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electric field is applied to the target gas, the metastable
2s level will mix with the 2p level, "and an increase in
the 2p ~ is transition rate to 3.2/~ of the annihilation
rate will occur, and should be observable.

IV. DISCUSSION

We have presented above a calculation of the energy-
dependent annihilation rate of positrons incident on a
helium target, as well as a prediction of the intensity
of the He+ ultraviolet radiation which is expected to
follow the annihilation. In this work a simple model
wave function describes both processes, as well as the
elastic scattering. The predictions are thus not expected
to be exact, but previous experience has given some
cause for optimism.

"%.E. Lamb, Jr., and M. Skinner, Phys. Rev. 78, 539 (1950).
This paper contains a derivation of the dipole radiative lifetime of
the metastable 2s state of He+ in the presence of an electric field,
~ = 1.6)&10 'E ', with E in V/cm. If this lifetime is shorter than
that for collisional de-excitation, enhancement of the 304-A. line
occurs. A measurement of the latter value could in principle be
made this way.

Nevertheless, the results derived here must be used
cautiously, as a guide only, until such time as more ac-
curate solutions of the positron-helium scattering
problem become available. As an example, we may note
that the value of the parameter P= 1.5992 used through-
out has been chosen to produce agreement with the
long-range x 4 potential, "and thus does not necessarily
represent well some of the other properties of the system.
In a somewhat different context, Mittleman' has used a
five-term exponential approximation to describe the
helium atom wave function, and finds that a more
accurate value of the 2s excitation probability is 2.23%,
rather than our 2.00%. This agreement indicates that
our qualitative results should be used as preliminary
estimates in designing experiments, which may eventu-
ally test the future detailed theories.

"See Ref. 2, where another choice of P;is made. As long as full
monopole suppression is maintained, the results should be similar.
The inclusion of short-range monopole parts in G will increase the
effective electron number, and will reduce the relative excitation
of the 2p state of the ion.
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A fairly comprehensive theoretical treatment of the dissociative attachment (DA) of electrons to diatomic
molecules (AB+e —+ A +8) is given, going from general formalism to explicit cross-section formulas and
comparison with experimental results. Using the Born-Oppenheimer separation, the process is understood
as an electronic transition from a continuum to a discrete electronic state, which then dissociates. The 6nal
discrete state, being degenerate with a continuum, is necessarily a resonance. Accordingly, the theory is de-
rived from a general rearrangement formalism which is based on projection operators onto this resonance
state (de6ned along the lines of Feshbach) and uses the Horn-Oppenheimer separation. This formalism,
which is applicable to a fairly wide class of collision processes, is cha, racterized by its extreme simplicity and
practical usefulness. Exact transition matrix elements are derived for DA, together with its inverse and
competing processes, in terms of the resonance and "potential scattering" wave functions. Finally, a certain
adiabatic approximation is considered for the potential scattering function, which neglects the indirect in-
huence of other inelastic processes on the. resonance transition, treating them as higher order effects. After
this approximation, the classical nature of the nuclear motion makes it possible to eliminate the nuclear wave
functions in a fairly trivial way and to derive a simple explicit formula for the DA cross section from an arbi-
trary initial vibration-rotational state of the molecule. For the most interesting case, the ground vibrational
and rotational state, this formula is in complete agreement with the previous result of Hardsley, Herzenberg,
and Mandl. Later this adiabatic approximation is partly relaxed and more general formulas derived. Various
implications of the results are also considered, such as the relation to experimentally observed isotope effects
and temperature effects. The "vertical onset" threshold phenomenon which occurs when the resonance po-
tential curve is attractive is also discussed, .

1. INTRODUCTION

'HE theory of dissociative attachment (DA) of
electrons to a diatomic molecule

AB+e +A+B—'

*This work. was supported by the Advanced Research Projects
Agency.

is treated in a fairly comprehensive way. If we take the
Born-Oppenheimer view of the process, there first
occurs an electronic transition of the system to the
state AB *, which state then dissociates into the end
products A +B. This is illustrated in Fig. 1, which
shows the potential-energy curves for a typical system.

Since the final state AB * can clearly auto-ionize,
reverting back. to the irutial products AB+e, it is not
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a conventional bound state of the system but rather a
resonance. (Thus the title "Resonant DA" given to a
preliminary report on this work' is in a sense redundant. )
Accordingly, a formalism is developed around this reso-
nance state, starting with the very useful definition of a
resonance given by Feshbach' 4 generalized so a,s to be
able to include the single-particle or potential-type
resonance if necessary, and adapted to the special
features of the molecular system. The elegant proj ection-
operator decomposition, based on this resonance state,
is then used to derive a very simple formulation of the
problem of rearrangement collisions, which, it is hoped,
will be useful for a wide class of rearrangements in
which one of the states can be interpreted as a resonance
state and the Born-Oppenheimer separation is appro-
priate. In addition to dissociative attachment and
recombiriation together with their inverse processes,
the type of formalism derived could prove to be the
simplest way to treat many low-energy chemical kinetic
processes, to the extent that these are not already
adequately treated.

Using this formalism, exact expressions are derived
for attachment as well as its inverse and competing
processes (associa. tive detachment, vibrational excita-
tion, elastic scattering), and finally the explicit formulas
(5.19) and (5.24) obtained after suitable approxima-
tions. These formulas, for the most interesting case,
DA from the ground vibrational and rotational state,
is in complete agreement with the result previously ob-
tained by Bardsley, Herzenberg, and Mandls (BHM),
who started from the Kapur-Peierls formalism. It is
believed that the present work goes beyond the BHM
treatment in a number of ways —in the general re-
arr'angement collision formalism used, in the obtaining
of results for the inverse and competing processes, in
the inclusion of excited vibrational and rotational states,
in considering the eBects of direct transitions on DA—
and it is also hoped that the Feshbach definition of the
resonance state may perhaps prove more useful than
the earlier definitions.

The resonance state for the molecular system is
brieAy defined in Sec. 2; in particular the definition of
Feshbach is given sbghtly generalized. In Sec. 3, the
projection-operator formalism is used to derive the
formal expression for the T-matrix elements for DA
together with its competing and inverse reactions, vi-
brational excitation, associative detachment (AD), etc.
In Sec. 4, the integral equations are solved, eliminating

'T. F. O' Malley, in Fonrth Interrzational Conference on the
Physics of Electronic and Atomic Collisions (Science Bookcrafters,
Inc. , Hastings-on-Hudson, New York, 1964), p. 97.' H. Feshbach, Ann. Phys. (N.Y.) 5I 357 (1958);19, 287 (1962).' See also L. Fonda and R. G. Newton, Ann. Phys. (N.Y.) 10,
490 (1960).

4 Feshbach's resonance de6nition was 6rst applied to molecular
problems by J. C. Y. Chen, J. Chem. Phys. 40, 3507 (1964); 40,
3513 (1964); and to atomic systems by Y. Hahn, T. F. O' Malley,
and L. Sprnch, Phys. Rev. 128, 932 (1962).' J. N. Bardsley, A. Herzenberg, and F. Mandl, in Atomic
Collision Processes, edited by M. R. C. McDowell (North-Holland
Publishing Company, Amsterdam, 1964), p. 415.
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the exact wave functions in favor of the resonance and
"potential scattering" wave functions. In Sec. 5, the
complicated potential scattering function p„ is approxi-
mated by an "adiabatic" approximation, slightly less
restrictive than the exchange approximation. The
Born-Oppenheimer approximation is also made. Then
the semiclassical equations for nuclea, r motion are
solved and explicit formulas are obtained. In Sec. 6,
this approximation is relaxed somewhat and the effect
of direct vibrational transitions on DA is considered.

A special feature (vertical onset) which occurs when
the resonance potential curve is attractive, is considered
in Sec. 7. Section 8 is devoted to a brief consideration
of mass or isotope dependences. The inAuence of rota-
tion on the results is made more explicit in Sec. 9.
Section 10 is a summary and discussion. The semi-
classical wave function for nuclear motion is analyzed
in the Appendix.

2. THE RESONANCE STATE

The Hamiltonian for molecular systems is customarily
broken up into an electronic part and a part for nuclear
motion

where
P=+61+T R y

II,i T,i+ V. ——

(2 &)

(2.2)

T& and T,& are the kinetic-energy operators for nuclear
and electronic motion; V is the sum of all the electro-
static potential interactions between pairs of particles.

The resonance state will be defined relative to the
electronic motion only. ' In a general way it is defined
as an eigenstate of II,i with the lowest open electronic
channel (or channels) projected out in some way. More
specifically, the resonance wave function may be re-
garded as an eigenstate of a projection operator Q"
onto a portion of Hilbert space,

Q'fr =fr
' This is also the proccdurt: of Ref. 5.

