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The question of the appropriate definition of temperature in the kinetic theory of dense gases is discussed.
An apparent contradiction in the value of the bulk viscosity between two methods of making the transition
from the kinetic to the hydrodynamic stage is resolved. It is shown that the definitions of temperature
through the kinetic energy and through the total energy are equivalent. The general question of the appro-
priate choice of macroscopic variables in nonequilibrium statistical mechanics is discussed. It is pointed
out that the form of the equations of hydrodynamics is covariant with the definition of the macroscopic
variables, but the molecular-distribution functions are invariant to this choice. In spite of the equivalence
of temperature definition between a quantity which is a local integral of motion and one which is not, the
the principle that macroscopic observables are properly chosen to be "approximate single-valued integrals
of motion" can still be maintained. The question of which temperature or bulk viscosity is measured is
discussed in the context of specific experimental situations.

I. INTRODUCTION

A S the progra, m for a kinetic theory of dense gases
proposed by Bogolyubov' becomes rea.lized in

specihc formula. s and algorithms, a, number of ambigu-
ities and internal inconsistencies have become apparent.
The best known of these is the fact, almost certainly
established, that no power-series expansion of transport
properties is possible beyond the term linear in (he
density. Less well known, but equally disturbing, is the
fact that two different ways of carrying out the transi-
tion from the kinetic to the hydrodynamic stage, each
reasonable in itself, lead to different results for the bulk
viscosity. Thus a,n a.pparently well-dined Quid

property seems to have a vable which depends on the
means of calculating it.

The 6rst of these two difficulties, of course, opens up
the possibility that the whole Bogolyubov program is
invalid. It is possible, however, on the basis of the
established facts to take the more conservative position
that the Bogolyubov functiona, l expressions for the
distribution functions exist, but have no density expan-
sion beyond the first few terms. In this paper we will

be concerned, not with the first difficulty, but with the
second. In doing so we mill provisionally ta,ke the
conservative position with respect to the first.

The transition from the kinetic stage to the hydro-
dynamic stage, taking triple collision into account, i.e.,
the Chapman-Enskog solution of the generalized
Boltzmann equation, was first ca,rried out by Choh a,nd
Uhlenbeck. ' An essential feature of their procedure wa, s

*This work was started when LG-C was a member of the
faculty and MSG a visitor at the Escuela de Ciencias Ffsico-
Matem6, ticas, University of Puebla, Puebla, Mexico.

t Mailing address: Insurgents Sur 1079, Mexico 18, D. F.'
¹ N. Bogolyubov, Problems of a Dynamical Theory in Statis

tical hrechanics (Moscow, 1946) LEnglish transl. —Studies in
Statistical Mechanics, edited by J. De Boer and G. E. Uhlenbeck
(North-Holland Publishing Company, Amsterdam, 1962), Vol.
I, p. 1j.

~ 3, T, Choh and G, K. lJhlenbeck, University of Michigan

their choice of a. microscopic expression to represent the
temperature valid both in the presence of gradients of
the macroscopic variables a,nd in the presence of
intermolecular interactions. Noting tha. t the kinetic
energy per particle is stiB —;kI',even in the presence of
intermolecular interactions, they chose this dynamical
variable as the appropriate measure of the temperature.
This choice has an obvious adva. ntage of simplicity.
Recently, Green, Garcia-Colin, and Chaos' in the
context of a, Chapman-Enskog solution of the general-
ized Boltzmann equation, and Ernst' in the context of
the autocorrelation expressions for transport properties,
have used another microscopic definition of temperature
based on the loca,1 total-energy density, including the
potential energy. The temperature is defined by the
same relationship to the loca.l densities of particles,
energy, and momentum a.s obtained in equilibrium. This
definition, while more complicated than that used by
Choh and Uhlenbeck, is based on the five local integrals
of motion: the two scalars, energy and number of
particles, and the vector, momentum. The importance
of choosing as macroscopic variables approximate
dynamical integrals of motion has been emphasized
elsewhere by one of us. '

Although these two definitions yield the same result in
equilibrium, they apparently yield different results for
the bulk viscosity and other aspects of the hydro-
dynamic stage. It is clear that the ambiguity in the
definition goes beyond the specific Bogolyubov program
and is nothing else than the question: what is the
appropriate definition of temperature in a nonequilib-
riuIIl interacting system. Indeed, the question ls OIie

Report, 1958 (unpublished). See also L. S. Garcia-Colin and
A. Flores, Physica 32, 289, 444 (1966).

