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New Mechanism for Superconductivity*
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A new mechanism which leads to superconductivity even for particles with purely repulsive forces be-
tween them is described. The general theory is given for weak short-ranged pair forces between the particles
and for arbitrary (convex) Fermi surfaces. It is shown that the transition temperature due to this mechanism
is in general quite low, though it may be enhanced somewhat by very special Fermi-surface geometry.

I. INTRODUCTION

''N a recent brief note' a new and rather general
- ~ mechanism for superconductivity has been indicated.
This mechanism has nothing to do with the conventional
electron-phonon attractive interaction, and is present
even in the case of weak purely repulsive forces be-
tween pairs of particles. It is connected with the
(assumed) sharpness of the Fermi surface for a normal
system.

To understand what is involved, we first take an
oversimplified view of the effect. It has long been known'
that if a change is placed in a metal, the screening is
such that there remains a long-range oscillatory
potential of the form cso(2k re+ 2)2/r s(for the case
where the Fermi surface is a sphere of radius ks).
These are the so-called "Friedel" oscillations. This
leads to a long-ranged interaction between pairs of such
external charges embedded in the metal. Formally,
the source of this long-range force is the singularity
of the dielectric constant as a function of the momentum
transfer q, when q=2k&. This singularity in the Fourier
transform of the interaction gives rise to a long-ranged
oscillatory force in ordinary space. All that is necessary
for this effect is a sharp Fermi surface; a rounding of
the Fermi surface due to (say) finite temperature or
impurities will give rise to an interaction which drops
off more rapidly than any power of the distance, at
large distances.

It is plausible to suppose that similarly the effective
interaction between the electrons themselves will

have a long-range oscillatory part. By taking advantage
of the attractive regions we might expect Cooper pairs
to form and therefore superconductivity to occur. We
shall show in what follows that this indeed can be the
case, although the picture above is a little oversimplified.

It is clear that since the screening itself is a result of
electron-electron interactions, the effect which we are
discussing must be one which comes from higher order
corrections to the bare electron-electron interaction.
Therefore, to analyze the problem rigorously we must
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investigate the general criterion for the onset of Cooper
pair formation (i.e., the equation for the transition
temperature to a superconducting state) beyond the
lowest order in the interaction between the particles.

In Sec. II, this is done for the case of an isotropic gas
of fermions of spin 2 (no periodic potential, i.e., no band
effects) with weak short-ranged pair forces between
them. In Sec. III it is shown that for this system at low
enough temperatures there is in general a transition to
the superconducting state, independent of the exact
nature of the original forces as long as they are suf-
ficiently weak and well behaved at infinity. In Sec. IV,
the results are extended to the case where a periodic
potential is present. Finally, in Sec. V we consider some
quantitative aspects of the problem. We also discuss the
possibility of enhancing the effect treated in this paper
by considering metals of a somewhat exotic Fermi sur-
face geometry.

II. GENERAL FORMULATION

We need a general criterion for a system to become
superconducting. Such a criterion (depending only on
normal-state properties) has been used by Thouless in a
special case, and has been formulated quite generally
by Gorkov and Pitaevski. ' It involves the appearance
of a pole (as a function of temperature) in a certain
particle scattering vertex.

I et us define the two-particle Green's function as
follows'.

Gl It,vI' Itv( lU2Uj el U2 )= p(+tg(el)ttts(U2)

&«12'(»')~t, '(»'))) (2 &)

where t= (k,s), k being the momentum of a state and s
its spin (units such that A=1 are used throughout this
paper), and for any operator 2 we define

g(U)=ev(SC ON&ge v(SC—ON)—-
D. J. Thouless, Ann. Phys. 10, 553 (1960); L. P. Gor'kov

and T. K. Melik-Barkhudarov, Zh. Eksperim. i Teor. Fiz. 40,
1452 (1961) /English transl: Soviet Phys. —JETP 13, 101S
(1961)g; I.. P. Gor'kov and L. P. Pitaevski, Zh. Eksperim. i
Toer. Fiz. 46 600 (1962) LEnglish transL: Soviet Phys. —JETP
15, 417 (1962)g.

4A good general reference for the Greens' functions we use is
A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods
of Qnantitatioe Field Theory in Statistica/ Physics (Prentice Hall
Inc., Englewood Cliffs, New Jersey, 1963).Our definitions differ,
however, very slightly from theirs.
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G=

pi sl pl I PI I

p2 2

pl I 2 variables indicates the formation of Cooper pairs with
equal and opposite momenta and in6nitesimal binding
(~z+cv2=0 means that the energy of the pair of quasi-
particles is 2tl). Putting pl ———p2

——p and pl' ———p2'
=+p', we obtain

Psls2sls2(PP) I 11 22(PP)
FIG. 1. General decomposition of the two-particle Green's function.
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3!being the Hamiltonian of the system. T is the usual
Wick ordering operator (applied to ordering in v),
and the angular brackets represent a thermal equilib-
rium average over the grand canonical distribution. It
follows from the de6nition that G has the expansion

/&
Gills, ll 1 '2(&1&21 Wl V2 j

1
siss sl 's2' (PsP )G(P )

2P p" sl" sa's

XG( p )Isl ss sl 22 (p lp ) (2 6)

The criterion mentioned above for the onset of super-
conductivity is that F—viewed as a function of tem-
peratur" has a singularity as T approaches T, from
above.

Symbolically, call P, sl, s2 ——j and suppress j'. Then
(2.6) becomes (where the temperature dependence is
made explicit)

where
((111211+(s1252 M2V3 (11484) 1 (2.3)

&o; = 2ri (2rr2;+1)//P,

P= 1/keT,

p=

(2.7)

Now these linear equations always have a solution
inversely proportional to the determinant of (3;, —Kt;).
When the homogeneous equations

The quantity G„„,„.„.(P1P2, Pl'P2') has a simple
diagrammatic expansion, i.e., it consists of all con-
nected diagrams with Pl'sl', P2's2' entering and Plsl,
P2s2 leaving. Therefore, we may write (see Fig. 1)

Gslss, sl'ss'(plp2j pl'p2 ) G(pl)G(p2)
IIV

211%1 %2212 s 9192 92%1 321
—(1/p)G(p, )G(p,)I'„,, „„,.