(2.3)

Rpl RP R

Fio. 1. Typical initial state (AB) and final resonance state
(AB *) potential-energy curves for the dissociative attachment of
electrons (with energy E) to molecule AB. E.z is the turning point
for motion on the upper curve, determined by E. Eo is the initial
equilibrium distance. The negative-ion curve is considered rela-
tively stable against auto-ionization for R&Aq.
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Q =1-~.&(~„ (2.5)

where @, is the target system's electronic ground state.
Since the definition of projection operators is a matter
of choice, we assume the same Qs for all R even when,
e.g., R&R, in Fig. 1. The reason for this is both sim-
plicity and the requirement of continuity. If one or
more of the lowest excited states are projected out, we
have a product of several factors like (2.5). To include
the Pauli principle, if there are Z identical electrons,
this may be generalized to~

Q'=ll C1- I~i g(-s)&64(-s) I j (2.6)

where (—i) denotes a state of all the electrons except
the ith. The point is that Q' is identically orthogonal to
the P, of any s—1 electrons. This special definition of a
resonance, corresponding to the compound-nucleus
model, seems to include nearly all atomic resonances
observed so far' and probably all those involved in
processes such as dissociative recombination and attach-
ment. 9 Another well-known kind of resonance is the
single-particle or potential resonance, which occurs
when a particle is effectively trapped for a time inside
a Coulomb or a centrifugal barrier. Such resonances
apparently are responsible for the vibrational excitation
of N2, Co, and H~. '0 If there should be cases of DA for
which the definition (2.5) is not appropriate, the more
general definition implied in (2.3) and (2.4) may be
assumed.

In either case, we now define the projection operator
Q onto this resonance state,

Q=~.&Q'

This projection operator and its complement

P=1—Q

(2.7)

(2.8)
7 See the second paper in Ref. 4.
8 The high peaks in the electron cross sections for Ar, Kr, and

Xe just above the Ramsauer minimum, although not generally
spoken of as resonances, should probably be classified as D-wave
potential-type resonances and therefore exceptions to the state-
ment in the text.

'l It seems that the 3.7-eV peak for H2 is an exception to this.
See G. J. Schulz and R. K. Asundi, Phys. Rev. Letters 15, 946
(1965).

'0 G. J. Schulz, Phys. Rev. 135, A988 (1964).

which minimizes the Rayleigh-Ritz expression

(y„H.g „)= Ur (R) . (2 4)

As is customary, the internuclear distance R is treated
as a parameter, and the energy eigenvalue Vi(R) then
in turn serves as the potential for nuclear motion. We
are directly interested here only in the discrete eigen-
value (or eigenvalues) of (2.4). LKquations (2.3) and
(2.4) also have a continuous spectrum, and this can be
made to play an important part in an alternate treat-
ment for broad resonances. $ For the present purpose,
Q' will generally be taken to be Feshbach's' projection
operator onto the excited states of the target,

form the basis for the general formalism for rearrange-
ment collisions of the next section. Q clearly satisfies
the definition of a projection operator, hence I' also,
so that

Q'=Q P'=P, PQ=QP=O. (2.9)

Two properties of the operator Q as here defined
should be pointed out. First Q, unlike Feshbach's
operator Q', projects onto a single state only, the reso-
nance state, " hence Q is a small operator included in
the space Q' (Q(Q'). Secondly, Q projects onto the
space of electronic wave functions only, containing the
nuclear coordinate R only parametrically. The possi-
bility of defining such an operator (in a useful way) is

a consequence of the Born-Oppenheimer principle of
the separation of electronic and nuclear motion. It is
believed that it is these two properties of Q which are
responsible for the extreme simplicity of the formalism
developed in the next section.

Finally, the resonance state p„ the real part of whose

energy is given by (2.4), develops a finite width

(imaginary part) when coupled to the open (electronic)
channel or channels excluded in its definition. This
width is given by an expression of the form Eq. (4.11).

P (II E)PP = PII—Q, —
Q(H E)yP= —QHPP. —

The corresponding homogeneous equations

(3.2)

P(H —E)Py~= 0, Q(H —E)F9=0, (3.3)

define the full "potential scattering" and resonance
states, for which Pgr =pp and Q&9 p9 as well. The——se
states include nuclear as well as electronic motion.
Since Q projects onto a single electronic state p„, the
function gq takes on a simple form

~.=~.«(~), (3.4)

where from (3.3) and (2.4)

L2'.+2'+ Vr(~)-Ej&.(&)= (H.-E)&.(~)=O. (3.5)

1' is the kinetic-energy term neglected in the Horn-

Oppenheimer approximation

2'=-(~'/2i)L(~. ~"S.)+2(~.~.~.) ~.3 (3.6)
"Such a projection operator was previously used by S.A. Lipp-

mann, Lockheed Technical Report NONR 3368(00), 1964
(unpublished).

3. GENERAL REARRANGEMENT FORMALISM

Using the projection operators Q onto the resonance
state and P, just defined in Eqs. (2.7) and (2.8), the
solution of the Schrodinger equation is decomposed into
its P and Q components;

(3.1)

%hen this is substituted into the full Schrodinger equa-
tion, and we multiply from the left first by I' and then

by Q, the following coupled equations for Pf and Qf
result:



THEORY OF 0 ISSOCIATI VE ATTACH MENT

and is generally negligible. ""The integral in (3.6) is over
electron coordinates. The potential scattering wave
function it p, on the other hand, is a many-channel wave
function, including electronic, vibrational, and rota-
tional excitation in addition to elastic scattering.

Now the coupled Eqs. (3.2) together with (3.3) will
serve as the starting point for the derivation of the
formalism in the same way that the Schrodinger equa-
tion, written alternately in post and prior form, has
served as the starting point for other theories of re-
arrangement collisions. ""Equation (3.2) has the de-
sirable features that PP asymptotically contains only
the "direct" channels while Qk contains only the
rearranged channel, and further the homogeneous
solutions @p and gq already contain virtually all non-
rearrangement scattering in both initial and final
channels.

The solution of (3.2) may be written formally as an
integral equation. First, if the incident channel is one
of the channels n (characterized by rotational and
vibrational as well as electronic sta, te) included in P,
the integral equations are

Pgp yp. +GpP——HQ p. , (3.7a)

Qgp =GQQHPpp„ (3.7b)
where

Gp ——1/P (E II+i e)P, —G Q
= 1/Q(L~; IX+i e)Q. —(3.8)

The subscript P on rfr denotes the incident channel.
If the incident channel is Q (physically this means that
the heavy particles A and 8 collide), the integral
form of Eq. (3.2) becomes

(
Pp Q GpPH Qp Q,

——
&Q=4 Q+GQQHP4 Q.

The idea of the resonance state being the incident
channel, as opposed to its familiar role as intermediate
state, may be a strange one. This possibility is opened
up by the separation of electronic and nuclear motion
in molecules. We have already defined the resonance
state as being a closed channel (a discrete state) as far
as electron motion is concerned in the space Q0) Q. But
there is an extra degree of freedom in the nuclear mo-
tion, and it is possible for the coordinate E to go to
infinity while the electrons remain bound as in the
A8 '" curve of Fig. 1. In this way the Q channel,
though closed for motion of the electrons, is an open
channel for nuclear motion.

The formal transition matrix elements TI~, TI @,

T@&, and T@@follow immediately from the asymptotic
behavior of (3.7) and (3.9), given that of the @'s and
the 6's. First the wave functions are assumed to be

n~ pooinore added in proof. Note that the second term in (3.6)
in the present form vanishes by symmetry."B.A. Lippmann, Phys. Rev. 102, 264 (1956).

"See A. Dalgarno, in Atomic Collision, Processes, edited by
M. R. C. McDowell (North-HoQand Publishing Company,
Amsterdam, 1964), p. 609, for a review of rearrangement
formalisms.

normalized to delta functions of the energy as rn Fesh-
bach's papers. ' The asymptotic form of the full wave
function P may then be written

~6r 4 "'+7'f A'"" (3.10)

where x, is the coordinate in the jth channel (e.g. ,
j=Q, I', ) and i denotes the incident channel. The
supplenientary asymptotic functions P;0' and P~'"" with
superscripts denoting plane and outgoing waves, re-
spectively, are, in the P and Q channels,

eq"='i'Qe' "5 (3.11a,)

The asymptotic form of the p's and G's of Eqs. (3.7)
and (3.9) in their respective channels are, in the Q
channel,

(3.14)

and for @„,assuming the electron is incident in channel
cr (referring to the initial vibrational, rotational, and
electronic state), the asymptotic behavior in the 8
channel is given by

pl+ 7 i0ig O'Llt

(3.15)

The T&'& are determined by the homogeneous equations
(3.3).The bras Q are solutions of (3.3) with incoming

'4 8. A. Lippmann and J. Schminger, Phys. Rev. 79, 469 (1950).

yq'"'= (rr/K)iV QR 'e'" $z $ -(3 11b)

cps"=&pe'" '5»( re)— (3.11c)

y pe'"'= (7r/fe)Ã pre 'e e(~rr (
—re), (3.—11d)

and
gV ' = 2pK/Ii'4rr' iV p'= 2m, k/5'47rs (3.12)

(„e, (e, and (~- are the wave functions for molecule,
a,tom, and ion, respectively. ir and K are the reduced
mass and relative momentum for nuclear motion with
R the corresponding space coordinate. ns„k, and re
are the free-electron's mass, momentum, and space co-
ordinate in the channel P. If Q were projecting onto a
three-body channel, the appropriate generalizations of
(3.11) would have to be used. For recombination, the
replacement of the plane and outgoing waves by the
coi.responding Coulomb distorted waves would be
necessary.

The Tmatrix a.s defined in (3.10), because of the delta
function normaliza, tion assumed in Eqs. (3.10) through
(3.12), differs from the more standard definition" of T
by the factor XIX', and is the same as that used by
Feshbach. ' It is related to the differential cross section
in general by
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.rather than outgoing boundary conditions. Using (3.14)
and (3.15) in the asymptotic form of (3.7) and (3.9)
and comparing with (3.10) we find all the T-matrix
elements for the system. They are

where
u+=a+(R) = &g,IlPQP+).