3 M. S. Green, L, S. Garcia-Colin, and F. Chaos, Physica 32,
450 (1966).

'M. H. Krnst, thesis, University of Amsterdam, 1964 (un-
published); Physica 32, 209 (1966).' M. S. Green, J. Chem. Phys. 20, 1)81 (1952).
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aspect of the even broader question: how are macros-
copic variables describing nonequilibrium systems to be
chosen? The ambiguity in the definition of temperature
has also been considered by Wang Chang, Uhlenbeck,
and De Boer, ' by Ernst, and by McI.ennan.

We shall denote by method I the Chapman-Enskog
solution of the generalized Boltzmann equation using
the total-energy definition of temperature, and by
method II, the solution using the kinetic-energy defini-
tion of temperature. Both of these methods have been
carried out in a form' ' which defers the density expan-
sion to the last step in the calculation. This procedure
has the advantage that general questions, such as that of
the present paper, can be seen through more easily. At
the same time it permits the conservative position about
the validity of the Bogolyubov program to be taken.

The following features are characteristic of these
two methods. "

(a) The results for shear viscosity and thermal
conductivity are identical in both cases.

(b) The bulk. viscosities are the same in the zeroth
and first order in the density and indeed are both equal
to zero. They are both nonzero and different in higher
order.

(c) In method I, the energy-conservation equation in
lowest order (i.e., the first) in gradients involves only
equilibrium thermodynamic quantities. In method II
the kinetic-energy equation to the same order apparently
involves the first-order deviations from the Maxwell
distribution.

Since the bulk viscosity enters into the phenomeno-
logical equations only in a term which is second order
in the gradients, (b) implies that the equation of
momentum conservation differs for the two cases only
in the second order in the gradients. This is true also
for the equation for the rate of change of temperature
in the two methods. They are identical in the first order,
but differ in the second order. In spite of these funda-
mental differences in the results of the two methods, it
is the primary purpose of this paper to show that they
are entirely equivalent. We will show that there is an
equivalence relationship between the two macroscopic
descriptions such that equivalent macroscopic states will

be predicted to develop in exactly the same way by
both methods. A more precise statement of this equiv-
alence is given in Sec. II below. In Sec. III we express
the equations of method I and method II in parallel
form. In Sec. IV we give the explicit relationship
between the two macroscopic descriptions, while in Sec.

' C. S. Wang Chang, G. E. Uhlenbeck, and J. De Boer, Stgdies
in Statistica/ Mechanics, edited by J.De Boer and G. E. Uhlenbeck
(North-Holland Publishing Company, Amsterdam, 1964), Vol.
II. p. 243.

7 M. H. Ernst, Physica 32, 252 (1966).
' J. A. McI,ennan, Advan. Chem. Phys. 5, 261 (1963).
9 L. $. Garcia-Colin and Asdrubal Flores, J. Math. Phys. 7, 254

(&966).
"F.Chg, os ag.d I. S. Gg,rcig, -Colin, Phys. Fluids 9, 382 {1966).

V we demonstrate identical time development of equiv-
alent macroscopic states. In Sec. VI we attempt to
draw some inferences of the equivalence theorem proved
in Secs. II, III, IV, and U for the general question of
the appropriate choice of macroscopic variables in a
nonequilibrium system.

