorkov,® who have discussed the
impurity-averaging procedure and have shown that to
a good approximation the magnetic field enters the ex-
pression for the Green’s function only via a phase fac-
tor. Without magnetic -field the impurity averaged
function is

G(rr' w)=Go(r,x' ) exp[—|r—r'|/21], @)

where

Go(t’r,:w)
m wkp [w]
=— exp[(é —)Ir—-r’|] 4)
2772 r—1'| |w| g

is the Green’s function for the pure metal, and / is the
mean free path of the electrons. If we take a z axis in the
direction of the magnetic field H and an x axis per-
pendicular to the films we can choose a vector potential
with components (0,4 (x),0) and the appropriate phase
factor entering Eq. (3) is exp(ied (y—7v')/%c).

Since we are interested in dirty films we have to use
the impurity averaged Eq. (1). The form of this equa-
tion is preserved, but the new kernel K (r,r’,w) is not the
product of two functions G as in Eq. (2). Abrikosov and

8 See A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
M ethods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1963).
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Gorkov have shown that K satisfies the integral equation
K(r,r' w)=Ko(r,r' w)

ZWTN(O) /dsrlKo(r,rl,w)K(n,r',w) . (5)

Here the impurity potential has been taken as a §
function, 7 is a relaxation time, N (0) is the density of
states at the Fermi level and

Ko(r,r',w)=G(r,r' )Gy, —). (6)

We want to derive results for sandwiches consisting
of very thin N and S films, for which the respective
coherence lengths £, and £, are smaller than the thick-
nesses d, and d,. Then, following de Gennes, we treat
K(r,Y',w) as a constant when r and r’ lie in the same film.
The order parameter is also assumed to be constant,
having values A, or A in the N or S film. If V,, V,
are the interaction constants, we have from Eq. (1)

Val

A,.=7—n- > | aK@rr w)

' K(ry' ),
O

d'K(ry w)

V4, _
+—2> / d%'K(ry' ).
B ©Js
For the integrals over K we find from (5)

/ K(ry w)dsr'= / Ko(r,y w)d?’

/ d?ry / a3 K o(r,r1,0) K (ri,r ) .
27rrN (0)

In the last double integral Ko(r,71,w) is only large for
|#—n1| <I. Therefore, we expand S K (r1,”',w)d%" around

(esroe)

/ R(rp w)d%' = . ®
22N (0) / K°(”’w)d3r>

Now the integral over K, is easily evaluated from Eq.
(6) and the definition of G:

r, which gives

/ Ko(r,r w)d?’
N ,-(0)7r
(eA /c)v;.v

reta (2e4/c)vr
an: b
2|w|(1474/2|w|7)

)
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where we take N.(0) to be the (constant) density of
states at the Fermi surface of that particular film in
which the point 7 is located.

Then Eq. (8) gives approximately

/ Ry )i =2N,0)/ @la|+Dug®),  (10)

where D,=3%(vrl), is the diffusion coefficient in N or S,
and ¢2=7%(2e4 /%c)% If K can be treated as one constant
in N and another constant in S, Eq. (10) leads to

R(N,N)dnt+E(N,Sw)de=2N1/(2| 0] +Dag?),

K(S,N,w)dn+K(S,Sw)ds=2N,/(2|w| +Dsg?). )

The boundary conditions at the metallic interfaces
are!

EK(S,Nw) K(S,Sw)

; = . (12)
Na N, (

EW,Nw) K(V,Sw)
N. N,
Inserting (11) and (12) into (7) gives a linear homo-
geneous system of equations for A, and A,, where the
coefficients depend on Na, N, D, Dy, Vs, Ve, dy,y da.

Requiring the determinant of these coefficients to
vanish yields an implicit equation for H.:

2NV 1
8 \T2|0|+Dug?

20NV, g 1
4 > >
8\ 2]w|+D.g

Nonda
n NadatNods
Nds
o Nodut-Nod,

(13)

Here the angular brackets mean an average over the N
film in the first term, and over the S film in the second
term.

With the expression for the transition temperature
T .ns of the NS sandwich, derived by de Gennes in the
Cooper limit

1 14hw
chns

Nndn+Nsds
TNV adet NV

(14)

where @ is a BCS cutoff of the interaction V, we find

N2V da+N 2V ods ) Tens
n

N V.N:V, T
N.d "/

A’V\¢(2 41rkT> ¢(§)>

+,€T: in<¢(; ZkT> ¢(%)> (15)

where ¥(z)=T"(2)/T'(2).
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III. DISCUSSION
A. High Temperatures

From the general formula (15) one can easily find the
critical magnetic field near the transition temperature
Tcns, and also at T=0, of the NS sandwich. At inter-
mediate values of 7', one has to use numerical methods.
Just below T, where H, is small one can expand the
function ¢:

YG+2)—vE) =/ (3) =37".
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The averaging procedure in this case has to be done over
x2, because z~¢2~ 4?= H?x?2. Since the vector potential
is antisymmetric with respect to the geometrical center
plane of the sandwich, the angular brackets in Eq. (15)
are proportional to the integrals

1 pdn—ds) 1
— x2dx and —
d” —3(dntds) ds 4 (dn—ds)

$(dntds)

x2dx, (16)

respectively. In thisway wefind, for 7'cne— T=AT<KT cns,

Ohc 2kAT\ 12 (1 1/2
Hc(T)=_<—‘) l-— } .@an
e\ h dn? (Vpb)a[[14-3(d:2/En) JH (N 2V s/ N2V ) (vpl) s [3(ds/d )+ (ds3/dn?) ]
If (vpl)n=(vrl)s=vpl; No=Nnu; Vy=Va, dstdn=d, this formula reduces to the Ginzburg-Landau result? for a
homogeneous film of thickness d and material with a bulk transition temperature 7.