Now substituting (4.4) into (3.7a) produces

(4.5)

Tpfl, pa —Tpa +&4pp IHgfpa ) y

T, „=Q QHPQ +),

T...= &~.~-I HCV'"),

To, o= To"'+&4 o QHPfa').

(3.16a)

(3.16b)

(3.16c)

(3.16d)

Pfp+ =gp++ GpH@„ga+. (4.6)

This is actually an integral equation for PPp+ by virtue
of (4.5). It is solved for u+ by multiplying by g „H on
the left (the integration is again over electron co-
ordinates), to produce a one-dimensional integral
equation for u+:

Equations (3.16) are the formal expressions for the
T-matrix elements in the present rearrangement formal-
ism. The f's can be eliminated by solving the integral
equations (3.7) and (3.9), as will be done in Sec. 4.
Equations (3.16) correspond very closely to the expres-
sions previously derived" "for rearrangement collisions.
The only difference is that the homogeneous p's here are
already fully distorted by elastic scattering rather than
being free waves, and the post and prior interactions H'
and II" are replaced by only the off-diagonal operators
PHQ and QHP connecting the direct to the rearranged
channels. It will be noticed that as a result of this, the
matrix elements in (3.16) are always between mutually
orthogonal functions. This feature was also present in
Mittleman's" treatment of rearrangement collisions.

It is believed that a consequence of this orthogonality
is that the matrix elements for rearrangements will
generally be small (as compared with elastic scattering),
and that first-order perturbation theory will frequently
be accurate. "~

4. EXACT SOLUTION OF INTEGRAL EQUATIONS

The formal matrix elements for the process (1.1) and
the related direct processes are given by Eqs. (3.16).
As was just pointed out, it is expected that first-order
perturbation theory, replaced f by p, will frequently
be accurate. However, it is not dificult to solve the
coupled equations (3.7) and (3.9) exactly and eliminate
the functions f in favor of the g's and their associated
Green's functions. This is analogous to what is done for
simple resonant elastic scattering. '

To solve Eqs. (3.7), we note that p~ is given by Eq.
(3.4) and similarly the full solution QP may be written

or, writing the solution formally,

(4.7)

where

a+= (1 Fg) 'e—p+,

ap+= ap+(R) = &y„QHPyp+); (4.9a)

and for later reference we also define

up-= &@p-PHQ@„);
further

F= &y„gHPGPPHgy„)
= A. (R)—iF.(R)/2.

(4.9b)

(4.10)

F.= 2~ P.-~ &q„gHP.—q-.) ~, (4.11)

where the subscripts e stand for the open electronic
channels.

Equation (4.8) together with (4.4) is essentially the
desired solution of Eqs. (3.7) for Pp. Substituting (4.4),
(4.9b), and (4.8) into Eq. (3.16a) for Tpp, p~ and (3.4),
(4.5), and (4.8) into (3.16b) for T@ p gives

~' ..=T,. +& --g(1-Fg)-"-. ) (4.»)
and

To,p-=(ko (1 Fg) '&p+) —(412b)

Equations (3.9) for P@ can similarly be solved and the
results substituted into (3.16c) and (3.16d), with the
result

F(R) has the form of the complex level shift' of the
resonance-electron energy curve VJ (R). The imaginary
part F, is the tota/ width for auto-ionization (i.e., ejection
of an electron), and A, is the corresponding level shift.
F, is generally expanded as a sum over open channels
in the form

Further

where

%=4.((R) .

G.=~.)g&~. ,

g= (F.+i&—Hii) '

(4 1)

(4 2)

(4.3)

&p~, a=&~i (1 gF) '&o')— (4.12c)

f'=(1—gF) '5o, (4.13)

7'QQ= TQQ"'+&EQ F,(1 gF) '(Q+) —(412d)

Equations (4.12) can be reduced still further. If we
define

and H p is given by Eq. (3.5).
Using (4.2), Eq. (3.7b) becomes

(4.4)QPP=4.g~',
"M. Mittleman, Phys. Rev. 122, 1930 (1961).'" footnote added in proof. This is in strong contrast with the

standard formalism for which the perturbation expansion always
diverges. See R. Aaron, R.D. Amato, and B. W. I.ee, Phys. Rev.
121, 319 (1961).

f satisfies the equation

or
(4.14)

P'ii+ T'+ I'y(R)+F (R) E]$=0, (4.15)—
where F, the complex level shift, is given by Eq. (4.10).
It is clear that Eq. (4.15) represents the motion of the
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heavy particles under the influence of the fuLl complex
potential curve Vy+F. In terms of l' and the associated
Green's function

element TJ,q follows from general considerations and
may easily be shown from Eqs. (4.17).

gp= (E—Ttt T—' Vy—F+—i,e) ', (4 16)
S. ADIABATIC APPROXIMATION FOR Pp-

EXPLICIT FORMULAS

Eqs. (4.12) may be rewritten

Tptt, p Tptt, p——&'&+(ap gpap-+), (4.17a)

(4.17b)

(4.17c)

Too= To,o'"+(ka Fl+) (4.17d)

with up+ given by (4.9) in terms of the potential-
scattering solution pp+. Equations (4.17) represent the
desired exact T-matrix elements for the processes re-
sulting from e+AB and from A +8 with the effects of
the resonance state made explicit. They cannot be
reduced any further without some approximations, ex-
cept to note that the expression for the elastic process
Tgg is simply the exact expression for scattering by the
2-body potential V(R) = V~(R)+F(R) in Eq. (4.15),
i.e., by the full complex resonance potential-energy
curve. LSee Eq. (5.9c).) This might have been guessed
intuitively. The partial-wave solution of this problem is
given in the Appendix. It has previously been treated
by BHM. '

Equation (4.17a) gives the contribution of the dis-
sociating resonance state to elastic scattering and vibra-
tional excitation, in terms of pp and the Green s function
constructed from the solutions of the semiclassical Eq.
(4.15). It should be emphasized here that the situation
treated in the present paper is essentially different from
that considered by Mandl and Herzenberg" and by
Chen' in their analyses of resonance vibrational excita-
tion. These authors considered the resonance curve to
be below the dissociation liInit and found the effects of
its discrete vibrational states. The result was found to
be a very large cross section with sharp peaks. In the
present paper, the resonance state is assumed to be a
dissociating one, and so it is the continuum states of
nuclear motion that contribute, as in the work of Chen
and Magee. "A consequence of this is tha, t Eq. (4.17a)
has a Green's function in place of a resonance de-
nominator. Therefore TI I need never attain the maxi-
mum possible value, in contrast with the discrete case.
In fact it may be seen from the next section that with
reasonable approximations the resonance contribution
to TI...I, is proportional to the partial auto-ionization
width F-„and so should be so small as to be unobserv-
able, unless that width happens to be extraordinarily
large.

The equality of the dissociative attachment matrix
element T@,I and the inverse associative detachment

"F. Mand1 and A. Herzenberg, Proc. Roy. Soc. (London)
A270, 277 (1962).

'7 See 6rst paper in Ref. 4.' J. C. Y. Chen and J. L. Magee, J. Chem. Phys. 36, 1407
(1962).

The Eqs. (4.17) for DA and related processes are
exact as they stand, assuming only the existence of a
resonance state p„ in the appropriate region. In order
to make them more explicit, but not unduly compli-
cated, some approximations are necessary. The T-
matrix elements are expressed through Eqs. (4.17) and
(4.9) in terms of g„, 1, and gp, and finally @p. The
function g„presents no complica, tions (in principle) and
is considered known. Since I' describes the motion of
heavy particles, the semiclassical wave function should
be considered exact. Similarly, gp may be constructed
from f and the corresponding irregular solution of
(4.15), and so does not require any approximation.

This leaves the potential scattering function pp. As
mentioned, pp is a complicated function which con-
tains, in addition to elastic scattering, direct vibrational
and rotational excitation and, for high enough energy,
electronic excitation as well. To make pp more tract-
able, we consider the approximation of neglecting the
effect of the "direct" transitions on pp. This approxi-
rnation is suggested by the experimental results, which
indicate that the matrix elements for direct vibrational
excitation, for rotational transitions, and for electronic
excitation are generally small quantities in contrast to
that for elastic scattering. The wave function pp might
accordingly be taken to be proportional to the target
molecule's electronic, vibrational, and rotational wave
functions tL „X„(R),and Vq ttr(A), and so be written

ct p+=PAy, x„(R)Vg,ttr(R) f(r,)/R.

This is called the exchange approximation and has been
found very successful in predicting the total cross
sections for electron-atom collisions. "' It di6ers from
the usual exchange approximation in that pp Ppp-—
must be orthogonal to p„. Here A is the electron anti-
symmetrization operator, and f is the wave function
for the incident electron, determined in this approxima-
tion, i.e., by substituting the above expression into Eq.
(3.3) and solving for f Arelaxation .of this approxima-
tion would be to allow additional electronic terms pro-
portional to the excited electronic states of the target,
representing virtual (but not actual) excitation of these
states, but without modifying the vibrational-rotational
state. This is an adiabatic approximation and will be
assumed in the remainder of the paper. The adiabatic
wave function is written

yp PrLr.ox, (R) Vg,er(R)/R——. (5.1)

The electronic function P@,e results when the electronic
problem in (3.3) is solved exactly, but as though nuclear

"N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, London, 1949), p. 2j.9.

