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Critical Magnetic Field of Thin Superposed Films

RUDoLF KLFIN AND GAHToN FIscHER

RCA Laboratories Ltd. , ZN rich, Smit~erla~

(Received 11 May 1966}

Thin superposed 6lms of two superconductors or of a superconductor and a normal metal are studied
in a parallel magnetic 6eld near a second-order transition. From the linearized integral equation for the
position-dependent order parameter and the boundary conditions for the magnetic-Geld-dependent kernel
at the interface, an implicit equation for the critical magnetic field is derived under the assumption that
the order parameter has a different but constant value in each 61m. Near the transition temperature of the
double Aim T,„,and at the absolute zero of temperature, the results are expressed in terms of the usual
relevant parameters characterizing the two constituents of the compound 61m, and are compared with
some recent experimental data.

I. INTRODUCTION

ARIOUS theories for the transition temperature of
superposed films have been proposed. The formu-

las found by de Gennes, ' Werthamer, ' and Silvert aIid
Cooper' can explain the experimental observations
quite well. Recently, proximity effect studies in a
parallel magnetic field4 have also been made, and de
Gennes and Hurault' were able to give a theoretical
interpretation for the observed "breakdown" Gelds

above which a normal layer appears at the "normal
metal" surface of the sandwich.

In this paper the critical magnetic field is calculated
for a sandwich consisting of two adjacent thin films of
"dirty" material. The results are discussed in connection
with experiments on the transition temperature T,
and critical fields H, for very thin aluminum and tung-
sten films. The large values for T, and H, found by
Kammerer e$ al. ' have been interpreted as evidence for
Ginzburg surface superconductivity. ~ Kammerer et al.
have interpreted their results for T, in terms of de
Gennes's formula in the thin-film limit. We show that a
generalization of the thin-Glm model to include the mag-
netic Geld can also explain a raise of the critical field H,
above the value obtaining for a homogeneous thin film.

II. DERIVATION OF THE CMTICAL
MAGNETIC FIELD

We start from the linearized integral equation for the
position-dependent order parameter in the vicinity of a
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Letters 17, 180 (1965); G. Fischer, R. Klein, and J. P. McEvoy,
ibid. 19, 193 (1965).
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and A. Paskin, ibid 14, 949 (1965); O. . F. Kammerer and M.
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second-order phase transition:

where V(r) is the effective interaction potential,
P= (kT) ' and co=sr(2rt+1)/P, rt=O, +1, &2, ~ . The
integral kernel E(r,r', to) is given by the product of two
Green's functions for electrons in the normal phase of
the metal,

E(r,r', to) =G(r, r', co)G(r, r', —to) . (2)

G(r,r,oo) is a Fourier component of the imaginary-time
Green's function in the presence of impurities and mag-
netic Geld. These functions have been calculated by
Abrikosov and Gorkov, ' who have discussed the
impurity-averaging procedure and have shown that to
a good approximation the magnetic field enters the ex-

pression for the Green's function only via a phase fac-
tor. Without magnetic field the impurity averaged
function is

(r(r,r', &o) =Go(r, r', to) expL —
) r—r'

~ /2Q, (3)

where

Gs(r, r', to)

( toktr [co i

exp
I
i — /r-r'i (4)

8 See A. A. Abrikosov, L. P. Gorkov, and L E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1963).
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is the Green's function for the pure metal, and / is the
mean free path of the electrons. If we take a s axis in the
direction of the magnetic field B and an x axis per-
pendicular to the films we can choose a vector potential
with components (O,A(x),0) and the appropriate phase
factor entering Eq. (3) is exp(ieA(y —y')/i'tc).

Since we are interested in dirty films we have to use
the impurity averaged Eq. (1).The form of this equa-
tion is preserved, but the new kernel Z(r, r', &o) is not the
product of two functions 6 as in Eq. (2). Abrikosov and



223p I LM 8pF RPOSI'-D

density ofto he the (co .
fi}m illf that pa«ic"}"

which the Po'nt
o~mately

y50

~

inte ral equatiog t' f'ies the»«graGorlmv have sh

K( ) —K (r,l', )
h

(10)D 2)da„= 2N, (0)/(2 I
"K r, r'&&

;~). (»(r ri (g)K(ri

tin&o'
usion coe@cien

nt
D 3 p

b~ treate as
}) is the diffnsi

d one constan
w e

~pc)s If K can
(10) }eads to

and q'=&( ' '
„,t,nt in S, «.ln

K(N, S,&o) d, =2N~/(2 co

K(S,N, (o)d„+, ,
=' 2 sK(S,S,cv)d, =2'