X (pip„pl'p2')G(pl')G(p2 ) (2.&)

where G(p) is the exact single-particle propagator.
P is called the vertex part. Further, b,=5„„5„„,—
~\s

~S ~SIS2' ~S2SIr ~

If we define the irreducible 2lertex Part I as the collec-
tion of all those diagrams of F which cannot be cut into
two parts by cutting two internal lines, then one easily
sees that F satisfies the integral equation

r„„,„.„.(p,p„p,'p, ')=I„„„.„.(p,p„p,'p, '

——p r„„„-„-(p,p„p,"p,")G(p,")G(p,")
2p p(llpsll

$1 $2

(2.8)

have a solution, this determinant vanishes. Therefore,
for T slightly greater than T, (the temperature at
which (2.8) has a solution), this determinant is pro-
portional to T—T, and therefore in general F; will
behave like

r,-A, (T—T,). (2.9)

(Actually, A; would vanish at T= T, if P,~ were orthog-
onal to I;, and under these conditions there would be
no singularity. It is easy to verify that in our case
this does not occur. ) Therefore, the criterion for a
pole of I' is that the homogeneous equation (2.8) has a
solution. In more explicit notation,

1
/siss(P) =—Z Isls2, sl's2'

2p sp' sl' ss'

X(p,p')G(p')G( —p')4. " (p') (2.1o)

, (pl"p2" p&'p21) (2 5) haS a solution at T Ts2—
From the original de.nition of F one easily sees that

If one iterates this equation, one obtains the F terms
coming from a single irreducible vertex, from two ir-
reducible vertices, etc.

The vertex part F corresponds essentially to the
scattering of a pair of quasiparticles. The object which
determines the transition temperature is F for equal
and opposite momenta and ld (i.e., equal and opposite

p) entering and leaving. A singularity of I' for these

P„„,„.„.(plp2, pl'p2') = —I'„„,„.„.(p2pl, pl'p2') . (2.11)

Therefore, we must choose |t„„(p)such that

S2SI (2.12)

The criterion (2.10) may also be proven directly by
means of the general pairing theory of Migdal and
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PJ ~i -Pi ~o Inserting (2.13) in (2.10), we have

Pl 2

(c)

Fro. 2. Diagrams for I to the second order (a) represents the
direct interaction, (b) represents the .eBect we have considered
in the Introduction, i.e., the screened direct interaction, (c) is
from a wave function modification of. the particles and (d) is
from exchange.

I..., ,..., (p,p') =(E(p,p')~ -E(p,—p')~)

E(p, p') =E"(p,p')+E'"(p, p')

(2.13)

+E&'&(p p')+E&'&(p p'), (2.14)

E&'&(p p') =u(k —k') (2.15)

Etb&(p, p') =2 Q u'(k —k')Q&,"(k—k', o&
—o&'), (2.16)

E'&(p,p') =—p N(k —k') $u(k"+k')

Larkin. ' We shall not give the proof here. (A version of
it will appear shortly in my lectures at the Summer
School in Oiso, Japan. )

We now consider (2.10) for a weak short-ranged
potential. We need to know I. We shall assume that
the interaction is weak enough so that we need only to
go to the second order in the interaction (this is the
lowest order in which our effect occurs). The diagrams
for I are given in Fig. 2. It is easy to evaluate the con-
tributions of these diagrams. Specializing to the case
of interest (pr = —ps ——p, pt' ———ps' ——p) and using
unperturbed propagators in the evaluation' one finds

4 ~ (p) = ——2 (E(p,p')&. E—(p, p'—)~.)
2 P't ~I'll&

&&G(p')G( —p')4" "(p')

=—Z E(p,p')G(p') G( p')0—~ (p')
p I'

(2.19)

on using (2.12).The solutions of (2.19) may be obtained
from those of

G(P')G( —P') =—,, =, . (2 21)
26I I2 ~~ 2 6gI2

This function has its maximum as a function of co'

for o&'=0; for m' 1 (which are typical values in the
sum) o&' kr&T Since E varie. s slowly with o& (the scale
of variation being eI), and since k~T((eI, we can take
o&'= 0 in x(p') and E(p,p'). Setting o&= 0 also, we obtain

1
x(p) =—2 E(p,p')G(p')G(- p')x(p'), (2 20)

p

where, if x(p) is even in p, we must multiply x(p) by
an antisymmetric spin function; if x(p) is odd in p it
must be multiplied by a symmetric spin function.

In (2.20) we may use the lowest order propagator.
(The propagator correct to the 6rst order contains lrst
a trivial Hartree-Fock shift in the single-particle energy
and is easily seen to change nothing in the argument
given below. ) The unperturbed propagator is

G(p') =1/( '—'),
e&,.——(k"—kI ')/2II,
~'= (~i(2m'+1))/P,

so that

+tb(k"—k)]Qs" (k—k', o&—o&'), (2.17)

E&"&(p p') = —p u(k —k")u(k' —k")

tanh(P-. ,./2)
x(k) = —p E(l,k') x(k') (2.22)

Q r~(&g s) =—
II

q

p m o& 26gI

Lwhere x(k) =x(k,o&=0), etc.g, since
XQs"(k+4',o&+to'), (2.18)

tanh(Pea. /2)
(2.23)

k"—q

Here N(k) is the kth Fourier component of the bare
particle-particle interaction, ~i, is the unperturbed
energy of a particle, f&, the ordinary Fermi distribu-

tion, and we have taken a unit volume for the system.

' See, for example, A. I.Larkin and A. B.Migdal, Zh. Eksperim.
i Yeor. Fiz. 44, 1703 (1963) I English transl. : Soviet Phys. —
JETP 17, 1146 (1963)g. There only the 2'=0 case is treated but
the analysis for TQO is almost identical.

En calculating to the second order we need only use propaga
tors correct to zeroth order since the lowest order diagram con-
tains no propagators.

and
x(k) =

J,"b(&)I'b"(e, v ) (2.24)

E(k,k') =E(k,k', cost&)

~ 21+1= E Eb(k, k')Pb(cost&), (2.25)
l~o

When the system is isotropic, E(k,k') must be a
rotational invariant. Therefore, the solutions of (2.22)
must have the angular dependence of spherical har-
monics in k space. If we put
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where 8 is the angle between ir and lr', (2.22) becomes IIL TRANSITION TEMPERATURE FOR LARGE l

gi(k) =-
(27r)'

tanh(P~g. /2)
dk'k"

XE&(k,k')gt(k') (2 26)

The expression for Zi(k&, k&.)(—=Ei) is given from
(2.25) by

d6(sinv&) E(k &,k &;,cosv&)Pi(cosv&)

Consider for a moment (2.26) in the limit T=O
(or P= ~). Then than(P~&, /2) =sgnc», and the integral
in (2.26) will diverge logarithmically near e&, ——0, or
k' =k&;. For finite P, 1/P provides a cutoff (since tanh (Px)
approaches zero as x approaches zero), and makes the
integral finite. Therefore, the leading term on the right-
hand side of (2.26) comes from the region k' k& and
goes as lnP. We may write

g, (k) = — Zi(k, k&;)gi(k p)
(2v-)'

tanh(P~i /2)
dk'k" (2.27)

where the integral goes over the neighborhood of
k'= kg, and the dots indicate smaller terms.