0 P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).
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and a~ = (a„+)*.T', the non-Born-Oppenheimer term,
is given by Eq. (3.6) with &f,z replac, ing the second p„
on the right. This term is written for the sake of
generahty. It is expected that it will always be negligible
compared to the first term, except for Ri,;)R, (see
Fig. 1), a,t which point the first term must vanish (by
the conservation of energy). Since this region is gen-
erally far from the Franck-Condon region, it will rarely
be of physical interest. This second term will therefore
be neglected from this point on. This adds a second
adiabatic approximation (and a more familiar one) to
that already made. V; now becomes

V = (&,QV,I'p.,g-+-',&. (5.3)

In standard fashion, V;(R) is related to the partial
width I'- for auto-ionization of the resonant state into
the incident electronic channel dined by

(5 4)

When there is only the one electronic channel open,
I'-, is identical with the total auto-ionization width F,
of Eq. (4.11), given the present approximation. More
generally, j.", is the sum of such partia, l widths.

The independence of V,(R) of the angles follow-s from
the adiabatic separation in (5.1). More generally there
would be a, small angular dependence which could
change the rotational state by 2 units. "The fact that
(aside from T') only U„ the electron-molecule electro-
static interaction, survives in (53) follows from the
fact that the remainder of FX commutes with P and so
vanishes by orthogonality.

The argument had formerly been proposecP' that such
cross sections as are here considered would vanish in

"'Reference 19, p. 144. See L. I. Poldubnyi, Zh. Eksperim. i
Teor. Fiz. 47, 558, (English transL: Soviet Phys. —JETP 20, 372
(1965)j for a related distorted-wave approach."J.C. Y. Chen, Phys. Rev. 146, 61 (1966)."R.E. Stanton, J. Chem. Phys. 32, 1348 (1960).

motion were impossible. Note that a,t this stage the
adiabatic approximation is made only in @p and not in

the interaction Hamiltonian QHP.
In terms of perturbation theory, the adiabatic ap-

proximation (5.1) means that direct vibrational and
rotational excitation, as well as actual electronic ex-
citation at high enough energy, are treated as small
erst-order quantities and their indirect effect on DA is
neglected as a higher order quantity. If DA itself is
also treated as a, 6rst-order quantity, the present result
reduces to a, special distorted-wave treatment. " This
is appropriate whenever I', is sufficiently small, i.e.,

when p(&1 Lsee Eq. (5.2)j.
With the approximate representation (5.1) for Pi,

the T-matrix elements in (4.17) may be made more
explicit. In particular, Eq. (4.9) for ai becomes

ai+= Vs(R)X„(R)Vg„vr(R)/R,
where

where PI~ is the solid angle in terms of the relative
momentum vector E, and X(R) is the regular solution
of the partial-wave version of Eq. (4.15) with asymp-
totic form

X(R) —& (2p/A'7rE)'" sin(ER —Jz/2+8) . (5.6)

It should be noted that since the potential in (4.15) is
complex, b will also be complex and we may write

8= 8+ip/2. (5.7)

The imaginary part of b has been emphasized by BHM'
and is considered in the Appendix. The Green's func-

"This point was also mentioned in Ref. 5."J.C. Y. Chen, Phys. Rev. 129, 202 (1963).
~'L. D. Landau and E. M. Lifschitz, QNuntlm Mechulk. s

(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1958), p. 262 ff."F.Mandl, Proc. Phys. Soc. (London) 87, 871 (1966) has
very recently derived a generalization of the noncrossing rule for
complex Kapur-Peierls energy, levels. His results do not change
the present conclusion.

O' This point is well illustrated in a recent very interesting paper
by R. S. Mulliken, Phys. Rev. 136,A962 (1964) on the He2 system.
The curves called B-core states are interpretable as resonances. It
is clear from Fig. 1 of that paper that the B-core (resonance)
curves have a tendency to cross the A-core (ordinary bound state)
curves.

the Born-Oppenheimer approxiniation (T'=0). This
was ba,sed on the incorrect assumption that the initial
and 6nal electronic wave functions were both eigen-
states of FX,~, from which it would follow that electronic
matrix elements such as that in (5.3) must vanish.
However, we have seen that the 6nal electronic state
p,., as an auto-ionizing state, cannot be an eigensta, te of
D,j in the ordinary sense-" and so the electronic matrix
element will in general be nonvanishing. A c3,lculation
done by Chen-" was based on this assumption.

An interesting and related consequence of the defini-
tion (2.3) and (2.4) of the resonance state is tha, t the
noncrossieg rnle26 '~ for molecular sta. tes does not apply
between this and any other state, since this rule also
presupposes true eigenstates of FI,&. Since many states
of neutral molecules are interpretable as electrons
bound to excited states of the target ion,"i.e., as reso-
nances, there is no reason why such potential curves
may not freely cross other curves of the same symmetry.
It seems fair to say that the noncrossing rule is probably
taken far more seriously than it should be. Many
humps in molecular potential curves might properly be
eliminated in favor of crossing curves.

Now, returning to the evaluation of the T matrix
(4.17), since a& in Eq. (5.2) is proportional to a single
spherical harmonic VJ&1 and since by assumption J is
conserved, a partial-wave expansion of the function l
for nuclear motion in the resonance state should be
made. This expansion, agreeing with the normalization
of Eq. (3.14), is

g+(R) = P z'(4s) "Vga'(0) V,r g(Qrc)e"X(R)/R, (5.5)
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tion gp also becomes diagonal in J and M and the
kernel of its radial part becomes

the large quantity
X= 2p, V'/i''n',

2 w'7', e J 2 e' J'eJ' , +~J,J'(xv'l sgFVaxe) g (5.9a)

TI,q 2'q, —r—= i~(expib) (4n)'Isl'g, sr(es, ys)
Xe &I'(x V-x) (5.9b)

g p(E,R') = —nx(E()[x"(8))+ix(R))], (5.8)

where x" is the irregular solution of (4.15) defined by
replacing sin by cos in (5.6). Note the absence of an
e" term in g p. If p&&0, this results in a strong favoring
of vibrational excitation over DA [see Eqs. (5.9)].

Now using Eqs. (5.2) through (5.7) in Eq. (4.17),
the T matrix elements become

where V' is the force acting to separate the final-state
products at their turning point [see Eq. (A.2)].n ' is
a distance over which the function appearing with X.

in an integral varies significantly. For the present case,
this is taken to be the initial osci11ator's unit of length
defined by"

~= ( ~/&)"'= (~V'"/&')"', (5.10)

where co is the oscillator's frequency and V;" its stiff-
ness. In terms of this a, X may be written

(5.11)
where

Tq, q
———(2si) '(e"' 1)—(2J+1)Pq(cosa), (5.9c) —,'Fg ——V'/n. (5.12)

where the parentheses indicate Js"dE, and V-„x, gs,
and 8 are given by Eqs. (5.3), (5.6), (5.8), and (5.7),
and the subscripts on Tpp have been made more ex-
plicit. It should be noted that the absence of resonance
rotational excitation as indicated by b&,J. is a conse-
quence of the approximations made in this section [Eq.
(5.1)]. For the qualitatively different case of a non-
dissociating resonance state, this should be a more
significant eBect, as indicated by Chen. "

The vibrational excitation result will not be de-
veloped further at present, except to point out that, as
a second-order quantity in V-, the resonance contribu-
tion to T. ..is essentially proportional to F-. So unless
the resonance state is extraordinarily broad, this should
be negligible. The result in" H2 apparently corresponds
to this latter case when the resonance must be very
broad. It should be mentioned tha, t there is no sharp
dividing line distinguishing a broad resonance from a
nonresonance, and some would prefer not to call such
states resonances at all but would classify the process
as a direct one."

Evaluation of the Huclear Overlay Integral

The remainder of the paper will be devoted entirely
to the dissociative attachment process and the name
T'D~ will be substituted for T@I. Accordingly, it now
remains only to evaluate the integral in (5.9b). This is
a standard problem. Aside from the slowly varying
U,-(R), this is the Franck-Condon overlap integral
between a discrete and a continuum vibrational state.
It has long been known that, for a real potential curve
at least, the continuum function such as X is very well
approximated by a 5 function at its turning point Ez,
provided that its potential curve has a slope V' per-
ceptibly different from zero.

It is shown in the Appendix that the 8-function
approximation is the leading term in an asymptotic
expansion of the wave function in inverse powers of

+ This is discussed by R. G. Newton, Ann. Phys. (N. Y.) 4, 29
(1958).

-', Fq is a partial half-width for dissociation, since Ii/-', Fq
is a measure of the time it takes the final products to
move a distance from the turning point ( 1/Xn) to
where the approximate 6 function begins to vanish,
and so auto-ionization back to the initial vibrational
state becomes impossible. (This should be distinguished
from the much larger total dissociation time after which
autoionization to any vibrational state becomes im-
possible. ) 1'z is also the physically observable width of
the cross-section curve as is clear from Eq. (5.24).

e see from (5.11) and (5.10) that X is proportional
to V'p')", and so the expansion in inverse powers of X

is, like the Born-Oppenheimer separation, an expansion
in powers of p, 'l'4. In addition, the limit of large X

corresponds to the classical limit (fi —+0). Typical
values of X are 7 and 13 for the principal repulsive
curves in H& and 0&, respectively.

