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Probability of Escape of Electrons across the Surface of
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The paper derives the probability of escape from a half-space of photosensitive material for an electron
at a given distance from the surface, assuming that after being energized it can only experience either
elastic scattering or absorption. From this, the electron yield is calculated for both the tvro- and three-
dimensional problems. The cases when absorption is much more probable than collision (and vice versa)
are investigated in detail.

I. INTRODUCTION

""N the study of photoemission, the following model
- ~ applies in certain cases. A photosensitive medium
extends over the half-space x&0 (Fig. 1). The light
impinging on it parallel to the x axis penetrates into
the medium with intensity

for x&0;
oe-al. l fo»(0

Ke assume that starting at a distance h from the
surface @=0, the electron may experience one of three
possibilities: (a) it may reach the surface x=0 in a
straight line without collisions, and hence escape, or it
may collide with atoms of the medium, in which case
it may be either (b) absorbed or (c) elastically scattered
without loss of energy, with all directions equally
probable. In the latter case the three possibilities pre-
vail, so that the process may continue as indicated in
Fig. 2.

The basic problem to be solved is the calculation of
the probability that an electron energized at a distance
h from the surface will eventually escape into the half-
space x&0. Once this problem is solved, additional
points, such as the presence of a potential barrier at
the surface, are taken care of comparatively easily and
the electron yield, the probability distribution of the
escape angle and other quantities of interest may be
obtained as a function of po and a in (1).The problem
will first be solved for the two-dimensional case, where
the electron's random walk is restricted to the plane

s=0; the three-dimensional case does not introduce
difhculties of principle, though the numerical evalua-
tion becomes more involved.

It is theoretically possible to solve the problem by
working through the process indicated in Fig. 2; how-
ever, this procedure leads to very involved expressions
rapidly increasing in complexity with each step, since
the probability distribution of the distance of the elec-
tron from the surface, and hence also the three proba-
bilities, change after each step. We evade this difhculty
by first solving an easier problem and then correcting
the solution for the original problem.

II. HOMOGENEOUS MEDIUM

We 6rst consider a situation which diBers from the
original problem, but will serve as a stepping stone to
its solution. We let the entire space be 6lled by the same
medium (so that all electrons must eventually be ab-
sorbed) and ask for the probability that an electron
originally energized at x= —h will be absorbed in the
half-space x&0; this differs from the original problem
in that the electron may be absorbed in the space @&0
after having "escaped" to the space x&0, but being
scattered back into the space x(0, whereas in the origi-
nal problem the escape across the surface @=0 is an
irreversible journey.

Let the probability of an electron being elastically
scattered on an element dr of its path be k~dr and the
probability of being absorbed k2dr; thus the probability
of a collision (either elastic or absorbing) on an element
of path dr is kdr, where
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If, as we assume, this probability is the same at all
points of the path, then the length r of the path from
one collision to the next has an exponential probability
density

p(r) =he '" (r&0).

FrG. 1. Electron starts at x= —h. Shogun are a possible path
leading to emission (1) and a possible path leading to absorption
(2).
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Fro. 2. Each step takes place at a different distance from the
surface and hence the probabilities of the three possibilities are
different for each step.
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and p ( ) for the probability density of the corresponding
variable, e.g., p(tt). LThus p(tt) and p(x) are two dif-
ferent functions. $

Then by the theorem of total probability, the density
of Uis
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FIG. 3. For clarity of the figure, all U; have been drawn positive;
in reality they are equally likely to be positive or negative.

It is evident from (3) that 1/k is the mean free path
between collisions; from (2) it follows that 1/ki would
be the mean free path between collisions if no absorp-
tions occurred, and 1/k2 is the mean free path to ab-
sorption (a broken line with segments corresponding
to the path between elastic collisions). The parameters
k& and k2 are all that we will require to describe the
medium in which collisions occur.

If a collision occurs, it may be either an elastic one
or it may be an absorption. The respective probabilities
of these two events are obviously

pi ——ki/k, and p2
——k2/k.

In the present modification of the problem every
electron must eventually be absorbed. Since the ab-
sorbing collision must be the last in a series of e colli-
sions, the probability of (rt —1) elastic collisions before
the anal absorbing one, i.e., the probability of a total
of n collisions is

P (rt) =pi"-'p2 ——(ki/k)" —'(k2/k) (tt =1, 2, ) . (5)

Consider now the random variable X, the x coordi-
nate of the point of absorption of the electron starting
at x= —k, or more conveniently (Fig. 3), the random
variable

U=It+X,
i.e., the difference of the x coordinates of the absorption
and starting points of the electron. We are looking for
the probability that the electron will be absorbed in the
space x&0, i.e.,

P (X&0)=P(U& k).