tanh(P~&, ./2)
dk'k" =mk v (lnP+ ) . (2.28)

26gr

Using (2.28), (2.27) becomes

ssk p
g&(k) =— Zi(k, kg)g&(k&.)(lnP+ ). (2.29)

(2v-)'

Writing the correction as inst, (2.29) becomes (also
putting k= k~)

(3 1)

Em 1//LN. (3 2)

We want to discuss (3.1) for large l. Consider first
Z~ &(x) )see (2.151)j, which is just the Born approxima-
tion to the scattering amplitude. It is well knownv

that if the potential is a superposition of Yukawa
potentials, the first singularity of E&~&(x) occurs on the
real axis for x) 1. Under these circumstances it is not
difficult to prove that E&&~& decreases (for large l)
at least exponentially with /. A proof is outlined in
Appendix A.

On the other hand, if X(x) does have a singularity on

L
—1,1j,Ei will drop off with some power of t. (We shall

see this on specific examples below. ) Therefore, if E'&'&,

E&'&, or E ~"& has a singularity on L
—1,1j, at sufliciently

large l they will dominaite no matter how small the
potential is. Now, in fact, the second-order K does have
a log type of singularity at x= &1 for a pure metal at
zero temperature. For our purposes, it is sufhcient to
consider the zero-temperature expression for E. The
following qualitative argument can be verified by using
the explicit temperature-dependent expressions for E.
The fact that the temperature is not zero rounds off
the Fermi surface and therefore the "Friedel osci'la-
tions" a,re cut off at same distance, say R2. If the Fermi
surface is rounded off over a range of momenta hk,
then one would expect

mkg
Z,(k„k,)ln(Pei) .

(2v.)'
(2.30)

owing to temperature the hk is given by

k peak/m ki&T

so that

(3.3)

It is not difFicult to obtain an expression for e~,

but as we shall see it is not necessary for our purposes.
(See Gorkov and Pitaevskii for an example of how this
is done. ) The only thing about e& that we need to know

is that it is in general of the order of ep, having nothing
to do with the temperature.

Equation (2.30) is an expression for the transition
temperature. If for any I there exists a temperature such
that (2.30) has a solution, then the system will become
superconducting at that temperature. If there are
several t's for which there are solutions, then the one
with the highest T is the transition temperature. As

long as Xi(ki, k~) is r&egative for some l, no matter how

small it is in absolute value, the equation for T has a
solution for low enough temperature since ln(pe&)

approaches infinity as T approaches zero.

Ry. k&;/mk»T. (3.4)

On the other hand, if the particles are in an angular
momentum state t (with l)) 1) and they have the
Fermi momentum kg, we expect on semiclassical
grounds that the important contributions to the pair
wave functions come from distances R& given by

keg l

or

Ei l/k g. (3.5)

If R~)) R~, the effect of temperature will be

'See, for example, R. Omnes and M. Froissart, Mundelsfam
Theory md Regge Poles (%'. A. Benjamin, Inc., New York, 1963),
p. 29 ff.
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negligible.
+2 kp /m ep

IkgT lk~T
(3.6)

b,k kpe c/a (3.12)

some rounding of the Fermi surface Ak due to inter-
actions it would have a form like

In fact ep/k&&T~ (for the formation of superconduc-
tivity in the 1th state) goes as e'" as we shall see below.
Therefore, for large /, E~&& 8» and the pairs are formed
long before the Friedel oscillations are washed out.

The singularities in the second order arise, just as the
Friedel oscillations do, in the summation P&,"Q~"(q,0)
from those regions where q —2kp and k" is near kp
and directed opposite to q. It is very easy to see that
the singular parts of E are given by

where

Z &'& = 2u'(2k p)Q(x),
E &'& = —2u(0)u(2kp)Q(x),

I&.",&s& = —u'(0)Q( —x),
(3.7)

Therefore, for large l, since E~& ' is negligible

mkp 1
E& — —

t
u2——(0)+2(—1) '

4m' l4

X(u(0)u(2k p) —u'(2k p))j. (3.10)

For / odd this becomes

mkp 1
Er= — —[(u(0)—u(2kp))2+us(2kp))(0. (3.11)

4~2 $4

Therefore, large enough odd /, E&(0, and the equation
(2.30) for the transition temperature always has a
solution.

Thus, we have established the following result: A
gas of spin-2 fermions interacting with a suKciently
weak short-ranged potential will always become super-
conducting at suKciently low temperatues if no other
transition occurs at higher temperatures to destroy the
normality.

It might be argued that we have not shown that
even for a normal fermion system, the interactions do
not destroy the sharpness of the Fermi surface. What has
been shown' is that to arbitrary order in the interaction
the Fermi surface remains sharp. Therefore, if there is

' J. M, Luttinger, Phys, Rev, 119, 1153 (1960).

Q(x) = (mk p/167r2) (1+x) ln(1+x) . (3.8)

The necessary integrals to obtain E~ are e/ementary
(one only needs to use Rodrigues' formula for Pr and
integrate by parts) and we obtain, for sufliciently large l,

mk, (—1)'
E&&'& =2 u'(2k p)42 $4

(mk p (—1)'
K&"= —

2~ u(0)u(2k p) y (3 9)
$4

mkp
Z'&&"& =— u'(0) —.

/4

where c is a constant and o. is some dimensionless meas-
ure of the strength of the interaction. Therefore, by

E2 (1/k p) e'

R2/Er (1/l)e' .

(3.13)

(3.14)

IV. THE BAND CASE

We shall now generalize the results of the previous
section to the case where the electrons are also in a
periodic potential, so that the energy levels form bands.
To make the notation as simple as possible we shall
consider the case where the conduction electrons fall
into a single simple band and the Fermi surface is
convex. (This is by no means an essential limitation,
but it reduces enormously the number of special cir-
cumstances one must discuss. )

From the discussion of the previous section, we see
that the essential feature that we need for our eKect is
the presence in the second-order E of an analytical
singularity as a function of (k—k') or (k+k'), both k
and k' being on the Fermi surface. Such singularities
also exist in the band case. We do not want to write
down here the full formulas equivalent to (2.15)—(2.18)
for the band case because they are quite complicated.
However, it is very easy to see that the only parts which
can have singular behavior of the type we need come
from electrons within the conduction band. Then (2.22)
is still valid, the summation being over the Brillouin
zone, the conduction band index being suppressed, and
(2.15)—(2.18) being replaced by

&'s&=2+ (k,k"—(k k )—~u~'k k )', "

X (k",—k ( u ~

k"—(k—k'), —k')Q„„(k—k'), (4.1)
&"=—P P(k,k"—(k—k') ~u~k', k")

X(—k,k"
i
uik" —(k—k'), —k')

+(k,k"—(k—k'i ui k",k')

X (—k,k"
i u

i
—k', k"—(k—k')) jQ„., (k—k'),

(4.2)

For fixed l we can make this as large as we please by
choosing the interaction {or er) as small as we please.
Therefore, for a sufFiciently weak potential, particle-
particle interaction cannot destroy the effect discussed
here.