II. THE STATEMENT OF THE
EQUIVALENCE THEOREM

In method I we seek a solution of the generalized
Boltzmann equation which is a functional of the local
density of particles zz(q), the local velocity u(q), and the
local total energ-y density 8(q)

fz(x/N, u, B),

where x=—(g, p), the position and momentum of a
particle. In method II we seek a solution of the general-
ized Boltzmann equation which is a functional of the
local particle, the local velocity and the local kinetic-
energy density

fzz (x/zz, u, 8),

where zz(q) and u(q) are as before and 2mg(q)
+n (q) ', mm' (q)-is the total kinetic-energy density. m is
the mass of a particle. The second part of the kinetic
energy may be called the kinetic energy of the convec-
tive motion, the first part, the kinetic energy of the pe-
culiar motion. 0 has been called the kinetic temperature.

zz, u, 8, and 8 are functions of position and fz and fzz
depend in principle on the values of these functions
throughout the Ruid. Actually the value of fz zz(q, p)
depends only on the values of e, u, 8, and 0 in the
immediate neighborhood of g. In the Chapman-Enskog
procedure, an expansion in a uniformity parameter is
made in which the dependence on the macroscopic
variables for other points than q is expressed through
their hrst and higher order spatial derivatives.

It has been pointed out by Ernst' by direct compar-
ison of the solutions, that fz and fzz differ in first order
in the gradients by a term proportional to the divergence
of the velocity field, but that the local temperature
corresponds to the same macroscopic state also differs
in the two methods by a, term proportional to the
divergence of the velocity field. Ernst points out also
that the effect of these two differences exactly com-
pensate each other. Thus to the first order in the
gradients the two methods lead to exactly the same
single-particle distribution for the same macroscopic
state. In this paper we will show that this compensation
is a consequence of the general formulation of the two
methods, independent of an expansion in the uniformity
parameter. There is only one Chapman-Enskog
solution of the Boltzmann equation independent of the
choice of macroscopic variables.

We may express the theorem to be proved in the
following more mathematical terms, There exists a
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one-to-one relationship between the macroscopic vari-
ables of method I and those of method II.

8(q) =8(qIn(q'), u(q'), 8(q')),

u and e identical in both methods, such that

fzz(x(n, u,8)= fz(x(n, u,8). (2)

The relationship (1) is nonlocal in the same sense that
the dependence of fz,«on n, u, 8, 8 is nonlocal, i.e., 8(q)
is determined in principle by the values of m, u and 8
at all points of the Quid. Actually, only the values of
n, u, 8 for points q near q will be significant in deter-
mining the values of 8(q). Equation (1) makes precise
the meaning of equivalent macroscopic states, while

Eq. (2) expresses the identity of the single-particle
distribution function for equivalent macroscopic states.
Equation (1) has an inverse:

the equations
Dn/Dt+n divu= 0, (8)

Du/Dt+ (1/nm) divP =0, (9)

(D8/Dt)+divJ+8 divu+P: D= —u divP, (10)

where D/Dt=8/Bt+u grad. D is the syzzzznetric part
of the rate-of-strain tensor,

P is the stress tensor, and J is the total heat-current
vector. These are expressed in terms of fi and fs (xzxa t fi)
though well-known formulas given for example in Ref. 3.

This system of equations is solved in the Chapman-

Enskog method by expansion in powers of a uniformity
parameter, or what is the same thing, in powers of the
the gradients. The zeroth-order solution is, of course, a
local Maxwellian distribution

8(q) =8(qln(q'), n(q') 8(q')), (3)

so that the relationship between methods I and II is
symmetric.

n(q)
fzo(x/n, u,8)= exp-

(2zrm8'(q))"'

(y—mu(q))'

2m8'(q)
(12)

n(q) = fz(x I n,u, 8)dp, (4)

mn(q)u(q) = pfz(x~n, u,8)dy,

8(q) = fz(xnan, u,8)du
2m

+— zti(r) f& (xi,x2 t fz (xi
~
n, u,8))dpdx2. (6)

2

In Eq. (6), @(r) is the intermolecular pair potential,
xi= (y,q), and f2(xz, xnlfi) is the pair-

distribution function given in the Bogolyubov theory
as a functional of the single-particle distribution
function. In its turn, this is a functional of e, u, 8 in the
Chapman-Enskog procedure. Note that Eqs. (4), (5),
and (6) are in fact identities which fz must satisfy.
fz also satisfies the generalized Boltzmann equation,
which we write in the form given in Ref. 3:

III. THE TWO METHODS

I.et us consider those equations which determine fz.
These are 6rst of all the equations which de6ne the
macroscopic variables n, u, and 8. These are

-', n8(q)+
2

p'
fzz(x~n, u, 8)dp,

2m

where 0' is a parameter which is to be determined by
requiring that fz satisfy the identities, Eqs. (4), (5),
and (6), to zeroth order in the gradients. Since fz' is of
the Maxwellian form, this is nothing else than the
statement that 8'(q) is determined by the valzzes of n,

u, and8 at q by the eqlitibrinm thermodynamic relation-

ship. 8' is the quantity which plays the role of tempera-
ture in method I.