Let U, be the difference in x coordinates between
the jth and (j—1)th collision (Fig. 3); then the shift
of the electron along the x axis to absorption after e
collisions (of which rt 1are elastic) is—

(9)

where P(tt) is given by (5). Thus, if the density p(tt, )
is known, p(s„)may Lby (8)j be obtained by an tt-fold
convolution of p(tt;) with itself (since the U; are inde-
pendent and identically distributed); relation (9) then
yields P(tt) and the problem is solved through

00 00

P(U&k) = p(N)dN=Q P(n) p(s„)ds„. (10)
n=l

Ib

This is an outline of the method of solution and we
start on its detailed execution by finding p(tt;). Since,
from I'ig. 3, U, =E, cosa;, with 0; uniform from 0 to
2x, we have

where p(r;) is given by (3) and the density of Ct
=cos8, is

P(c;)=1/sr(1 —c')"' (—1&c,&1). (11)

The density of U; is then found as that of the product
of the two independent random variables E; and C;:

Substituting r;= ~tt,
~

cosht, this yields

k
p(N, ) =— e ~~ "~'~ooa"'dt= (k/sr)ICo(k[tt, ~)

7t p

(—~ (tt;( ~), (12)

where Eo is the modi6ed Bessel function of the second
kind (Neumann's function of imaginary argument) of
order zero, for which tables are available. ' We shall
call (12) the "basic" distribution for the two-dimen-
sional case which we are now treating; for the three-
dimensional case this distribution will be different,
though the rest of the procedure remains the same.

The density of S„in (8) might now be found by an
rt-fold convolution of (12).To bypass this difficulty, we
ffnd the characteristic function of (12),

00 2P 00

p (tt, )e'""~dtt = Eo(ktt, ) cosvl, tEN, —

S„=QU;. (8) =k/(k'+v')'t' (13)

Zartdbook of 3lathematt'oat Fgttcttotts, edited by M. Abramowitz
and I. A. Steyun (U. S. Department of Commerce, National

In the following we use capitals for random variables bureau of Standards, glashington, D. C., $965), pp. 3gg-3g9
(U), lower case letters for the values they assume (tt) bibliography.
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whence by (8), the characteristic function of 5„is
(n) = k"/(k'+ u') "" (14)

and therefore the density of 5„is, by the inverse Fourier
transform of (14)',

~a
~\~

ESCAPE

" k" coss„v
(s-) =—

2z- (k'+z')""

kzr dr-1 (e
—k( en[)

for re= 2v,'

2(v —1)!d(k')~'k k

kN'Js "/ E (k/s f)
for re= 2v+ 1,

(V'~) 2"(~- z)

(15)

FxG. 4. In the original problem, the electron escapes as soon as
it reaches the boundary @=0 (dotted arrow); in the "inter-
mediate" problem, it may cross the boundary x =0 any number of
times before being absorbed.

III. ESCAPE ACROSS BOUNDARY

where v is an integer. Substituting (15) in (10) we have

k2 ~ Irkg " k~'
P(U&k)= —P ~—

k =o 5 k (+sr) 2"(v ——',)!
s"E„(ks)ds

Let

gv—1 e—khkz ~ kg)'" ' k'"

k .=~ k& 2(v —1)!d(k') ' k'
(16)

B„(oe)= t "E„(t)dt. (17)

kz ~ kg)'" B (kk)
P(U&k) =—P —~—

k ~o k j (/sr)2r(p —z)!

This function is not tabulated (except for o =0, when
it reduces to Ki,), but can be reduced to a sum of tabu-
lated functions K„and Ki& by repeated integration by
parts and application of the recurrence formulas for
Bessel functions; however, it may be more advantageous
to compute (17) directly by numerical integration. Then
(16) may, after a little manipulation, be expressed as

P(o) =P(01+)P(+)/P(+
I
o). (20)

The intermediate problem of the preceding section
diRers from the original problem owing to possible
"excursions" of the electron across the boundary x=0
and back into the half-space x(0 (Fig. 4). In the origi-
nal problem such excursions are impossible, since there
are no collisions in the half-space x&0 and the electron
will, once it has crossed the boundary x=0, escape, as
shown by the dashed arrow in Fig. 4. Thus the proba-
bility P(U&k) for the intermediate problem, as given

by (18) or (19), is smaller than the probability P(0) of
the electron reaching the boundary x=0 and hence
escaping, since in the former case the number of ab-
sorptions in the left half-space is in part due to "re-
turning" electrons which in the latter case become
escaping electrons. We will solve the original problem
by correcting the intermediate problem for the fraction
of "returning" electrons.