There is no other phase transition known which, for
an arbitrarily weak potential, can give rise to the
destruction of the normal state of a fermion gas. If one
existed it might occur at a higher temperature than the
transition discussed above and therefore invalidate our
result.
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K&'l = —P(k,k"—(k+k')
i
st

i
k",—k')

In (4.1)—(4.3)
II /If

For a general Fermi surface the integral equation
(2.22) is not separable, and therefore instead of getting a

X(k«k~st~k~ k«k k~)q„„(k+k~) (43) simple expression like (2.30) for the transition tempera-
we are left with an integral equation over the Fermi
surface. This has the following form:

and

Q' (q) =

(ktks
~
Q

~

kt'ks') = lys, *(rt)lyt„*(rs)N(rt —rs)

Xlt't '(rl)4'k '(rs)drldrs (4.4)

where fx(r) is the Bloch function for electrons in the
conduction band, e& the corresponding energy.

The singular behavior of expressions like (4.1)—(4.3)
have been investigated by Kohn. For a convex Fermi
surface (for k and k' on the Fermi surface) (4.1) and
(4.2) have a singularity for k'= —k, the singularity
coming from k" near k. For (4.3) the singularity is for
k'=k, the contributing region of integration for k"
again being near k. We shall skip the somewhat tedious
evaluation of these singular terms and only quote the
results for the singular parts of E&".

ln(Pe, )
ds'(Mss(k)A (k,k')x(k) =

(2or)' St„'(k)QE(k) p.s.

XlnA (k,k')+2(Mt(k)Ms(k) —Mts(k))

XA(k, —k') lnA(k, —k'))X(k'). (4.12)

In (4.12), k, k' are points on the Fermi surface, and
ds is an element of area on the Fermi surface. The
quantity e, is a cutoff )like et in (2.30)g which depends
on the solution of (4.12) which we consider, but is in
general of the order of the Fermi energy.

One sees at once that the solutions of (4.12) are
either odd or even functions of k. Let us consider the odd
solutions y (k) (analogous to considering l odd in the
previous section). For these )changing k' into —k'
in the last term of Eq. (4.12)) the integral equation
becomes

z,&»=

g (')— ds'A (k,k') lnA (k,k')X—(k') . (4.13)

1 2Mts(k) (inPe, )HMs(k) —Mt(k)))'+Mss(k))
A(k, —k') lnA(k, —k'), (4.5)

(2 )'8 „s(k)QE(k)

1 2Mt(k)Ms(k)
A (k,—k') lnA (k, —k'), (4.6) X

32ors p s(k)Qg(k) F.S.

1 M '(k)
E, t"& = A(k, k') lnA (k,k') .

32ss t s(k)gg(k)
(4 &)

Here v„(k) is the velocity normal to Fermi surface at
the point k, E(k) is the Gaussian curvature" of the
Fermi surface at the point k, Mt, and Ms are the
matrix elements

M,(1)=(k,-k(N~ -l,k), (4.8)

Ms(k) = (k,—ki I i k,—k). (4.9)

(It is easy to see that Mt and Ms are real. )

A(k, k') &~0. (4.11)

'W. Kohn, Phys. Rev. Letters 2, 393 (1939).
~e See, for example, D. J. Struick, DiJIerenteal Geometry

(Addison-Wesley Publishing Company, inc. , Reading, Mas-
sachusetts, 1950), p. 83.

8 6g

A(k, k') =g (k —k ')(kp —kp'). (4.10)
+~P Bk~8kp

When the Fermi surface is convex, the quadratic
form (4.10) is positive definite, since a displacement of
a point on the Fermi surface in a direction perpendicular
to the normal at that point always leads to a point
outside the Fermi surface where the energy is higher.
Therefore,

The solution of (4.13) for highly excited states (cor-
responding to large l in the previous section) can be
carried out by a method analogous to the usual %KB
method for the Schrodinger equation. This method also
shows that for large quantum numbers the eigenvalues
of the kernel in (4.13) go as the fourth power of the
quantum numbers, rather than exponentially with
them as is the case for a regular kernel.

To see this, it is convenient to introduce parameters
($,rt) which characterize a point on the Fermi surface.
As is well known, " the differential geometry of a sur-
face is described by two quadratic forms in these
parameters

I=EdP+2Pdgrt+Gdrts (4.14)

II= ed P+ 2fd)drt+ gdrts. (4.15)

The coefIicients are all functions of $, rt. Here I
represents an element of distance squared on the sur-
face, and II gives essentially how much the direction of
the normal changes when we move a small distance on
the surface. In terms of these quantities the element of
surface area and Gaussian curvature are given by

ds= (EG F') '"d(drt, —(4.16)

E:= (eg f')l(EG F') — (—41&)

For k very near k', we have (&,rt) very near ($', rt')
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and therefore, on using the expressions found in foot-
note 11),

~(ir, lr') =~„(4v)Ee((—(')2

+2f(& k'—)(n n'—)+g(n ~')'j (4.1g)

or

Q
1=—U' dp'd 2&'R (1 nR')e'l««'-&&+r&2&2'-»2& (4.25)

16

II=I (f,n)(dan+A') (4.19)

It is always possible to introduce such coordinates for
a positive definite quadratic form in two variables. "
Assuming that $, 2& are isometric parameters, the singular
part of (5.13) becomes

A particularly useful set of parameters f, 2& for our
problem are the so-called isometric ones with respect
to the form II. These are the parameters for which
(4.15) takes the form

where
~Q(&,~) ~Q((,v)

16m
U2

16~ (Q 2+Q 2)2
(4.26)

Changing variables to $'—(=x, 2&' —»=y and integrat-
ing over a small circle in the xy plane in the neighbor-
hood of the origin, one sees at once that the leading
contribution for large Q is

x ($,2)) = U'($, 2)) d$'drl'R' 1nR'&t —($', 2&'), (4.20) or
16m.