It is shown in the Appendix that in the limit of
infinite ), x(R) becomes

x(R) = V' »S(R,+ir./2-V'), () = ~), (5.13)

where j. , is the total width for a.uto-ionization. This
differs from the standard 6-function a,pproximation in
that the turning point is displaced by an imaginary
quantity due to the imaginary part of the resonance
potential-energy curve. Effectively the same thing was
found by BHM. '

The effect of the next term in the 1/) expansion is
shown in the Appendix to provide a slight distortion
of the function operated on by the 5 function. In par-
ticula, r, the vibrational function X, is modified to &,
given by (A13).

The T-matrix element for DA given by Eqs. (5.9)
may now be made more explicit still. If it is assumed,
as is generally done, that the electronic matrix element
V- varies slowly compared to x„, the integral (xV-,x„)
appearing in (5.9) may be written in terms of the over-
lap integral 5= (XX„), which is given in Eq. (A14) of

'0 L. E. ScbiB, Qgaefwn, iMecha~zks (McGraw-Hill Book Com-
pany, Inc., New York, 1955), p. 61.
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the Appendix. Through first order in 1/X, this is

(xV;x„)= V,-(xx„)= V-(-,'r„)—'t'x„(x~—ig), (5.14)

where

bility is

e &(~'=exp—
"r.(R)dR-

bo(R)
X„(x)=X„(x)—(1/3X)X„"'(x)

g= r./rg.

(5.15)

(5.16)

= exp —A I'.(R)di(R), (5.20)

The function X„ for the vth vibrational state is assumed
to be normalized to unity by

XP(x)dx=1, (5.17)

4z' I'-
o.o~ —— g

—~~„(xa ig) ~'e &&E—&,

k,' Fg
(5.19)

where k; is the incident electron's wave number; g is
a statistical factor into which are lumped the weight
factors for rotational and electronic angular momentum
as well as the relative spin multiplicity; F- is the partial
auto-ionization width, given by (5.4); X„ is the initial
vibrational wave function, normalized according to
(5.17), i.e., with n ' as the unit of length; xg is the
turning point of the final-state motion in the same units
(x=aR), and is of course determined by the electron
energy E; g is the imaginary shift in xz caused by the
imaginary part F of the resonance energy and given
by Eq. (A6). All quantities are evaluated at Rz.
Finally the last factor is the survival probability, first
employed by Holstein" and derived by BHM. ' In Ref.
1, it was reasoned that this factor would, never diRer-

appreciably from unity. Although this is true for sharp
resonance states of the compound-ion type, it would
not be so for broad resonances. Using the generally
good approximation (A15) for p, the survival proba-

M~ T. Holstein, Phys. Rev. 84, 1073 (1951).

where @=0,R. All quantities V-, F, and F~ are assumed
to be evaluated at the turning point R~ of final-state
motion. It should be noticed that I' is the iota/ width
for auto-ionization, while V; is connected through Eq.
(5.4) with the partial width for auto-ionization to the
initial electronic state. Where two or more electronic
channels are open, the two will not be the same.

Substituting (5.14) into (5.9b) the T-matrix element
for dissociative attachment becomes

Tnj, o(4m)"'Vga——(Qi)(expib)e
—i&' &V.-(Rr)

X (-,'r, )-'~'X. (x —'g) . (5.18)

The energy dependence of p is now emphasized. The
differential cross section is given by Eq. (3.13). Now
unless the rotational magnetic substates are unequally
populated, substitution of (5.18) into (3.13) gives a
spherically symmetric result when M is summed over.
Multiplying then by 4w, the general expression for the.

total cross section for DA becomes at last

Hence the cross section for v=0 becomes

-(-',r.) —(E,—z)—

p(rd)'
e—&&a&, (5.24)

where E~ is defined as

Eo= Ep+ ,'1no= Vr (Ro)+6(R-o) —V;(Ro) . (5.25)

Equation (5.24) reduces to the result of Ref. 1 for r,
suKciently small. It is identical with the result of
BHM. ' The apparent difference of a factor of 3 may
be due to an assumption about the statistical factor

"Some use of the expression (5.20) has been made by Y. Q.
Demkov, Phys. Letters 15, 235 (1965). Demkov's formula seems
to differ by a factor of 2 in the exponent.

where rp(R) is the classical velocity of the dissociating
particles, t is the time it takes them to dissociate to the
point E.."If Ez is very large or infinite, the integral in
(5.20) will still converge due to the decrease of r,
with E.

Equation (5.19) is the principal result of this section,
the general expression for electron attachment from a
vibrational state v. The case v=O deserves special
consideration, since at ordinary temperatures it is the
only state of interest. Because of the relative compact-
ness of the v=0 wave function, the harmonic-oscillator
wave function is accurate for Xo, and the function &0

takes on the simple form given by Eq. (A20'). For the
same reason, a linear approximation for the real part
of the resonance potential curve Vr+6, as given by
(A2), is appropriate in the Franck-Condon region, i.e.,

Vr (Ra)+ d, (Ra)
= Vr(Ro)+&(Ro) —V'(Rz —Ro) . (5.21)

From this it follows that, in terms of the electron
energy,

xz —xo—=n(Rz —Ro) = (Eo—E)/-,'rz, (5.22)

where Eo is the oscillator s equilibrium distance, and E
is the electron energy, i.e.,

I' = Vf(RE)+D(Rs) V;(Rp) —(py-', )—/pi.

The wave function Xp given by (A20') and (A19), in-
corporating both the imaginary and real shifts, becomes
in terms of (5.22)

1 (Ep—E+-', Api ——',ir,)'
&o =pr-"' exp (5.23)

r2k
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made in that paper for the particular case of H2 which
was considered. Note that the real energy shift —,'~
added to 80 exactly cancels a like term in the energy of
the initial molecule, so that electively vibrational
kinetic ener'gy is conserved in the vertical transitions"
just as is rotational energy.

Note finally that the phenomenological peak in the
cross section (5.24) will not occur at Ep because of the
other energy-dependent factors, especially p(E), and
also kP= (2m/Pi')E. If p(E) is not varying too rapidly,
the peak energy (do/dE=O) will be given approxi-
mately by

&o~i = ~o—pl"~'(p'+1/I-'), (5.26)

where p'=dp/dE is easily shown from (5.20) to be
always positive. Because of (5.26) it could be treacher-
ous to attempt to draw precise estimates of the location
of the upper potential curve from the location of A'p

unless something is known of p'. For example, the
principal resonance curve in H2 might lie at 11 or 12
eV above the ground state at Ro, rather than at 10.4 eV.

6. INFLUENCE OF DIRECT-TRANSITION
TERMS IN P~

The principal approximation made in the last section
was the neglect of all "direct" transitions, vibrational,
rotational, and also, in a sense, electronic transitions
(to the extent that these change the state of nuclear
motion). To these was added the Born-Oppenheimer
approximation in (5.3). In order to investigate the
implications of the neglect of direct transitions and the
effect of relaxing this approximation, we shall briefiy
consider in this section the e6ect of allowing a direct
vibrational transition to be included in pi . For definite-
ness let v=0, and assume that there is some "direct"
excitation of other vibrational states. This excitation
might either be direct in the usual sense, or in a special
case it might be resonance vibrational excitation, pro-
ceeding through another resonance state. In either case,
the appropriate generalization of Eq. (5.1) can then
be written

4= &yn.pl'J, jr(&)~ 'Lxo+Z. 2;o"'x,j. (6 1)

In the above, the subscript on it„,p indicates that it is
not quite adiabatic in the sense of Sec. 5. Actually each
x„should have its own electronic function p, differing
slightly from p, p for energetic reasons, but for moderate
v this difference is not important and may be neglected
(provided one remembers that the electron's energy is
diminished by &pod). Equation (6.1) differs from (5.11)
only in the substitution

x„—+ xp+Q„T„o"&x„. (6.2)

The entire analysis of Sec. 5 may then be repeated and
the only change is that, wherever X„appears, it is

'2 This is in accord with the Franck-Condon principle in its
general form, which states that neither position rIor momentum
of the nuclei should change in molecular transitions.

—4+8

-A + B

A+B

FIG. 2. Illustrates the "nonadiabatic" process described in the
text, which is possible if the electron energy 8 matches one of the
discrete vibrational states of the higher resonance state curve.
Steps 1 and 2 correspond to resonant elastic scattering or vibra-
tional excitation. This is followed in step 3 by ordinary DA, which
consequently has the extra energy dependence of steps 1, 2 built
into it.

replaced by the substitution (6.2). We finally arrive
at the cross-section formula (5.19) which becomes

4a r-.
a = g

—~xo(gs —ig)+p T„p x, (x~—ig) ~'e ' ~ .
k j."g 8

(6.3)

Equation (6.3) represents the generalization of (5.19)
when the approximation of neglecting "direct" vibra-
tional excitation is relaxed. Comparison of Eq. (6.3)
with the result of Bardsley, Herzenberg, and Mandl'
which is identical with Eq. (5.24) makes it clear that
these authors have in eGect made the same adiabatic
approximation, i.e., neglect of "direct" transitions, that
was made in Sec. 5. This seems to be the one significant
approximation of that paper.