'nterfact the metalhe 1 esconditions atThe boundary c
al el

K, ,(o cd K(S,N, co) K(, , )K(N,iV,&o) K(N, S,(d), , S S co

sV„E„E,
dsr'K(r, r', ce)

2,N(o)

sa~een taken as a1mp&ri"3' po .
N (0) is the den

otential has
sit «

Here
relaxation tU e,nction, ~ is a re a"

F

(6)t (r,r p&Ko(r~r '~ '
'

hes consistingts for sandwic es
for whic

t derive resu .
h the respectlvS 61m ~

11 r than, the th
of ve

, are sma
treat

e}engths 4 an ';
de Gennes, w

K(r r~p& as a c .
}s() a lime

If Ving values ~~
t e have fro

org in e
E . (1nstants) weare the interaction co

d'r'K(r, r',co),+

d'r'K(r, r', a))

d'r'K(r, r', cv) .+ y

a hnear homo-
dA„h hgeneous sys

c ents depen o
the determinan o e c

vanls
'

h eMs animpici e

E d„2mN V„

"2I~I+D-q'-

}s K e find from (5)ls over E weFor the integrals

(, ' )d'r'= Ko r r',co)dar'X r,r,e

2m»N(0)
1 0 ) q

r co).'r, rd' K(ro,r i)ceK(r , i',

K(r,r',a))dar'=

N 0)2m» (
~~

1 over 0 l evaluated from Eq.ral over Eo is easily eva uNow the integral over 0 l eva u
(6) an ed th dehnition o

nly large forr ri,~) is o
', )d'' m d

In the last dou e
l. Therefore, we exI»—r, (.

r, which gives

&V,d,2X'Es Vs

Dq', N d+q, „N,d,,q

N„d„+N,d,1.14K)

N 'V„d„+N,'V,d,kT,„,

we 6nthe interactionw BCS cutoff of the inwhere Co is a

N V d+N. 2V.d

—4(k))
NV, I2 4 sr

ean an averagee over the E
61m th ddo th Sin the 6rst term, an61mint e

n n
' t mperature

term.

th
nsition em%it

db d Gdwich, derivef the ES san wic,~cps o
Cooper limit

Kc)(r,r', co)d'r'

(2'/c) c)rN„(0)n.

2 c0((11k/2icoir)(eA/c)c)r 2 c0

l

—W(k)) (»)
2 4ur)iY„V„



R. KLE I N AN D G. F I SC H L R 150

III. DISCUSSION

A. High Temperatures

From the general formula (15) one can easily find the
critical magnetic field near the transition temperature
T, „and also at T=0, of the SS sandwich. At inter-
mediate values of T, one has to use numerical methods.
Just below T,„,where H, is small one can expand the
function P:

4 (2+s)—4 (2)=st'(2) =k~'z.

4(dn —ds)

dm —)(d +i4)

k (&n+rja)

x dS and x'dx (16)
k(&n—4)

respectively. In this way wefind, for T,„,—T=—AT&& T,„„

The averaging procedure in this case has to be done over
x', because s q' A'= H'x'. Since the vector potential
is antisymrnetric with respect to the geometrical center
plane of the sandwich, the angular brackets in Eq. (15)
are proportional to the integrals

1+(V.'V, /N 'V„)(d,/d„)
H, (T)=

e ~h d„2 (vgl)„t 1+3( d, /2d )j+(Ne2Ve/N„V„)(up/)e[3(d /de„)+(d, /d„)j
(17)

If (v~l)„=(v~l), =v~l; N, =N„; U, = V„, d,+d =d, this formula reduces to the Ginzburg-Landau result for a
homogeneous film of thickness d and material with a bulk transition temperature T,.