where Qt'+Q' ~U(—& ~) =o (4 27)

ln(/(Ie, )
/2= +

(22r) 4

fpfs ~2) +~22j(@G P2)
U(k, n) =+

2

(4.21)

(4.22)

R'= (r r')'+(.—~')'- (4.23)

To use the WKB approximation on (4.20), we make
an ansatz of the form

x (k, n) =II(-(,~)"'t" (4.24)

Q

~(~.) '«~"= Us($, 2)) d$'dr&'Rs
16m

XlnR28(&', 2&')e'«&' 2'&

0
Usa(~ ~)e'«~ 2& dP'd~'Rs

16m

X

"See Struick, Ref. 16, p. 75K We have

Z=kp kg, F=kp k„, G=k„k„,
ass OrsX122) ht, (IrtXh, ) h~ (hsXh, )
(PQ P2)1/2 (PQ P2)//2 g (PQ P2)1/2

where a subscript means differentiation with respect to the cor-
responding variable."A particularly simple proof requiring no results of differential
geometry may be found in G. Springer, Theory of Eiernann
Surfaces (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1957), p. 19ff. This proof also gives formulas
for constructing infinitely many sets of isometric parameters.

For highly excited states Q is proportional to some
large parameter (since Q is assumed to be a smooth
function of $, 2&). Then again assuming that the main
contribution for highly excited states comes from the
neighborhood of the singularity f', 2&'= e, 21, we may write
(4.20) as

Q is any solution of this partial differential equation
which makes the (odd part of the) wave function single-
valued. This gives us the desired quantum conditions
for calculating the allowed values of o/ (i.e. , tempera-
ture) for which we have solutions of the original integral
equation.

Since U' is positive and so is (Qp+Q22)2, it is clear
that the solutions of (4.26) will always lead to positive
values of n' and therefore to real Gnite transition tem-
peratures. That is, as soon as the singular part dominates
then pairs of electrons will be able to form Cooper
pairs in these odd excited states and a transition to a
superconducting state will occur. This is the analog of
the result of the previous section for odd-l states.

It is convenient in thinking about (4.27) to make a
mechanical analogy to it. Equation (4.27) is the WKB
equation for a mass point of mass ~~ with coordinates

$, 2&, moving in a potential —/rU(&, 2&) and having zero
energy. What we are asking is: What are the allowed
values of a (the strength of the potential) such that some
state of the system has exactly zero energy? The small-
est n corresponds to the ground state having zero energy,
the next to the first excited'state having zero energy,
etc. We only take the a's for odd states.

The quantum conditions for a particle with a non-
separable potential were 6rst given by Einstein"
and reined somewhat by Keller. "In their extreme form
(very high quantum numbers) they may be written as
follows. Let Q($, 2&) be any complete integral'2 of the
Hamilton-j'acobi equation (4.27). The quantity

(Qtd~+Qtd. )

"A. Einstein, Verh. Deut. Phys. Qes. (191'7). See also L.
Landau and E. Lifschitz, Quantum Mechanics (Pergamon Press,
I td. , London, 1958), p. 1838.

J. B.Keller, Ann. Phys. (N. Y.) 4, 180 (1958)."That is, any solution with two arbitrary nonadditive
constants.
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will not necessarily vanish when c is a closed curve in a
(f,») plane, because the function Q is not necessarily
single-valued. In general, though, there will only be two
closed curves gi and c2.which give independent values
of J, for any other closed curve J is just a linear com-
binatiori of these "action" variables Ji and J2, with
integer coefficients. The Einstein quantization condi-
tions are then

Jg —— (Q(d$+Q„dpi) = 27rug,
Cj

j'2 —— (Q)dt+Q„d») = 2~F2,
C'2

cept at pathological points (where r&„ is infinite, which
we exclude. ) Therefore, there are no points of stationary
phase (points at which Q~= Q„=0). Under these cir-
cumstances the argument. of Focke shows that I. de-
creases with e& more rapidly than any power of e&.

V. OBSERVABILITY

In this section we discuss some aspects of the ques-
tion of whether one may realistically hope to observe
superconductivity in some metal, as a consequence of
the mechanism proposed in this paper. First consider a
simple isotropic metal like Na or K. We treat the
bare interaction as a screened Thomas-Fermi Coulomb
potential. This gives

where ei and n~ are integers. It is clear from this that if
one changes the scale of Q

4xe'
u(q) =

q'+2/k& '
e'k p r,

7lEp 3
(5.1)

Q=N&Q, (4.29)

that Q is a function of order unity of (u2/I&). Therefore,
from (4.27), the allowed values of o.(n„,„,) have the
form

n...,= u&4f(N2/nx) . (4.30)

This is the analog of the 14 dependence of the previous
section. It shows that the contribution to 0.„,„, of the
singular part of the kernel goes as the quantum numbers
to the fourth power.

To complete our proof we really need to show that
for a kernel with no analytic singularity on the Fermi
surface the contribution to the integral equation is ex-

ponentially small. In the case of a spherical Fermi sur-
face this was provided for by the theorem (see Appendix
A) on integrals over Legendre polynomials. What we

must discuss is the integral

For a "typical" alkali metal r, 4.5, which we shall
take from now on when we need a value for it, so

u(q) =4~e'/(q'+3k p') . (5.2)

k" k"—k—k'
g(2&=

mkp
(5.3)

This integral is elementary (for free electrons at zero
temperature) and gives on the Fermi surface

Even with a potential as simple as this the second-
order terms (2.16)—(2.18) are prohibitively difficult
to evaluate. To get a very rough idea of what is hap-
pening, we replace u(q) in (2.16)—(2.18) by a lI-function

potential with the correct average value u(0) (=s'/mk p) .
Then the full second-order term (K(2&) becomes

L= dYd~'F(~~, A')x (&',~'), -

where X is given by (4.24) or

(4.31)

1 ~1+ti
E&'&(x) = — 21+(1—P) 1ni i, (5.4)

8mk p t 'E1—1I

(1+
x)

3x'and F is an analytic function of f'»' on the Fermi sur-

face. We want to show that for sufficiently large ni,
L decreases more rapidly than any power of e&. Intui-
tively this is clear. The behavior of I. for large n& is
determined by the singular points of Ii, the boundary
points or the points of stationary phase, as is well

known. Ii is analytic by assumption. X, being a wave
function, will also be analytic on the Fermi surface.
(However, the WEB solution for X—will not be, be-
cause of artificial singularities at the classical turning
points, so to really evaluate I. one must use a better
solution. ) Finally because of (4.27), Q12+Q„')0 ex-

(5.5)E& &(x)=
2(mk p) -,'—x

The E&& ' are easy to obtain. We find"

Zi&'& = (3n'/mkp)QE(-', ) . (5.6)

where Qi is the Legendre function of the second kind.