In the first order, the substitution of Eqs. (8—10)
into the Boltzmann equation (7) yields an inhomo-

generous integral equation whose general solution has
6ve undetermined constants, corresponding to the
6ve conserved quantities: particles, energy, and the
total-momentum vector. These are uniquely deter-
mined. by the requirement that the 6ve identities, Eqs.
(4), (5), (6) are satisfied in the first order. The same

situation holds formally in all higher orders. Thus we

may say that a solution to Eqs. (4—11),which is expand-

able in powers of the gradients, is unique.
In method II the Boltzmann equation LEq. (7)$, the

defining identities LEqs. (4), (5)j, and the macroscopic
equations of motion LEqs. (8), (9)$ for n and u are
identical to those of method I. Instead of Eq. (6) we

have the defining identity for the kinetic temperature

Xfg(xz, x2i fz)dx, dy=C (xi' fz). (7)

The Chapman-Enskog approach requires that fz be
a time independen-t functional of n, u, and $, and there-
fore, that fz changes with time only through changes in
these quantities. Their time-rate-of-change is given by

and instead of Eq. (10), we have the macroscopic
equation of motion for 8

-', n(D8/Dt)+div(Jx+ J~')+P:D=&(q~ fzz), (14)

&e(r) y2 —yi
R(q/f) = dx,dp, — —-f(xz,xa ) f), (15)

8Q f8
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and Jx and Jz' are the kinetic and first-potential part
of the heat current, respectively, as given in Ref. 3.

Equations (4), (5), (7-9), (13—15) have been solved
as an expansion in powers of the uniformity parameter
by Garcia, -Colin and Flores" and by Ernst. In zeroth
order

By substituting for 0 in fzz its values in terms of I, u, 8,
we will show that fr' satisfies all the equations LEqs.
(4—11)j which determine fr. Since a, solution of these
equations expandable in powers of the gradients is
unique, we have

(20)

zz(q)
fzr'(x

I
zzu8) = exp

(2zrn:8(q))'~'

(p—mu(q))'

me(q)

which is the theorem to be proved. Making use of the
fact that fz depends on time only through n, u, 8, we
write the Boltzmann equation LEq. (7)$ in the form

Substitution of fz in the identities, Eqs. (4), (5) a,nd
(13), identifies the parameter 8 with the kinetic temper-
ature. In the next order, an inhomogeneous integral
equation is obtained whose general solution has five
undetermined constants which are determined uniquely
by the requirement that the defining identities are
satisfied also in the first order. This procedure can be
carried through formally in all orders, yielding a unique
solution expandable in powers of the gradients.

IV. THE RELATIONSHIP BETVfEEN THE
TWO MACROSCOPIC DESCRIPTIONS

Dfr

Dt

bfz ) Drz(q')
dq'

biz(q')i „,e Dt

Du(q') Sf, D8(q')
+

Eu(q'},, I}t hÃ(q'}). Dt,
= —(p/ ) (&f/&q)+q'(*lf ). (21)

In Eq. (21), the time derivatives of the macroscopic
va, riables are to be taken from Eqs. (8—11).

Similarly we have

It is easy to see what the explicit form of the relation- Dfzz
ship between the macroscopic descriptions of methods I
a.nd II must be. If Eq. (2) is valid, we may substitute
fz for fzz in the defining identity for 8 l Eq. (13)$.
This equation becomes

Iftl DW(g} nfl

)
Du(ll}

dg +
brz(q') „,e Dt bu(q'), „. Dt

(
ttfzz ) DH(q) p &fzz

+@'(*lf»), (22)
Se(q')). , „Dt m aq

', n8(q)+-2rzzmu'(-q) = — fr(xl zz)u, 8)dp. (17)
2~is

Since the right-hand side of Eq. (17) is a functional of
e, u, 8, this equation implies a relationship of the form
of Eq. (1). Equation (17) becomes an explicit relation-
ship as soon as w'e know fz explicitly, i.e., as soon as
we have solved the Soltzmann equation by method I.