It is interesting that, contrary to what one might
guess, the presence of the higher vibrational states X„
in (6.3) does not cause any structure at all to appear in
the cross section for small or moderate T's. A simple
numerical study shows that they produce only a shift
and broadening plus a slight asymmetry for odd e.

However, there is one somewhat exceptional case in
which (6.3) may introduce structure into the cross sec-
tion. This occurs if there happens to exist another reso-
nance state, a nondissociating one of the type respon-
sible for the familiar resonance vibrational excitation
and resonance elastic scattering, " and if further the
trough of this other resonance state happens to lie in
the energy range of interest for DA. A simple set of
potential curves illustrating this situation is given in
Fig. 2. The process described by Eq. (6.3) for the case
shown in Fig. 2 may be thought of in time as first a
resonant elastic scattering or vibrational excitation
followed by DA either from the ground or excited vibra-
tional state in the standard way.

The behavior of the wave function (6.1) for the
situation of Fig. 2 in the appropriate energy range
follows from the existing analysis of the resonance vibra-
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FH;. 3. Example of a 6nal negative-ion resonance curve which
is attractive, with the centrifugal energy I'g added. Eth, is the
threshold energy for DA. The hump at large E due to Ez is greatly
exaggerated. RI and R. are the two additional turmng points for
an energv E.

tional excitation problem. "'7 p„,q will contain a series
of Breit-signer resonance factors, one for each vibra-
tional state of the second resonance level, each with a
width of the order of 0.1 eV or less. The T,o&") are then
products of vibrational overlap integrals, some of them
of order unity. The Breit-Wigner factors in @„,u become
incorporated in F-, of (6.3) and the cross section then
has resonance peaks, broadened to the width of the
electron beam used in an experiment. In addition, since
the higher X, have their outermost peaks at x&1, by
(5.22) these are shifted from Es by an amount of the
order Fd Thus. a resonance term in @„,q (i.e., in F,-) at
the proper energy could cause a large enhancement of
the cross section displaced in energy by such an amount
from the zero-order peak.

Now for the H2 problem there does exist such a
nondissociating resonance in the neighborhood of 12 eV
as found by Kuyatt et al.33 Further, the observed attach-
ment cross sections" "" for H2, HD, and D~ do in fact
show signs of structure in this energy region. It is
possible that (6.3), with F,-(P„,q) and T„,sis' modified
as just described17 by this additional resonance state,
could be responsible for this structure. If this should
be so, then experiments done with electrons of better
energy resolution should show more detailed structure
with sharper and larger peaks. There is also some struc-
ture in the observed cross section for NO. '4 In the
absence of a better explanation, this could have a
similar cause. Again if this is the case, using electrons
with greater energy resolution should sharpen and
magnify the structure and show additional peaks.

In a very similar way, the inclusion of direct elec-
tronic excitation might also be considered. To @~ would
then be added an additional sum just like that of (6.1)
except that P,q is replaced by another electronic func-
tion representing the additional electronic channel. For
the nuclear overlap integral of the form (5.14) to be
nonvanishing in this case, a little consideration of the

"C.E. Kuyatt, S. R. Mielczarek, and J. Arol Simpson, Phys.
Rev. Letters 12, 293 (1964}.

'4 D. Rapp and D. D. Briglia, J. Chem. Phys. 43, 1480 (1965};
D. Rapp, T. K. Sharp, and D. D. Briglia, Phys. Rev. Letters 14,
544 (1965)."G. J. Schulz, Phys. Rev. 115, 816 (1959).

energetics shows that the potential curve Vf of our
dissociating resonance state P„must lie or cross above
the curve of the excited state of AB determining this
electronically excited channel.

Finally, there is the kind of direct transition, men-
tioned but not emphasized, namely, direct DA. This is
possible when E is small enough so that Rx&R, (Fig.
1). This transition, occurring between two true elec-
tronic states, could occur only through the I' term
omitted in (5.3), as emphasized in Ref. 25. However,
since R, is always mell outside the Franck-Condon
region, the smallness of the overlap integral together
with that of T' should make the cross section too sma11

to be of much interest.
The mechanisms discussed in this section are cer-

tainly not meant to be exhaustive. The main purpose
has been to show where the approximations of Sec. 5
may fail and to indicate the direction in which any
needed improvements may be sought.

In the next three sections, certain consequences of
the results of Sec. 5 are discussed in more detail, to-
gether with their experimental implications.

0.g ~ K'~+' (7.1)

where IC is the relative momentum of the heavy par-
ticles. Now any threshold behavior must come through
the dissociating wave function X(R). But Eq. (A11) of
the Appendix for this function does not indicate any
threshold behavior. The reason for this is that in using

~'E. P. Wigner, Phys. Rev. 73, 1002 (1948}.Note that (7.1}
refers to the threshold E~ 0. In the exceptional case where DA
is exothermic, as for some of the halides, the quantum-mechanical
threshold behavior in the dectroe energy is of course o ct:k~1 ', to
the extent that this is not overwhelmed by the Gaussian in (5.19).

V'. DISSOCIATIVE ATTACHMENT TO AN
ATTRACTIVE POTENTIAL CURVE

(VERTICAL ONSET)

It has been tacitly assumed that the resonance-
state s potential curve is purely repulsive as in Fig. 1.
It should be clear, however, that the analysis goes
through in exactly the same way if the potential curve
is attractive, as in Fig. 3, provided only that the elec-
tron energy is above the threshold energy E& for the
process to be energetically allowed. Below the threshold,
the cross section must vanish. Above the threshold, the
analysis leading to (5.19) and (5.24) is unchanged.
Accordingly, Rapp and Briglia'4 recommended that the
cross-section curve should be found in the same way
as for the purely repulsive case and simply erased below
the threshold energy E~, resulting in the vertical onset
of the cross section at that energy as shown in Fig. 4.
This is undoubtedly the correct practical solution to
the problem.

One might wonder how this is reconciled with the
quantum-mechanical threshold laws, according to which
the cross section for a given rotational state J,should
go to zero at E~h, according to the law"
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the JWKB approximation to trace the function out
to R —+~, it was assumed that there exists only one
turning point, R~. However, for attractive potential
curves, the centrifugal term Eg will produce a small
hump in the potential curve Vy at the large R as shown
in Fig. 3. Then if the electron energy lies above the
threshold by an amount small compared with the cen-
trifugal or rotational energy, there will develop two
additional turning points at R~ and R2 a,s shown in
Fig. 3. A more extended semiclassical treatment of the
wave function at these turning points would then be
needed in order to derive the threshold laws.

We shall content ourselves with finding an indication
of the approximate range of energy (relative to the
threshold) in which the threshold behavior would be
relevant. To get an idea of this, assume that the long-
range interaction between A and 8 is given by the
polarization potential

V p (R) —e'rr/2R', (7.2)

where e is the polarizability of 8. There will be turning
points in the radial Schrodinger equation at large R if
the momentum E(R) vanishes, where asymptotically

(J+-:)' ~"
E(R)'= —

i (8—Vg) IP +-
as) Rs asR4

The necessary condition for E'(R)' to vanish at some R
is that the discriminant of the quadratic in R ' be
positive, i.e.,

O'E' h4(J+-,')' 3.4(eV) (J+-',)'
E—Ei—— -(- — = — . (7.3)

2p 8p'e'n (p/m, )'n(a. u.)

Now, since p/m. 920A, where A is the average atomic
weight, it seems from (7.3) that the region of the
quantum-mechanical threshold laws will always be neg-
ligibly small except for enormous values of the rotational
quantum number J, and so the vertical onset approxi-
mation should be quite good. This is consistent with
the expectation that the motion of the particles A
and 8 is classical because of their large mass. Examples
of this phenomenon have been pointed out by Rapp
and Briglia. '4 They include the CO result at 9.7 eV in
addition to that for H2 at 14 eV. To these should be
added the H2 peak at 3.7 eV as well.

The vertical onset phenomenon should be especially
significant for the inverse process, associa, tive detach-
ment, i.e., A +8-+AB+e. Since in this case the T
matrix element for either process is a maximum when
A +8 have zero relative kinetic energy, the inverse
process should therefore go with large cross section
for thermal-energy particles, making it of practical
importance.

The isotope effect found by Rapp, Sharp, and
Briglia" for hydrogen, makes the mass dependence of

FIG. 4. Illustration of the
vertical onset phenomenon.
Only the portion of the
curve to the right of the
threshold energy E&l„repre-
sents an observable cross
section. The lovrer curve is
dravrn for a hypothetical
isotope with p, =4M, to il-
lustrate the isotope eBect
associated vrith vertical on-
set.

(5.19) and (5.24) of interest. Consider the more explicit
Eq. (5.24). The only mass-dependent quantities are
I'q (appearing in two places) and p. The mass depend-
ence of both of these is trivial and follows from Eqs.
(5.12), (5.10), and (5.20) together with (A15). It is

P~ cc y-~I4, p ac p,~i'2, (8.1)

where p, of course, is the nuclear reduced mass. The
I'~ term in the denominator of (5.24) therefore gives o

a p"4 mass dependence which is always present. If
E~EO and p is not large, this will be the only mass
dependence. ,

The presence of I'q' in the first exponent of (5.24)
makes the cross-section peak narrower for heavier
isotopes without changing the peak value significantly.
However, if the threshold for DA happens to lie at
E&s,))Es (this is the case of vertical onset discussed in
the preceding section), then only the extreme tail of
the Gaussian in Eq. (5.24) will be observable as in
Fig. 4, and the peak value of the cross section, i.e., the
value at E~~„, will be much larger for the lighter isotope.
Quantitatively, we see from (8.1) that the exponent is
proportional to p'~'. This is the probable explanation
for the isotope effect in the j.4-eV peak for H2, '4 which
is clearly a, ca,se of vertical onset. The negative-ion
resonance potential curve for this peak is probably the
one calculated by Taylor and Williams. 37 The mass
dependence of this peak was explained incorrectly by
Demkov" as being due exclusively to the survival
probability.