(5.7)Z (&'& = (~'/4mhz) P~,o+R~j
1 t

R,=2 dh(1 12) ln E,(2P—1) .—
p 1 —F

(5.8)

x-(r ~)=B(&.)e'" " " (4.32)
In the same notation

"G. Focke, Verh. Sachs. Akad. d. Wiss. (Leipzig) 101, 1 "Higher Transcendent'/ Functions, Batemun Manuscript
(1954). This paper extends the usual stationary phase asymptotic Project, edited by A. Erdelyi (McGraw-Hill Book Company, Inc. ,
treatment of integrals to the two-dimensional case. 1953), Vol. I, p. 154.
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The E& are all elementary, though a little tedious to
obtain.

From (2.30), we obtain an expression for the transi-
tion temperature (for the cases where the E& turn out
negative)

kyar)=e)e '~ &,

slk p
a&—=— E&=a&"&+a&&",

(2~)'

« "&=—aQ&(2 5),
«'"= —

&.
'&& (~&,&&+~&) .

(s.9)

(5.10)

(5.11)

(s.12)

TABLE I. First- and second-order contributions to af, which
determines the transition temperature by means of (5.9)

l a) a&&'&(asym) a&&'&(WKB) a&

0 —0.30 —0.069
1 —0.048 —0.019
2 —0.0074 —0.0018
3 —0.0013 —0.00044
4 —0.00027 —0.00016
5 —0.000051 —0.000068
6 —0.0000098 —0.000035
7 —0.00000019 —0.000020

~ ~ ~

0.063
0.0039
0.00077
0.00024
0.00010
0.000048
0.000026

~ ~ ~

0.012
0.0016
0.00042
0.00015
0.000068
0.000035
0.000020

negative
negative
negative
negative
negative
0.000017
0.000025
0.000018

Numerical values of these quantities for the 6rst
seven I are given in Table I. From these @re see that

cV2(k)=P, (w, ['~r& g~'dr (s.ls)

where w&, (r) is the periodic part of the Bloch function,
and X is the strength of the 5 function. Since the nor-
malization tells us that the integral of ~u&&~' is unity
and since generally m» does not vary very strongly over
most of the unit cell, it is an overestimate but not too
bad a one to replace the integral by unity. For X we
previously took ~'/mk&; which is just the reciprocal of
the density of states per unit volume. Introducing
gp to be the d.ensity of states at the Fermi surface we
have finally

K.(2)=—

XA (k,k') LinA (k,k')g. (5.16)

enhanced. A relative increase' of factor of 10 would
seem about enough. This would not only give a larger
attractive part (and hence a higher transition tempera-
ture) but would also enable the transition to set in at
lower l.

The singular part of E&'& is given by (4.5)—(4.7).
Again, let us replace the potential by a 5-function
potential. This makes M&(k)=%2(k) from (4.8) and
(4.9). Consequently, E, &~& cancels E,&'&. Further,

through t=4 the repulsive part of K'& dominates the
attractive part of E(2~. From l=s onwards the E~
is negative. The largest transition temperature actually
comes from 1=6 and

e
—40 000 (5.13)

T& is of the order of 104 'K, so this is really quite low.
We have listed in Table I the asymptotic values of

a&&'&=1/(2l)4. This expansion becomes accurate only
at quite high /. We have also listed the value of a~("
calculated from the %KB proceedure of the last sec-
tion. This gives

a&&'&(WEB) =1/(2l+1)4. (5 14)

(This is discussed below. We need the Bohr-Sommer-
feld quantization with the usual n+ —', in the &) variable
instead of e as we used in the previous section. It may
be shown to be valid in this case.) The WEB approxima-
tion agrees remarkably well with the exact calculation
by /=2, and for l=i, it is only about 35'Pq off. From
this we may hope to use the WKB answer as a guide in
more complicated cases which cannot be treated
exactly.

It is clear that if there is to be any hope of ending
this type of superconductivity, one Inust 6nd metals
in which the effect is very much enhanced over a
typical case. From the above discussion, this could
come about if the coeKcient of the singular part is

We are interested in the case where E,&2) dominates
K&", so we shall neglect the latter in estimating the
effect of (5.16). This will again be an overestimate, but
probably not a serious one.

Therefore, the integral equation we must study is
Lanalogous to (4.13)$

x(k) =
1 67/&& 3(k)(E(k)gp 2) & 2

ds'A (k,k')

X (lnA (k,k') jx(k'), (5.17)

where &&. is given by (4.21).
The WKB method of the previous section gives the

same result as (4.27), where U is now given by

EGP')-
g p'&&„'(g,»)2

(5.18)

Suppose the Fermi surface is a surface of revolution.
Choose for a moment the parametric equations

kg= p cosy,
k„=p siny,

k,= f(i&).

"That is, between the singular part of the second-order term
and the first-order term. Increasing the density of states or num-
ber of electrons increases them both in roughly the same way, and
we .shall therefore not consider this possibility here. This leaves
the geometry of the Fermi surface as our main variable.
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Direct calculation gives

pf'(p)e=— E p2

(1+fd2)1/2

f'(p)
G=1+ "

(1+f~2) 1/2
(5.20)

Fso. 3. Profile of
Fermi surface in con-
vex case.

& (p).

f=0, I'=O.

(
dQ(k) '

=PP=42U —m2.
dt

The WEB method gives

(5.25)

p pd2 =22r(22+-,') . (5.26)

Actually we do not need to find $, since by (5.23) we

may write this as

fit ) 1/2

(nU —m2)'/2
! dp=22r(22+-'2), (5.27)

where
p '(1+f")f'&"'
g~'v-'( )f"&

on making use of the general result

(EG F) dfdqr= (E—G F) / dpddp. —

(5.28)

(5.29)

The density of states is given by

(E, G, F are the coeKcients of the first quadratic form
for the parameters p, 22)

(EG F')"'—=P+(1+f"), (5.21)

f p11= dy'+ dp') (4.22)
(1+f")"' f'p

Therefore, isometric coordinates can be obtained by
choosing p2 for one of them and $ for the other, where

— I=, ~

/dk(p)q' f"
(5.23)

f'p

The Hamilton-Jacobi equation (4.27) is now separable.
Clearly we must choose

(5.24)

where m is any positive or negative integer.
Then (4.27) becomes (U is a function of $ alone)

ln(P„p, )= (1/C) (224+ 1)4 (5.31)

p~ p(1 +f/ )2f// 1/4 4

C=—— dp
p v~f

!