Similarly, we may obtain the inverse-relationship
equation (13) by substituting f» for fr in the defining
identity for 8 l Eq. (6)j. We have fzz(flu, u,e) = fr'Lx

l
zzu, 8(e,uP)), (23)

where the time derivatives of the macroscopic variables
a,re to be taken from Eqs. (8), (9), and (14). In Eqs.
(21) and (22), the symbols (t}f/t}N), etc. signify func-
tional differentiation with respect to the indicated
argument function at the point q'. The subscripts
u, 8, etc. indicate which variables are held constant.

I,et us show first of all that fz' satisfies Eq. (21). We
substitute for frr in Eq. (22) its expression in terms of

f, ', i.e.,

and use the chain rule for functional differentiation.

Equa, tion (18) beconies explicit a.s soon a.s we ha, ve the
solution of the Boltzmann equation by method II.
Needless to say, in writing Eq. (17) as the explicit form
of equa, tion (1), Lor Eq. (18), as the explicit form of
Eq (3)g, we. have not assumed the equality of fz and t' ~f» ~fr

fzz but merely use the supposed equality to motivate
our choice.

&8(q")
+ dq" — „l,—,(25)

t}8(q")~ ., bu(q') „,e
Ln order to prove the theorem stated in Sec. j.I we

construct a functional of e, u, 8: t S8(q")

(N} N(q }„88'(q"},,(l5(q'}),„
(26)

fr'(*lzz, u, 8) =fzrL~lzi u t}(q lzz, u, 8)).

8(q) =-:.«)~«)+-:-«).- «)
I+- y(r) f2(xrxzl fir(xl zz, u,8))dx,dp. (18)

2
biz(q') ., z hzz(q')~. e



DEF INITION OF TE M PE RATU V~K

Substituting these expressions in Eq. (22) and noting
Eq. (21)

Dfz Dfz' t' &fz' )+ dq"dq'~
Dt Dt (68(q")&...

— bb(q"))
dq'

8n, (q')) „,g

De(q') (aS(q")) Dn(q')
x -+j

Dt E biz(q')) „,i Dt

'= fz (29)

VL CONCLUSION

The theorem proved in the last section brings several
questions to the fore. The first question, of course, is
the one with which we started. How can there be two
valid theoretical values for the bulk viscosity and for
the temperature, which are, after all, experimentally
measurable quantities? A second question is: if the two
methods for arriving at macroscopic hydrodynamics
from generalized kinetic theory are equivalent in a
mathematical sense, are there considerations of con-
venience or formal simplicity which would favor one
method over the other? Finally there are questions
which relate to the general problem of the choice of
macroscopic variables in nonequilibrium statistical
mechanics. How wide is the range of choice of appro-
priate macroscopic variables? Must we give up the
principle that the macroscopic variables are properly

(-7)
M(q') & „,„Dt Dt

The second term on the right in Eq. (27) is zero. That
this is so may be seen irrnnediately from the de6nition of
8(q ~

e,zz,8) $Eq. (18)j.On the one hand, since 8 is given
in terms of single-particles distribution function fzz
and a pair distribution function f2(xzx2~ fzz) which
satisfy the Bogoliubov-Born-Green-Kirkw'ood- Yvon
(BBGKY) hierarchy, Dts/Dt must be given by Eq. (10)
in which the heat current, stress, etc. are computed
from fzz and f2(xix2

~ fzz). On the other hand, since tS is a
tizne-independent functional of n, u, and 8,DB/Dt must
also be given by the integral expression in the curly
brackets in Eq. (27), where Dn/Dt, Du/Dt, D8/Dt are
given by Eqs. (8), (9), and (14). Since they are simply
two different expressions for the rate of change of the
same quantity, the two terms in the curly brackets
must cancel identically. Thus we have

Df '/Dt=Df /Dt= (u/~) (8fz—z/8q)+e(xlf»)
= —(lz/~) (8fz'/8q)+@'(x I fz') (28)

where the last step is justified by Eq. (23). We have
shown that fz' satisfies Eq. (22). Since we may also
substitute fz' for f» in Eq. (18), fz' also satisfies the
defining identities for e, u, B. Since fz satisfies all the
equations which determine fz, w'e have

chosen to be the "approximate single-valued. integrates
of motion" ?"