Finally there is the mass dependence of e & which is
Of exactly the same nature as that of the Gaussian
factor in (5.24) in that the exponent is again propor-

"H. S. Taylor and J. I&. Williams, J. Chem. Phys. 42, 406;l
(1965).



T. F. O' MALLEY 150

tional to tt't' by virtue of (8.1). If p is small, as it prob-
ably is for many molecules, there will be a negligible
mass dependence due to this factor. On the other hand,
if p is very large, the cross section will be correspondingly
small, and it will then be many times smaller for the
heavier isotope, as the result of (8.1). It has been
pointed out by BHM" that this is the probable ex-
planation for the isotope effect in the 10-eV peak in H~.
This suggestion was also made by Demkov. "

The 3.7-eV peak in hydrogen' must be a combination
of both the preceding eRects. It is clearly a case of
vertical onset, occurring right at the threshold, and
further, as a potential-type resonance (as opposed to
the compound resonance) I', is broad, ' making p large.
The extreme isotope eRect found by Schule and Asundi'
for this peak must be the result of both of these factors.

Finally, it is conceivable that p could be so large in a
particular case that the cross section given by (5.24)
would be smaller than that due to the relatively non-
resonant process postulated in Ref. 1 to explain the H2
results at 10 eV. A quantitative expression for this proc-
ess is being derived and will be reported subsequently.

E~= (&'/2t ) (~+p)'/R' (9.1)

to both initial and fina1 potential energy curves, V;
and Vp. The effect will be illustrated by considering the
@=0 cross section (5.24) and expanding Es about the
equilibrium point, through the 6rst derivative, i.e.,

Ej(R)—EJ(Rp) (2/Rp)Es(Rp) (R Rp)+ ' ' '. (9.2)

Es(Rp) is the so-called rotational energy. Since this
raises both V; and V~ by the same amount, it has no
effect (except to raise the threshold at which DA be-
comes possible). The effect of Eg's first derivative on
V, is to stretch the molecule' to the new equilibrium
distance

Rt ——Rp+ (2/ttto'Rp)Es. (9 3)

Es without an argument is used to mean EJ (Rp). The
effect of the erst derivative on Vy is to increase the

38 J. N. Sardsley, A. Herzenberg, and F. Mandl, Fourth Inter-
national Conference on the I'hysics of Electronic and Atomic Colli-
sions (Science Sookcrafters, Inc. , Hastings-on-Hudson, New York,
1964), p. 359.

39 VV. L. Fite, R. T. Srarkmann, and %. R. Henderson, Fourth
Interrtational Conference on the Physics of Electronic artd Atomic
Collisions (Science Sookcrafters, Inc. , Hastings-on-Hudson, New
York, 1964), p. 100.

40 Sce Ref. 30, p. 305 5,

9. EFFECT OF ROTATIONAL STATES

The temperature eGect found by Fite, Brackmann,
and Henderson" for dissociative attachment in hot O~

has raised the question of the eRect of rotational states
on DA.

Equations (5.19) and (5.24) already contain this
effect implicitly. The only dynamical eRect of rota-
tional motion is to add the centrifugal energy term

slope V' by the centrifugal force. The modi6ed slope is

Vs' ——V'(1+ (2/RpV')Eg). (9.4)

l3ecause of (5.12), I'a is multiplied by the same factor.

I'as ——I aL1+ (2/R p V')Egj. (9.5)

The stretching given in Eq. (9.3), by changing the
equilibrium distance Rp, thereby changes the equi-
librium energy Ep by the amount

Epq —Ep ———V'(Rt —Rp) = —(2V'/ttpc'Rp)L's. (9.6)

Equations (9.6) and (9.5), which are to be substituted
for I'e and Ep in (5.24), give the explicit effect of rota-
tion on DA. Equation (9.6) shows a shift in the cross-
section peak to lower energy while Eq. (9.5) produces
a symmetrical broadening of the peak, in addition to a
trivial reduction of the over-all magnitude of 0..

Although these eRects could in principle explain the
temperature eRect in 02," a quantitative study shows
that they fall far short and are in fact almost negligible.
The quantities appearing in (9.5) and (9.6) are well
known for 02 except for V', The observed DA cross-
section width together with Eq. (5.12) shows that
V' 12 eV/ap, so that Eqs. (9.5) and (9.6) for 02
become, for E~ in eV,

I (jr' —I a (1+0.05EJ),
AEp ———0.5Eg.

(9.5')

(9 6')

jl. o. SUMMARY AND DISCUSSION

To summarize, the principal features of the present
paper are erst the very simple general formalism of
Sec. 3, appropriate to any rearrangement-type process
where there is a resonance state involved and the Born-
Oppenheimer separation is appropriate; second, the
derivation of the exact expressions for resonance dis-

The broadening is almost entirely negligible, even for
fairly high J, while (9.6 ) implies that the shift due to a
Maxwell distribution would be of the order of —,'kT,
also almost negligible.

The effect of rotation on the survival probability
e &'~t follows from substituting Eq. (9.4) into (5.20).
The exact expression would be sensitive to the details
of the curve and the variation of F, with R. However,
it seems that the change in p is of the same order as
that in I'e, as given by (9.5') for 0&, and is therefore
also negligible for this case.

One concludes then that rotational excitation does
not seem to be the cause of the temperature shift" in
02. On the other hand, a preliminary numerical study
of the effects of vibrational states, using Eq. (5.19)
with p constant, indicates that these account fairly
well for the enhancement of the very low-E cross
section except for the shift in the peak. A probable
source of this shift is the energy variation of p(E) in
Eq. (5.19) for v)0. A conjecture along this line has
been made by Demkov
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sociative attachment together with its inverse and
competing processes; and third, the formulas, Eqs.
(5.19) and (5.24), resulting from the "adiabatic" ap-
proximation for p~ as defined in Sec. 5. These latter
are in complete agreement with the result of BHM' for
the case (e=J=O) which they gave explicitly. The
effect of relaxing this approximation is also studied i'
Sec. 6 and various practical conclusions are drawn in
the succeeding sections.

An important qualitative distinction not emphasized
in the paper is that between compound-ion-type reso-
nance states, namely, an electron bound to an excited
target, as defined by Feshbach, and the potential or
single-particle-type resonance, i.e., an electron trapped
by a centrifugal (or Coulomb) barrier in the neighbor-
hood of the unexcited target. Calculations" and ex-
periments4' done so far indicate that the former are
always very narrow (I',(0.1 eV), while the potential
resonances could be much broader. A good example of
the latter seems to be the low-energy H~ resonance
at about 2 eV above the ground state which has been
observed through both vibrational excitation" and DA. '
This seems to have a width of the order of a volt. '
(See also Ref. 8.)

There is also a second kind of potential resonance
which is illustrated in Fig. 5 for R&R~~. This bears the
same relation to a compound resonance as an ordinary
potential resonance does to a true bound state, i.e., it
is an electron trapped (with positive energy) by a
centrifugal barrier in the neighborhood of an excited
molecule. Such a state would auto-ionize to an excited
target and a slow electron. This would correspond to a
continuum solution of Feshbach's QoHQe operator,
while a discrete compound resonance is a bound state
of the same operator. This second kind of potential
resonance has been invoked' to explain the 10-eV peak
in the DA results for H2, postulating a potential curve
as in Fig. 5 in analogy with the curves of Taylor and
Harris4' for the lowest state of H2 . The smallness of
the cross section and the isotope effect indicate that
this also must be very broad in the light of (5.24). A
practical difference between the two kinds of resonance
is the following. If all resonances were narrow com-
pound-ion-type states, then the survival probability e &

in (5.20) would never differ much from unity. DA would
then be a strictly first-order process of capture followed

by dissociation. This was the assumption of Ref. 1. On
the other hand, for broad potential-type resonances,
e & may be extremely small, and must therefore be
carefully considered.

Another point about broad resonances is that when
one becomes very broad, the advantage of treating it

4' P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962);
P. G. Burke, D. D. McVicar, and K. Smith, Proc. Phys. Soc.
(London) 84, 749 (1964}.

4' C. E. Kuyatt, J. Arol Simpson, and S. R. Mielczarek, Phys.
Rev. 138, A385 (1965). References to other measurements may
also be found in this paper.

4' H. S. Taylor and F. Harris, J. Chem, Phys. 39, 1012 (1963).

CO
CCl

La&

—A+B

FIG. 5. Potential curves for a hypothetical negative molecular
ion, illustrating three different kinds of resonance states. The
lower negative-ion curve for R &R&3 is an ordinary potential-type
resonance. The upper negative-ion curve is a compound-ion-type
resonance for Rqi &R& ~, i.e., while it is below the excited-state
curve for the target (AB), and a potential resonance of the second
kind for R&Rgi. In the region R&Rg2, it does not differ signi6-
cantly from an ordinary bound state.

as a discrete state is reduced and it might be treated as
profitably by continuum methods. This approach is
presently being looked at, especially for the 10- and
3.7-eV peaks in H~.