Pm

k p

(1+f&2)1/2 2

dpp— (5.32)

For the spherical case, C is easily calculated to give
unity. This corresponds to the formula (5.14). Dn
fact, if. one does not put m=0, one easily sees that we
have (5.14) with /=24+! 224!.j An enhancement of our
eBect due to variation in the shape of the Fermi sur-
face would occur if we found C greater than unity.

We next have to choose v (p). This is largely de-
pendent on the energy function. It is possible that by a
fortuitous combination of geometrical factors (f) and
v, C can be considerably enhanced. However, it seems
difficult to investigate this possibility systematically.
We shall choose v„ in the following very simple way:

(5.33)

where mo has the dimensions of a mass. This choice gives
the correct answer for spherical and ellipsoidal Fermi
surfaces, and corresponds to choosing 22

——F(k,2—f'(p)).
It is chosen to make further integrals as simple as
possible. With (5.33), (5.32) becomes

C= — dp dp — 5.34

It is rather clear that for a given n the "weakest
potential" necessary for binding will come from m=0.
The weakest potential corresponds to the smallest 0.,
or to the largest transition temperature. We consider
only this case, which leaves us with

gp=
4m'

dS
v (p) 22r2

dpp(1+f")'"
v„(p)

1
dp(p1+f")'/'

v-(p)

The expression (5.34) for C has a remarkable prop-
erty: If we multiply f by any factor X', and p by any
factor X', then C is invariant. Let us change scale so that

(see I ig. 3). f=f-g(~).
(5.35)
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A

i

FIG. 4. Convex Ferm.
surface in reduced
variables.

e&,
——(kp'/2r&sp)L(k, /kp)'+yk(rc) j. (5.39)

faces is known. "Ke shall not try to discuss the problem
in all generality, but shall only consider a simple
model. We assume that the electrons are free to move
in one direction (say the z direction) and are tightly
bound in the plane perpendicular to this direction.

This corresponds to the energy expression

Then
2 ' ttg) 14&4

C= — Ct( [ /

«
I (5 36)

o kg'g) k o g(t)/

This expression is actually not bounded. If one takes

(5.37)

C is expressible in F function. ' For large v we 6nd

Here ko is of the order of the Fermi momentum,
4&rp of the electronic mass. pc is the vector (k„k„), k(pc)

is a function of order unity of reciprocal lattice peri-
odicity in the x plane, and p«1. The Fermi energy is
given by ko'/2mo. Therefore, the Fermi surface con-
sists of two essentially Oat pieces at k, = &ko, and ex-
tending to the zone walls.

The singularities of (4.1)—(4.3) occur at (for Eto&

and K&'&)

64
C —s=

~4 1.52
(5 38) and

k,"=k, = —k, '= ~k,

(for Kt"&) k,"=k,=k,'= ako.

(5.40)

(5.41)

Thus, in principle, the enhancement can be as large
as one pleases. $0f course, for» too large, the formula

(5.36) is only valid for very large 44 since the Fermi
surface "bends" very sharply. Further, the Fermi
surface corresponding to very large v has very Oat
portions —portions with small Gaussian curvature
which requires a reinvestigation of the validity of the
original expressions (4.5)—(4.7) for the singular part
of Els&, cf. below. ]

We have investigated (5.36) numerically for a
number of Fermi surfaces. Since they must lie in the
triangle ABC (see Fig. 4) and be convex, there is not
too much freedom. We have found remarkably little
variation in C for diferent "reasonable" choices of g.
Only when g practically "hugs" the triangle ABC do
we get an appreciable enhancement, and in this case,
the formulas are not strictly applicable.

In conclusion, it mould seem that, at least for the
case of "reasonable" convex Fermi surfaces, the
geometry of the Fermi surface can produce very little
enhancement of our effect.

The case where the Fermi surface has concave por-
tions is much more complex. The singularity in E(2)

can have the opposite sign, and other singularities
(than at k=k') are also possible. We hope to return
to this question at a latter date.

Finally, we shall discuss the case where the Fermi
surface has very flat portions. In this case (4.5)—(4.7)
seem to get very large since the Gaussian curvature
goes to zero. Therefore, one needs to make the expansion
leading to (4.5)—(4.7) more carefully. (Of course, as
long as the Gaussian curvature is not exactly zero these
formulas will be valid when we are dealing with suf-

6ciently highly excited states, but those are uninteresting
in trying to maximize the transition temperature. ) The
nature of the singularities for "almost Qat" Fermi sur-

It is very simple" to obtain the leading term (for
small y) of E1'& for this case. Write

K"&(k,k') =mo ln(8/y)
I+ +(pc,4c'),

(21r)'kp
(5.42)

k= (1c~kp), k'= (rc', &kp) . Then

I++(pc,pc') = dtc"M„-(x,x')M„*(tc',p:), (5.43)

I~(pc,pc') =+ Ch"L3II; (r.,4c')M„-*(—4c'pc)

++M„-*(—pc',pc)M„-(4c,—pc')

—2M„-(pc,—pc')M„"*(—pc', +pc)j, (5.44)

I (4c,o.")=I++(—4c,—r.'),

I~(4c,+pc') =I~(—pc, —1c'),

where

(5.45)

(5.46)

M."(4c,4c') —= (4c,ko, pc"—x—pc', —koan

Xgipc",ko, —rc', —ko), (5.47)

M„"(&c,&c')—= (pc,ko, 4c"—pc—tc', —kp
~

XN i
—pc', —kp, 4c",kp). (5.48)

"A. M. Afanas'ev and Y. Eagan, Zh. Eksperim. i Teor. Fiz.
43, 1456 (1962) )English transl. : Soviet Phys. —JETP 16, 1030
(1963)j. The nature of the singularities for flat and cylindrical
and "almost" Rat and cylindrical Fermi surfaces are dealt with
in some detail in connection with anomalies in the phonon spectra
of metals.
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The integral equation (2.22) becomes (assuming by x+(h) and integrate over h over the Fermi surface.
again that the second-order terms dominate) The left-hand side is then positive, and since v is

positive we can only have a solution if

x+(h}=—v ch'(I++(h, h') x+(h')

+I~(h,h')x-(h')), (5.49)

x—
(h) =—v dh'(I~(h, h') x+(h')

+I—(h,h')x-(h')), (5.50)

Q+=— ChCh'x+(h)(I~(h, h') a I~(h,h'))x+(h') (5.59)

is less than zero. Using the de6nitions of I++ and I~,
we find at once

where

and
X+(h) =X(h,+ko) (5.5i) Q+= ch" Tr{A„„'~2(A„-2„"—2„"')), (5.60)

2mp' ln(Pop) ln(8/y)
P= &0.