Ke consider the 6rst question. When we substitute
fz(x~n, u, h) into Eqs. (8), (9), and (10) and fzz(x~e, u,8)
into Eqs. (8), (9), and (14) we obtain two sets of five
macroscopic equations of motion governing, in the
first case, e, u, and 8, and in the second, e, u and 8.
These equations determine the development of the
macroscopic variables in such a way that, if e(q), zz(q),
8(q), and n(q), u(q) and 8(q) are equivalent states at
)=0, they are equivalent for all times, The phenomeno-
logical equations themselves, however, are covariant
with respect to such a change. In particular, the coef6-
cient of VV:u in the equation of motion for u changes
in the transformation. This would also be true of the
equation of motion for 0' in method I.The coeScients of
various second spatial derivatives of the macroscopic
variables would be diferent from those of corresponding
derivatives in the equations of motion of 0 in method II.

If we ask the question from the experimental point
of vievr, i.e., which bulk viscosity do we measure, we
note that every measurement of a transport property of
matter must be interpreted through the appropriate
macroscopic equations of motion. Thus in one of the
most common ways of measuring bulk viscosity we
measure the attenuation coefficient of a sound wave
in passing through the Quid. This attenuation coefficient
is related to the bulk viscosity (and the shear viscosity
and thermal conductivity) by a formula obtained from
a solution of the macroscopic equations of motion of a
Quid for wave propagation. If we take for these equa-
tions those of method I, it will be the bulk viscosity of
method I which will be derived from experiment. If we
take the macroscopic equations of motion of method II,
the bulk viscosity of method II will be obtained.

It should be noted that in both cases the bulk.
viscosity can be dined as a ratio of stress to rate o&

stra, in in the limit as the rate of strain goes to zero, i.e.,
in the limit in rvhich the system approaches an equilib-
rium system. The temperature to be associated with
each bulk viscosity is the limiting equilibrium tempera-
ture which is de6ned unambiguously. One may, how-

"The concept of "approximate single-valued integrals of
motion" which was introduced in Ref. 5 in a heuristic way can be
made more precise in the context of a uniformity-parameter
expansion. Dynamical variables whose rate of change is zero in
zeroth order in the uniformity parameter but not in higher order
are "approximate single-valued integrals of motion. " More
generally, in a dynamical system whose description depends
analytically on a small parameter, an "approximate single-valued
integrals of motion" is any function of the phase which is a
"single-valued integral of motion" in the ordinary sense when
the small parameter is set equal to zero. Since the approximate
single-valued integrals of motion are usually relatively few in
number and since their rates of change are small, they follow a
more comprehensible pattern than that of the other dynamical
variables. These quantities are natural choices as macroscopic
variables. If we have chosen a sufhcient number of such quantities
to determine a generalized microcanonical ensemble in phase
space in which the zeroth-order dynamical system is ergodic, we
can expect the macroscopic equations of motion to be differential
equations of the first order in time, as are, for example, Eqs. (8),
(9), and (10).
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ever, legitimately ask, which temperature, 8 or 8', does
one measure when a finite velocity divergence is
present? The answer to this question must be that a
thermometer calibrated to read equilibrium tempera-
tures correctly will not necessarily read either 0 or 8' in
the nonequilibrium situation. ~ What it does read will
depend, in contra, st to the equilibrium case, on its
structure a,nd on the nature of its interaction with the
system. To determine either 0 or 0' from its reading
w'ould require a. knowledge of the effect of this structure
and interaction.

As Ernst ha. s pointed out' 8 and 8 are not the only
macroscopic variables which lea, d to a consistent
Chapman-Enskog solution of the generalized Boltzmann
equation. Indeed, he has show'n that quite arbitrary
moments of the distribution function lead to a solution
of the Boltzmann equation. For instance, if one uses
instead of 8 or 8, trace P, where P is the stress tensor, one
obtains a system of phenomenological equa. tions in
which the bulk viscosity is zero.