Kammerer et a/. ' interpreted their measurements of the high transition temperatures of various thin films as
evidence for Ginzburg surface superconductivity. A very thin Ginzburg surface layer of thickness dg, with an en-

hanced eRective interaction V& due to the presence of an oxide layer, is in contact with the normal film under it.
This superimposed layer problem is then analyzed in terms of de Gennes' formula (14) for T,„,under the assump-
tion that the densities of states and niean free paths are equal in the surface and normal film regions. Following
these assumptions we obtain from Eq. (17)

6hc 2k(T, ,—T) '~' 1 1+(V,/V„)(d, /d„) 1/2

H, (T)=
zhp~l d„'1 3 d, d„' t/, t/"„3 d, d„d„' d„'

or, setting d=d„+d„d„=nd, and V,/V„=p

where

6hc 2k(T,„,—T) '~'
H (T)= f'"(,~),

ed m. Igvpl

1 1+.(1--)/
~,~)=-

n' 1+3((1—n)/a)'+pt ((1—n)/n)'+3(1 —n)/ng

(19)

(20)

Equation (19) differs from the Ginzburg-Landau result

only through the appearance of T. „ instead of T, and
the function f(ot,p) which is equal to unity for a homo-

geneous film. To explain the observed T„Kammerer
ef al. assume a thickness of d, =20 A for the Ginzburg
surface region, and this then requires a ratio @=1.84.
Since the most dramatic eRects are found for films

of small total thickness d, we assume the variable n to
have a value of 4 or slightly larger. In this range for 0,

and 1 &y& 2 the function f(n,p) is only slightly smaller

than unity, which means that near the transition tem-

perature a replacement of T, by T,„,in the Ginzburg-
Landau formula is a very good approximation. (For the

special case d„=d, =~~d the function f($,p) = 1 for all p, ,
and the presence of a layered structure rather than a
homogeneous film is only reflected in T,„,=T,„,(p)
replacing T,.)

4 (2+z)—4 (k) ~ »(4vs),

where lny is Euler's constant.
Introducing the parameter

p'=N, 'V,/N„'V = (N, '/N~')p, (21)

Eq. (15) can be written as

(
Tene

1+a'
I
ln

ce T

B. Low Temperatures

Near the absolute zero of temperature, Eq. (15) can
be simplified with an asymptotic expansion:
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FIG. 1. Sketch of H, (T,n, y) versus
T for several sets of the parameters
a and p. The curve for p, =j. is a cal-
culated curve from Rickayzeu (Ref. 9),
the other curves are sketched by
analogy, the only calculated points
being on the abscissa and ordinate.
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Here, T,„,is a function of n, p, and p, '.
1.14Acv

ln
kT, , E„t/"„

1+L(1—n)/n7( '/p)"'

1+p'(1 —n)/n
(23)

Carrying out the integration we obtain

hc (3z.k T,„,) 'i'
H, (T=0, n, ii, p') =—(exp1)

~

ed

X
(ssl)„(spl) ~'&'

(24)

For a homogeneous film (fi'=fr= 1) we have T,„,= T,
and (s&l) = (ssl), =v&l, which leads to Rickayzen's
result' for the critical magnetic field at T=O of a film
of thickness d,

hc (3rrkT, 'i'
H.(0)=—(exp1)

~

ed (

hyetal

(25)

Going back to the special case of the Ginzburg sur-
face layer we obtain from (24), (25), and (14)

H, (T=O, n, p)

H, (0)

1.14)sf') ' ~ —(p,—1)/2 (~p (1—a) )

. (26)
uT, &

' G. Rickayzeu, Phys. Rev. 1M, A73 (1965).

Inserting values that pertain to Al for a film' of total
thickness d=100 A, a surface layer of thickness 20 A,
a,nd ii= 1.84, Eq. (26) raises the critical magnetic field

at T=O by 30% above the value which one obtains
from Eq. (25) for a homogeneous film. This latter value
is =15 kOe, assuming i=100 A, T,(A1)=1.18'K, and

ss =1.2X10s cm/sec, so that the critical magnetic field

of the layered structure should be 19.5 kOe, which is in
reasonable agreement with the experimental result

(20—25 kOe at 1'K).
In Fig. 1 we show the expected behavior of H, (T)

in the special case (sFl)„=(ss1),. and 1V„=E„for differ-

ent values of 0. and p.

IV. CONCLUSIONS

We have calculated the critical field H, (T) of super-

posed thin films in the Cooper limit. At present the only
available experimental data with which our theory can
be compared are concerned with superposed films of the
same metal, whereby the effective electron-electron
interaction in one of the 6lms is assumed to have been
enhanced by an adjacent dielectric layer. But our

theory also applies to superposed films of two diHerent

metals. The interpretation of H, (T) data for such films

is likely to yield more information about the effective
electron-electron interaction than a. measurement of

T,„,alone.