Kammerer e/ al.® interpreted their measurements of the high transition temperatures of various thin films as
evidence for Ginzburg surface superconductivity. A very thin Ginzburg surface layer of thickness dg, with an en-
hanced effective interaction V¢ due to the presence of an oxide layer, is in contact with the normal film under it.
This superimposed layer problem is then analyzed in terms of de Gennes’ formula (14) for 7, under the assump-
tion that the densities of states and mean free paths are equal in the surface and normal film regions. Following
these assumptions we obtain from Eq. (17)

ey i e et N e 1+ (V/ V) (def ) " (18)
R ( whopl ) {d,ﬁ 14-3(ds/dn)*+ (Vs / V) [3(ds/dn)+(d:3/d,:3) ] ’
or, setting d=dn+ds, dn=0ad, and V,/V,=p
6hc<2k(T,,,,s_T)>1/z i) o
D=\ e ) T
where
1 14+u(l—a)/a
flap)=— - (20)

a? 14-3(1—a) /@) +u[(1—a) /a)+-3(1—a)/a]

Equation (19) differs from the Ginzburg-Landau result
only through the appearance of T's, instead of T'; and
the function f(e,u) which is equal to unity for a homo-
geneous film. To explain the observed 7., Kammerer
et al. assume a thickness of d,=20 A for the Ginzburg
surface region, and this then requires a ratio p=1.84,
Since the most dramatic effects are found for films
of small total thickness d, we assume the variable a to
have a value of £ or slightly larger. In this range for «
and 1<u<2 the function f(a,u) is only slightly smaller
than unity, which means that near the transition tem-
perature a replacement of T'c by T'cns in the Ginzburg-
Landau formula is a very good approximation. (For the
special case d»=d,=1%d the function f(},u)=1 for all p,
and the presence of a layered structure rather than a
homogeneous film is only reflected in Tens=Tons(i)
replacing T..)

B. Low Temperatures

Near the absolute zero of temperature, Eq. (15) can
be simplified with an asymptotic expansion:

Y(G+2)—¥ () — In(dys),

where Iny is Euler’s constant.
Introducing the parameter

W'=N3Vs/Nau?Vu=(N32/NuHp, (21)
Eq. (15) can be written as

1—a Tcne
(l—l—u'——) In
a T

vDng? 1—a/ vD.q?
=<ln q> +u'—(In q> . (22)
kT / , o wkT /
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Fic. 1. Sketch of H.(T,au) versus
T for several sets of the parameters
o« and p. The curve for u=1 is a cal-
culated curve from Rickayzen (Ref.9),  Hc (T=oap)
the other curves are sketched by He(T=0)

analogy, the only calculated points
being on the abscissa and ordinate.

Here, T'cns is a function of @, u, and u’:

L4ns 1 14+-[(A—a)/a](W//m)'?
In = . (23)
chns NnVn 1+,u'(1—-a)/a
Carrying out the integration we obtain
he 3wkT cns\ 12
HG(T=0) @, M, l")=_(exp1)( )
ed fry
] 20—1] @eD w=D1/2(H’ G—a))
| ] (24)
(vrl)n®(vpl) s =)

For a homogeneous film (u'=u=1) we have T¢n,=T
and (vrl)a= (vpl)s=vpl, which leads to Rickayzen’s
result® for the critical magnetic field at 7=0 of a film
of thickness d,

fic 3wkT \1/?
Hc(0)=—(expl)( ) .
ed fryvrel

(25)
Going back to the special case of the Ginzburg sur-
face layer we obtain from (24), (25), and (14)
H(T=0,aq, )
H.(0)

1,147\ 1= (u—1) /2(atu(l—a))
=|:< ) lga_llza—l:l .
kT,

? G. Rickayzen, Phys. Rev. 138, A73 (1965).

(26)

T/Te

Inserting values that pertain to Al for a film® of total
thickness d=100 A, a surface layer of thickness 20 A,
and p=1.84, Eq. (26) raises the critical magnetic field
at T=0 by 309, above the value which one obtains
from Eq. (25) for a homogeneous film. This latter value
is =15 kOe, assuming /=100 A, T,(Al)=1.18°K, and
vr=1.2X108 cm/sec, so that the critical magnetic field
of the layered structure should be 19.5 kOe, which is in
reasonable agreement with the experimental result
(20-25 kOe at ~1°K).

In Fig. 1 we show the expected behavior of H.(T)
in the special case (vpl)n= (vrl); and N,= N, for differ-
ent values of o and p.

IV. CONCLUSIONS

We have calculated the critical field H.(7T") of super-
posed thin films in the Cooper limit. At present the only
available experimental data with which our theory can
be compared are concerned with superposed films of the
same metal, whereby the effective electron-electron
interaction in one of the films is assumed to have been
enhanced by an adjacent dielectric layer. But our
theory also applies to superposed films of two different
metals. The interpretation of H.(T) data for such films
is likely to yield more information about the effective
electron-electron interaction than a measurement of
T cns alone.