It is clear that nothing in the ana, lysis in the previous
sections of this paper depended on the specific choice
of macroscopic variables. We might, indeed, have
replaced n and u as well by other quantities. Whatever
the choice, how'ever, there is only one Chapman-Enskog
solution to the Boltzmann equation. The state of the
Quid as represented by the single-particle distribution
is invariant under the choice of macroscopic variables.
The macroscopic equations of motion, however, are
covari ant with this choice.

The variables n, u and 8 recommend themselves to us
because they are "approximate single-valued integrals
of motion"'" of the system. The number of particles,
the total momentum, the total energy in a region of
space can only change through effects which take place
across the boundaries of the region. In view of the
equivalence theorem, is there then no advantage in
using these as macroscopic variables?

Actually there is an obvious formal advantage. The
macroscopic equations of motion for n, u and h to the
first order in the gradients, i.e., the Euler equations, can
be derived, and were in fact historically so derived,
without a detailed knowledge of the deviation of the
local state of the Quid from equilibrium. This is not so
for the variables n, u, and 0. When the Chapman-
Enskog scheme is carried out for these variables, the
first-order (in the gradients) deviation of fi for equilib-
rium is required in order to determine the macroscopic
equations of motion to the same order. Thus the
variables n, u and b which are "approximate single-
valued integrals of motion" have a formal advantage
over the variables n, u and 0 which are not. It is
important to note that the Xavier-Stokes equations,
which are the commonly used form of the macroscopic
equations of motion, are equations of motion for n, u,
and h. '2 They were derived phenomenologically before

'~ L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-
%'esley Publishing Company, Inc., Reading, Massachusetts, 1959).

any statistical-mechanical treatment of nonequilibrium
phenomena, no doubt because of this formal advantage.

There is, however, a much more important and
pervasive role than the above for macroscopic variables
which are approximate dynamical integrals of motion.
To see this let us note that the variables n(q), u(q),
h(q) for all q are not the only approximate dynamical
integrals of motion. Any function of these va.riables will
also be such. Since they are parametrized by a con-
tinuous variable q, this means that any nonloca, l

fUnctional of n(q), u(q), h(q) considered as functions of

q will be an approximate dynamical integra, l of motion.
Now a little reflection on Eq. (17) shows that, so far
as any state of the system w'hich belongs to a Cha, pman-
Enskog solution of the generalized Boltzmann equation
is concerned, 8(q) is just such a nonlocal functional of

n(q), u(q), and h(q). This means that, insofar as such a
state is concerned, 8(q) may also be considered to be an
approximate dynamical integral of motion. The kinetic
temperature is not, of course, a nonlocal functional of
the local energy density for all states of the system, but
only for Chapman-Enskog states. If, however, we had
started with 8(q) defined by Eq. (17) with $ defined
through an arbitrary single-particle distribution, instead
of the most general definition of kinetic temperature,
we w'ould have arrived at no different Chapman-Enskog
solution. Thus the range of macroscopic variables which
are appropriate to describe a Chapman-Enskog state
need be taken to be no wider than all nonlocal func-
tionals of n(q), u(g), and h(q). Any more general
variables will be projected by the manipulations of the
method onto the set of variables which are functionals
of n (q), u(q), and h(q). Physically, the difference
between the actual dynamica. l variable and the pro-
jected one will be manifest only during the short
induction interval during which the Cha, pman-Enskog
solution is being set up.

To summarize our conclusions: We have found tha, t
the two methods proposed for making the transition from
the kinetic to the hydrodynamic stage in the kinetic
theory of dense gases are equivalent. Theylead, however,
to different macroscopic equations of niotion and one
must be careful to use the transport properties of each
theory with the equations of motion appropriate to the
theory. There is a certain formal advantage to the same
variables n, u, h and the most commonly used equa. tions
of Quid motion are based on these variables. Finally, the
equivalence theorem does not imply that there is no
special role played by the "approximate dynamical
integrals of motion" but rather that this class of
dynamical variables is much wider than, perhaps, was
hitherto appreciated.
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