All the experimental DA results" with the exception
of hydrogen are consistent at least with the interpreta-
tion of compound-ion-type resonances with widths of
the order of hundredths of volts. Although very small
survival probabilities are ruled out by the magnitude
of the cross sections, p's of the order of 1 or 2 or so are
certainly not impossible. For the case of dissociative
recombination, it is trusted that both F and p will be
small in general, so that the process will be of the simple
first-order variety just referred to.

Finally, although the present theory was derived only
for diatomic molecules, the experiments show that the
CO2 and N20 results are not greatly different in mag-
nitude or energy variation from those for most di-
atomics, suggesting that the same theory may explain
both. It has been pointed out4' that if the nuclear
motion of polyatomics is analyzed into normal modes,
then each normal mode behaves like a diatomic mole-
cule, so that the present theory would probably be
applicable here also.

APPENDIX: ASYMPTOTIC EVALUATION OF
NUCLEAR WAVE FUNCTION g AND OF

THE OVERLAP INTEGRAL

It is desired to evaluate the overlap integral

S= dEx(A')x„(E).
'4 See first paper of Ref. 34 and other references given there,"P.J. Redmond (private communication),
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g=o/R) SI/ =QE~~ (A3)

is defined. In terms of x, and using (A2), the dimension-
less form of Eq. (4.15) is

[d'/dx'+X(x —xe+ig) jX(x)=0, (A4)
where

and
P. = 2/i V'/h'n' =Fe/ke~,

g =p F /A-'cx-'h =F,/Fg.

(A5)

(A6)

Fe is given by Eq. (5.12).
Ke consider the quantity X to be large and look for

an expansion of X and of the overlap integral 5 in
powers of 1/X. For the purpose of finding the expa, nsion,
consider4' the Fourier transform of X, defined by

1
X(x) ye(z xi g)jf(gP—)dP2—

(A7)

between the continuum function4' X determined by the
partial-wave solution of Eq. (4.15) and the discrete
vibrational wave function X„, and to look for an asymp-
totic expansion of the result in terms of some small
parameter. The X„are considered known. To evaluate X,
we first expand the complex potential V/+F+E about
the "turning point" R3 of its real part V/+6+E, i..e.,

E—V—Eg —V'(R ——Rg)+-', iF.(Rg)+, (A2)

where V' is the negative of the slope of V/+6+L~'~,
and Ez is the centrifugal energy (9.1). The varia, tion of
F, with R has not been considered, nor have higher
derivatives of V~.

To produce a meaningful expansion, the wave func-
tion X should be written in dimensionless form by
choosing a unit of length. The only natural unit of
length associated with the overlap integral (Al) is
o. ', the zero-point amplitude" of the oscillator X„
which is given by Eq. (5.10). This is the distance over
which any X„changes by a significant fraction of itself.
Accordingly, the dimensionless variable

Now if P, —&~, we note that the second exponential
in (AS) becomes equal to unity and X(x) becomes equal
to m times the familiar representation of the 8 function. 4'

Incidentally, from (A4) we see that the width of the
approximate 8 function is of the order hx 1/X. This
6-function behavior of X amply justifies the linear ap-
proximation made in (A2) for any reasonable X.

To obtain higher terms in the expansion in 1/P, the
second exponential in (AS) may be expanded. Further,
it is recognized that the quantity p' is equal to id—'/
dxg' operating on the first exponential. Expanding then,
making this replacement, and exchanging orders of dif-
ferentiation and integration, we 6nd

00

X(x) =— [1 iP"—/3X+O(1/V) je'"&* "e+'"dP
2—

=z-[1—(1/3X)d'/dxii'j8 (x—xg+ig)
(A10)

go(1/X')

00
Z -i/2

5= X'"'X.dR. = — [1—(1/3X)d'/dx/')n '"
2

XX„(xz—ig), (A12)

(A10) is the desired expansion, through first order in
1/iX, of the function X, aside from normalization. The
proper normalization of X is given by Eq. (5.6). In
order to make the connection, it is most convenient to
start with the form (A9) a,nd trace it out to R= ~ by
means of the JWKB approximation. 4' One then finds
that X as delned above must be multiplied by the factor
(2n /s' F)e' /sin order to agree with (5.6). Calling the
properly normalized function X&"), we have

Xi"&= (Q/isFe)i/s[1 —(I/3$)ds/dx@qb(x xs+—ig) (A11)

through order 1/X for the properly normalized X. Note
that 8(R RE) =nb(x ——xz). Substituting (A11) into the
overlap integral (A1), and remembering (A3) gives

Because the g term generates a real exponential, for
convergence x must be restricted by the condition
Im(x) = ig This —requ. ires that the path of the overlap
integral (A1) involving x be deformed accordingly.
Substituting (A7) in (A4), f(p) is ea,sily found, giving

00

X(x) =— exp[ip(x xg+ig)—] exp( ip'/3X)d—p (AS).
2—

Equation (AS) is of course an Airy function. "Before
proceeding with the expansion, we note that the Airy
function defined by (AS) is equal for x&xz, to

X(x)= -,

'aery.

(x—x +ig) j'/'[J /, (()+I= / ($)1, (A9)

where $ 'X ( i/—xxs-+ig)s/'

'6 x corresponds to the function Ny of Ref. 5.
"K.C. Stueckelberll, Phys. Rev. 42, 522 (1952).

X„(*)=X,(x)—(1 /3l )X„"'(x),
"See Ref. 30, p. 51.
4' Reference 30, p. 190„

(A13)

again through O(1/X). Equation (A12) is the most
general expression to first order for the desired overlap
integral for all v and E. The quantity o. '/'X„ is dimen-
sionless. If X„ is taken to be a normalized function of the
dimensionless variable x rather than normalized in E
space as has been assumed, the n '" drops out. Nor-
malization in x space will be assumed from here on and
the ~-~/2 dropped.

The first term in (A12) is the delta, -function approxi-
mation, with the argument of the vibrational function
X„shifted by the imaginary quantity —ig. The second.
term represents the small deviation from this 8 function
to first order in 1/li. If we define the function
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then the overlap integral may be written

~= (2I'~) "X.(zs v-g)

(A14) is the desired result.

The phase shift b also follows by tracing the solution
(A9) out to inanity via the JWKB approximation ln
the same way. This has previously been done by BHM. '
The result is

(A19)

v '" expL —(y+1/X)'/2j+0(1/X'), (A20')

y =x@—sp —'Lg,

and xo——PRO with Ro the equilibrium distance.
For v=O, (A18) becomes

xo= '"L1—(y—3y')/~j exp( —y'/2)

8= lim
g~w

(2&t Z—V,—~+-', vr. (R))/a2
RE—ig/a

—(J+,')'/R'} -"dR ER+—(J+-,')7r/2, (A15)

where E= (2pL&'/A')'". The imaginary part 2p of 8 is
of special interest. BHM have indicated that if j.' is
not too large, the square root may be expanded to give

I 1P
Rc I' (R)dR

r&, v (R)
(A16)

where v(R)=$2(E—Vf 6 Eg)/p]'—" is—the relative
velocity. R, is the distance where the width F, goes to
zero, generally where the resonance curve Vf crosses
below the curve of the target state into which it auto-
ionizes (see Fig. 5 or 1). Alternately, since the width
F, must fall to zero rapidly with large R, the integral in

(A16) may converge before R, is reached.
An analysis of (A15) shows that the approximation

(A16) requires tha. t I',/2 be small compared. to the
difference Vr(Rs) —Vr(R, ) in order to be valid. The
latter quantity is typically a few eV.

Returning to the overlap integral, (A13) may be
made more explicit if it is assumed that the X, are
harmonic-oscillator functions satisfying the equation

d'x„/dy'= (y' —2v —1)X, . (A17)

x, then becomes

x„=X„(y)—(1/3X)L2yx„(y)+ (y' —2v —1)X„'(y)j, (A18)

2
Dy = ——2v+ 1—y'+

3X 2v+1 —y'
(A21)

where y is now the coordinate of a particular maximum
or minimum in X,. In addition to being shifted, it is
evident from (A18) that the magnitude of X, is altered

by the factor (1—2y/3X). This equals unity only for
the peaks centered (in zero order) at y=0, as in Eq.
(A20') for v =0. It is clear from (A21) Las from (A13)j
that the deviation of x. from X, is approximately pro-
portional to the local kinetic energy" of the function,
and in fact an analysis of (A18) shows that this devia-
tion vanishes very near to the classical turning points
of X„.

where the latter approximation holds for y'((3, i.e., in
the broad neighborhood of the peak at y=0. The devia-
tion from the 6-function approximation in this case is
purely an additional real shift hy = 1/X in the argument
of the function xo(y).

For v&0, X„has v+1 peaks and is synnnetrical or
antisymmetrical about y=0. There is no such simple
expression as (A20') for the general case. Each of the v

peaks on either side of the origin is shifted by a diGerent
amount, and in addition the magnitude of the peak is
generally altered to 6rst order. The amount of the shift
of a given peak from the complex 8-function approxi-
mation may be easily calculated by setting the first
derivative of (A18) equal to zero, using (A17), writing
X„&=x,«hx~;, and l.eeping first-order terms in 1/X. The
result is