I et "0" stand for the event that the electron will
cross the boundary x=o, and let "+"stand for the
event that it will be absorbed in the half-space x&G
under the conditions of the preceding section (inter-
mediate problem). Then from Hayes' theorem

or, in expanded form,

gv—1 —khe

P(0)=P(+)/P(+ lo) =P(U&k)/P(+ (0). (21)

k zr-1 Now P(0~+)=1, since the electron cannot be ab-
sorbed in the right half-space unless it crossed the
boundary x= 0. Hence

k2 kgk2 kg'k2
P(U&k) =—Kig(kh)+ e ~"+ —Bg(kk}

km 2k2 k'x

kz'k2 kg4k2

+ (1+kb/2)e ~"+ B2(kk)+ ~ ~ ~ (19)
2k4 3k'~

and this is the solution of our intermediate problem.

' I. S. Gradahteyn and I. M. Ryzhik, Tables of Imtegrals, Series
and Products (Academic Press Inc., New York, 1965), 4th ed. ,
Nos. 3,773,5 and 3,773.6,

But P(+)=P(U&k) is given by (18) or (19);hence
we only have to find P(+

~
0) to solve the problem com-

pletely. The required quantity P(+ (0) is the proba-
bility that an electron entering the space x&0 under
the conditions of the preceding section will be absorbed
in it (and will not return to x(0), which, as is evident
from Fig. 3, is equivalent to the probability that the
sum of the TV; will be positive. This is a problem quite
similar to the one solved in the preceding section: The
W; have, for j&0, the same distribution as the U;,
i.e., the density (12), and the distribution of the number
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(27)

of elastic col»sionss beforethe number o e as
'

where s is now
o thatabsorption, so

h "E„(h)Ep(wpk)dh. (31X dG'Jo
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dh E,(s)E„(h)hdsE,(s)E'„(h)h"dh=

"'" '"' (")PTn (hn wp n 0
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where both E„(t)and

Ki, (t) = Ep(N)du
t

(34)

0 l I l I ~ I ~ ~ I ~ I ~ I ~ ~ t I

P(0)

Jt
o4

are tabulated functions. 4

Substituting (32) and (33) in (31) and summing the
resulting geometric series we finally obtain

k 2 1
P(+IO)=—+ 1——

k s. (Qk)(k+ki)P/' 2(k+ki)

0$

0.2

01

~TWQ DtMEQSIONS

THREE DIMENSlONS

kp ~ (ki~'"+' 1
+

pr'/'k =oak) 2 '(v —-')! 0. k I I

0 05
} I ~ I ~ I . ~ E \ s s

115 t.5 Q,O

s ~ a I ~ ~

2.5 $Q
k,h

)( t"E'„(t)Kii(t)dt (35) Fro. S. The probability P(0) that an electron energized at a
distance h from the surface will escape from a medium with mean
free path to absorption equal to k2 ', assuming a probability of
collision negligible compared with probability of absorption. No

and this expression substituted in (21) together with energy barrier at the surface is considered. The two-dimensional

(18) for P(U&k) gives the general solution P(0). case is given by (36) and three-dimensional case by (54).

IV. SPECIAL CASES

By first considering a homogeneous medium and then
correcting for the fact that no collisions occur in the
half-space x&0, a more complicated form of the solu-
tion (resulting, for example, from the procedure sug-
gested by Fig. 2) has been avoided; nevertheless, the
solution given by (21) after substituting (18) and (35)
is far from simple and in general calls for a computer
to be numerically evaluated.

However, there are some special cases for which the
general solution strongly simplifies.

total emission current across the surface x=0 is

00 00
0I=Ip P(0)e "dk= Kii(k—pk)e "dh. (38)

p

Substituting for Kii from (34), interchanging the
order of integration, setting

P =o./ks, (39)

and using integral No. 6.611.9 of Gradshteyn and
Ryzhik ' we find

I=I (I./-)-:-(1/-)P(P)j (k «k.), (40)

A. Absorption Much More Likely
Than Elastic Collision

If ki«ks, so that k~ ks, ki~0, then from (35) we

find P(+ IO) =1 (as was to be expected) and hence,
from (21) and (19),

where

arccosp
P(p) =

(1 Ps)1/2
for P(1

(41)

P(0) = (1/7r) Ki (k k) (k «ks), (36)

which attains a maximum value of 0.5 for k=0 (as is
also obvious from physical considerations). Figure 5
shows a plot of the relation (36).

The electron yield may be computed as follows.
Assuming the number of electrons energized per second
proportional to (1), the emission current made up of
electrons originally energized at a distance h from the
surface is

dI =IpP (0)e "dk,

arg cosh(Ps —1)'/s
for p& 1.

(Ps 1 )I/2

For n ~ 0 we similarly 6nd from (38)

limI = Ip/kyar .
n-+0

Curves of (40) are shown in Fig. 6.