(27r) 'k po
(5.52)

where the matrices A„" and A„"are dedned by

A„(h,h') =X+(h)3I„(h,h'), (5.61)

A. „-(h,h') =X+(h)3E„-(h, +h') .eo being of the order of the Fermi energy.
It is very easy to see, using (5.45) and (5.46), that

(549) (550) th dd 1 t. ' For the odd solutions, this may be written

(5.62)

x+(h) =x
—

(—h) (even),

x+(h)= —x (—h) (odd) (5.53)
Q =— ch" Tr{(A„.—A„-)'+2„-'})0. (5.63)

Therefore,

X+(h) = —v Ch'(I++(h, h')aI~(a, —~'))X+(h), (5.54)

the plus going with the even solution, the minus with
the odd one.

We shall only consider (5.54) for the tight binding
limit. Then the wave functions are

Therefore, for the 0dd solutions, there is never super-
conductivity. This is just the opposite of the spherical
case, where the odd solutions (1 odd) were (at least for
sufliciently large f) always superconducting. Thus in
the case of the almost Rat Fermi surface, the eEect
of our mechanism is to suppress the possibility of super-
conductivity in the odd states rather than to enhance
it.

4~(r) =e'"'~(e), (5.55)

1
u(g) = Q e'" "-»y(p —1).

S2
(5.56)

p=(x,y), n& is the number of atoms per unit area, 1

is a lattice vector in the pt: y plane, and @(p) is the
bound state from which the tight-binding band is
formed. We have not written an index x on m, since in
the tight-binding limit y must be very close to 1 be-
cause of the short range of P(y —1). Thus, the matrix
elements are (for kl —kl' ——ko —kp')

(klko~u~kl'kp')= dr, droe ""'
2mp 1n(Pop)

U(h h', 0)+U—(h h', 2ko)—)&u'(pl)w'(po)u(rl —ro), (5.57) x+( )—
(2~)'ko

This is clearly real (interchange rl and r&), so in this
case the matrix elements are real. Write mp in(8/y)

+ d~"[U(h —h",0)U(h" —h', 0)
(2lr)'ko1

U(h, k.)—=—Q dk, e "**e '"'u(1 s)
822 +2U(h",0)U(h —h', 2kp)

For the even states, one cannot say anything quite
as conclusive. If again the effective potential is a
delta function, then M=llxI, and Q+ are both positive.
We never get superconductivity from this mechanism.
For long-ranged potentials, we would expect 3f to be
larger than 3f (less momentum transfer) and again
Q+)0. It is possible however that for some inter-
mediate case Q+ will have negative values and super-
conductivity will be possible.

To realistically assess this possibility is almost im-
possible. We need to simultaneously satisfy the condi-
tion that the second-order terms are attractive and
dominate the first-order ones. Leaving out details, the
correct equation (for the even case) is

then, in the extreme tight-binding limit,

(kyk2~ u~ kl k2 )=—U(hl hl ykls kin ) . (5 58)

Since the matrix elements are real, the solution of
(5.54) can be taken real. Multiply both sides of (5.54)

—Uo(h —h', 2kp) ) x+(h') . (5.64)

This integral equation is solved immediately by an
ansatz of the form

x+(h) =e'"',
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mp(in(8/v))
( Q up(1')u, (1'—I)—up'(l))

(2s)kp
where

(5.66)

up(l) = ds u(l, s),

since the kernel depends only on x—x' and has a recipro-
cal lattice periodicity. Substituting (5.65) in (5.64)
and using (5.58), we find

+2mp ln(pl pp)
1— —(up(1)+up(1))

(2s.)k p
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APPENDIX A

On using Rodrigues' formula

up(1) = ds u(l, s)c ""'

and we have made use of the relationship

(5.67) 1 d'
Pi(x) =— (x'—1)

2'l dx'

in (3.1) we obtain, on integrating by parts,

(A1)

Area of Fermi surface= Cross-sectional area of

8rillouin zone = (2s.)PNp.

1 ' d'E& &(x)
Ei&'=— (1—x') ' dx,

2'l g dx'
(A2)

Both terms in (5.66) go down rapidly with 1. If there
is a transition at reasonable temperature it must come
for small 1. For weak potentials then the first term will

always dominate and we will never get a transition.
On the other hand, if the potential is not weak, but
we use (5.66) anyway, a transition is possible.

Since u(l) has the dimensions of a momentum over a
mass, it certainly seems like a generous overestimate
to put typically, for a small I,

since by assumption the singularities of E& &(x) lie out-
side t

—1,lj. However, since E& '(x) is analytic on a
circle of radius greater than unity, we have

d'E &'&(x) i! E& &(s)
ds~

dx' 2si . (s—x) '+' (A3)

where c is a circle of radius greater than unity on which
E&'&(s) is analytic. Therefore,

up, p(1) kp/mp.

This gives, again very roughly estimated,

ln(Pep) in(8/y)
1= 2 ~

(5.68)
d'IC&~&(x) ' i!M27rc /rMc

27r(c —x) '+' (c—x) '+' (A4)

where c()1) is the radius of the circle, and M is the

(5 69) maximum of E&'(s) on the circle. From (A2)

If we take roughly

h (8/v)

(2s)
(5.70)

3A+()g
2 —1

(1—x') '

(c—x) '+'

Mc ' dx (1—x')'
(A5)

2 ic—x4C—xi
this gives a y 10 ', which is a phenomenally ~at F 1 I, h

'
tegral is at once eva]uated by the

Fermi surface. The transition temPerature is then of method of stationary phase, and gives
the order

T, TJe 4 10 ''K, (5.71)

T, 10 ~'K, (5.72)

a still smaller value.
In conclusion, it seems rather unlikely that a very

flat Fermi surface can help much in producing a large
transition temperature.

still quite small.
It should also be mentioned that one can show that at

such flatnesses the cutoff y in (5.69) is replaced by one of
the order of 1/pp&. . If we take pp= p p, (5.69) gives

iE&&'&i (n
Ql(c'+&a' —1)'&')

(A6)

Therefore, since c+(c'—1)'&')1, ~Ei&'&
~

decreases at
least exponentially.

Actually a much stronger result can be obtained,
applying to the case where E(x) is analytic inside an
arbitrary ellipse with foci at &1.M The P& are Jacobi
polynomials for n=P=O.

~ Cf., C. Szego, Am. Math. Soy. Coll. Publ. 23, 238 (1939),
Theoxem 9.1.1.