B. Elastic Collision Much More
Likely Than Absorption

(42)

where Io is a constant of proportionality. Hence the

' Cf, bibliography, pp. 490—491 of Ref. 1.

In this case we have ks«ki, k -+ ki, and (35) yields

P(+ I0) =-,'+ (s.—1)/2s. =0.59 (ks ~ 0). (43)
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However, substituting k2 ——0 in (18) would yield
E(U)k)=0 (as it should, since this gives the proba-
bility that the electron will be absorbed in the half-

space x&0, but for k~ ——0 there will be no absorptions
anywhere). However, we may attack the problem from

another angle. For k2 —&0, there will be very many
elastic collisions before an absorption, so that the mean
e will be large and we may apply the central limit
theorem to (8), since all the U; are independent and

identically distributed with density (12); the mean of

U; is (U,)=0 and its variance is

k
D(U;) =— u,EO(k iN, i)du, =—.

Hence for large e, the distribution of 5„in (8) is

k1
p(s„)= exp( kPs„'/—2n) (k —& k&) . (45)

(27re)'"

From (27) the mean e is

ks ~ t'kg " ' k

n=1 kni kk k2
(46)

As a somewhat coarse approximation, we replace

(9) by (45) with m = (m). This is a good approximation if
for large e we have ((n'))'I' —+ (I). Unfortunately, this

is not the case here, since it may be shown that for
k2 —& 0 we have (e') ~ (m)V2 and we use the procedure

only for lack of a better method to obtain an orienta-

tional formula.

Following this procedure, we have from (45)

P(0) =0.848 erfcLk(k~ks/2)'"7

which should be regarded as a formula of only orienta-
tional value.

V. THREE-DIMENSIONAL MODEL

If the energized electron is permitted to perform its
random walk in three dimensions (i.e., also in the s
direction), the above procedure is equally applicable;
the essential difference lies in the basic distribution of
the U;, which will differ from (12).

By considering a sphere with center at N=O with all
points on its surface equally likely to be reached by the
electron before collision, we again find U; =E,C;
=E; cose, , but C; this time is distributed, not as in
(11), but uniformly from —1 to +1. In analogy to
(12) we now obtain

k
p(N, ) =— e '"r 'dr, — —

/ u~ t

(49)

which is easily converted, to an incomplete gamma
function or expressed by the generalized exponential
integral

E„(x)= t "e "dt, (50)

00 khI'(S„)k) = p(s„)ds„=-', erfc
(2e)'@

=-,' erfcLk(k&k2/2)'"7 (47)

whence from (43) and (21) the probability of escape is
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for which tables are available. ' Using (54), we obtain
from (49)

p(u ) = (k/2)E~(k Iu~ I) = —(k/2) Ei(—k Iu, I)
(—~ (u;( ~) (51)

This expression is plotted in Fig. 5. In analogy to
(38) we have'

IpI= [—e "'"—k2hEg(k2h) je "dh
2 0

as the basic distribution for the three-dimensional case.
Its characteristic function is' Io p —k2h in(1+/)

2n 1+P
(k»k, ),

X, (v) =k E~(ku, ) cosvu, du, =(k/e) arctan(v/k)

and hence the density of 5„is in analogy to (15),

(52) where P is given by (39).
For case (b), k2«k~, we may use the same method

as in the two-dimensional case (with the same reserva-
tions). Since (U;)=0 and"

00

p(s ) =— (k/e)" arctan"(e/k) coss„ader
27r—

k " arctant)"
coss„ktdt,

2~
„

t )

(53)
D(U) =k u'E~(ku)du=-, 'k'

0

(56)

but here the analytical treatment ends, for (53) cannot
be evaluated in terms of tabulated functions and the
calculations require a computer to be brought in earlier
than for the two-dimensional case.

However, the two special cases of Sec. IV may be
evaluated as for the two-dimensional case. For case (a)
we have k~ ~ 0, k2 —+ k, so that the electron is capable
only of a single step U~, which will take it either to
absorption or across the surface x=O. Hence from (51)
we obtain~

k
P(0) =P(U) h) =— Ei(k2u)du

h

= 2[e "'"—k2hEi(k2h) j (ki«k2). (54)
' Cf. bibliography, pp. 236—237 of Ref. 1.' No. 6.232.2 of Ref. 2.' No. 6.223 and 6.221 of Ref. 2.

we obtain in analogy to (47)

P(S„)h) = ~~ erfc[h(3k&k2)'I'/2] (kg))km) (57)

a,nd P(0) is proportional to this expression; but the
constant of proportionality 1/P(+IO) is now not as
easily obtained as in the two-dimensional case, since
the corresponding integrations must be performed by
computer.
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