
squares 6ts (together with the sum rules). The resulting
parameters are not appreciably affected by the presence
of thc ne~ data. This seems to mean that the parameters
cannot be modi6ed in such a way as to 6t the data on
the real part without destroying the accord with the
sum rules and with the data on the total and charge-
cxchangc cross sections. Thc intl oduction of a third
Pomeranchuk pole does not improve the situation.
More accurate experimental data on the real part of the
amplitude are needed for a conclusive analysis.

Conchlding wc think that our best Gt No. 8 gives
the most reliable values of the parameters which can be
obtained from the Regge-pole hypothesis and the dis-

persion relations without using the cross sections at
no@vanishing momentum transfer. The values obtained
for the parameters a; are given in Table III.
Note added sg proof. Note, however, that J. Scanio
[University of California Radiation Laboratory Report
No. UCRL 16766 (unpublished) j obtains a large value
for rr& (0), namely, 0.69.
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The sum rules relating the axial-vector coupling constant to 21.x and mN total cross sections are derived

using the commutation relations between the chiral currents x+(t) and x'(t) The s.um rules obtained are the

same as those obtained by other authors using the commutation relation between x+(t) and x (t). It is also

shown that the assumption of the existence of the 0. meson as a scalar unitary singlet helps in saturating the

+m and Eg sum rules. A definite conclusion cannot be arrived at about the existence of o. meson from the
21.x sum rule, since the sum rule can equally well be saturated by postulating a large low-energy 2r21- scattering
in I=0 state, but the EE sum rule does seem to require the presence of a particle with properties similar

to those of the 4r meson. SU(3) symmetry is assumed in the latter case.

L DTTRODUCTION

' 'N the recent past, some interesting sum rules for
~ - hadrons have been derived by various workers'~ on

the assumption of the partially conserved-axial-vector-
current hypothesis (PCAC). s ' These sum rules, as in the
case of Adler' and Keisberger, ' have had spectacular
success in the calculation of g~, in remarkable agreement
with experiments. Here the information on the total
w+p and w p scattering cross section is used as input.
In other cases, like mx scattering, reliable information on

total cross section does not exist, and one can use the
sum rules with the experimental value of g~ as input
to deduce the size of the xx scattering cross section.
Such sum rules have been investigated by authors in

Refs. 1-4. The purpose of the present paper is twofold:
First, to show that the same sum rules as those of
Adler' can be derived. using current commutation
relations which have not been exploited so far (the
reasons will be evident later); second, to see if a
scalar unitary singlet makes sense when put in the sum

rules for the ~m and EE scattering.

' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.
140, 8736- (1965}.' W. I.Weisberger, Phys. Rev. Letters 14, 1047 (1965);Phys.
Rev. '

3.43, :1302 (1966).
~ L. K. Pandit and J.Schechter, Phys. Letters 19, 56 (1965).
' V. S. Mathur snd L. K. Pandit, Phys. Rev. 143, 1216 (1966).
' M. Gell-Mann and M. Lbvy, Nuovo Cimento 16, 105 (1960).
' Y. Nambu, Phys. Rev. Letters 4, 380 (1960}.

Sections II and. III are devoted to the derivation of
xm and EE sum rules, respectively. In Sec. IV we have
looked into the implications of thc cxlstcDcc of a
scalar unitary singlet (the o meson) with regard to the
sum rules. In Sec. V the mX sum rule of Adler' and
Keisberger' has been rederived using a di6erent current
commutation relation.

II. ee SUM RULE

The notations for the currents and. "charges" will be

A '(t) =s d'x[V '(x t)]e

Bts(t)=s d' Pa' (tstx)js,

where V and I'~ are the vector and the pscudo-scalar
octet of currents. The commutation relations assumed
are Sr V

)

[Aj '(t),A t'(t) $= btsA t'(t) bt'Ate(t), —

[8'(t) Bts(t)) =b'A &'(t) —b, 'A '(t)
with

A '(t) =I+(t), Est(t) =x+(t),
Ats(t) =I-(t), Bts(t) =X-(t),

At'(t) —As'(t) =21s(t), 8,'(t) —Bss(t) = 2xs(t)
'I M. Gell-Mann, Physics I,"63 (3.964}-;-
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-we have

I x+(t) 7t (t)3=2I'(t)

L7~'(t) 7~+(t)/=I+(t),

Lx-(t), x'(t))=I-(t).
The PCAC hypothesis implies that'

d v2M~M gg—x+(t) = d'x q+(x),
g+w NN (0)

E &~ (q& II+(0)
I
~&&~IIs(O) I~-(q) &h(W —M„)

(10) int
dX'(t) MvM 'gg

~pa s s(x).
dt gE ~N(0) 28'

ImT s s(0=180',W)
Adler' (using the technique of Fubini and Furlan') and
Weisbergers used the commutation relations of Eq. (6).
It has many virtues, mainly those of simplicity and
convenience. We have, in this paper, used the com-
mutation relation of Eq. (7). The ensuing calculation
is not as straightforward as that with Eq. (6), but the
same sum rules can still be obtained.

We take the matrix element of the two sides of the
equation between &s.sl and Is. ) states. Note that with

is related to the imaginary part of -the scattering ampli-
tude &ss(q'), 7r-(k'), out Is'(k), s.—(q), in) by con-
traction over the x'-field in the "in" state and the

(7) s. -field in the "out" state. The imaginary part of this

8 amphtude can be written as a sum of partial cross
sections. Due to the fact that, in the center of mass, we
are dealing with a m thrown backwards, the partial
cross section ir~(W) will appear with a factor (—1)~.

A simple partial-wave analysis with x' oG the mass
shell gives, for the second bracket of Eq. (13),

we have

s.+= (1/V2) (1,"i,0) and s'= (0,0,1),

I+(t)
I
~-)=vol ~'),

I+(t)
I
s'&= —V2

I
s+&.

With the relativistic normalization of single-particle
states, the right-hand side of Eq. (7) gives

&s'(q')
I
I+(t) Is (q)) =%2(2s-)s2q its(iI' —q) . (12)

Treating the left-hand side in the same manner as
done by Adler, ' we get, in the limit qo

—+ 00,

MN gA
K2 (2m) s2q%'(q' —q) dWQ

g Q ~NN(0) ssr~ int

5(W—M„)
X {&ir'(q') II'(0) IN&&isla+(0) I

s'-(q)&
(M '—M ')'

—(+(q') II+(0) I~&&~II'(0) l~ (q)&} (13)

The second term in the brackets of expression (13) is
not the imaginary part of the x+~ scattering amplitude
in the forward direction because it is not x which has
momentum q in the final state but rather x'. What we
have is in fact the imaginary part of the backmard
scattering amplitude. Consequently, all partial waves
will not enter the sum rule with the same sign but we
except a factor (—1)~ to enter the sum rule with the
partial cross sections o~(W). This can be seen better by
realizing that

2 &e(q') II+(0) l~&(~les(O) l~-(q)&

S. L. Adler, Phys. Rev. 137, 31022 {1965).' S. Fubini and G. I"urlan, Physics 1, 229 (1965).

ImT +,„(0=0,W)=~+ &~'(q)l I'(O)ln&
in~ 2M„

X&&IJ+(0) I~-(q)&3(W—M.). (15)

A partial-wave analysis gives

ImT + ss(t)=G, W)=
8s (W' —M ')

3g

X (sin'5 i'i —sins', "') . (16)

The sum rule finally reads

Mp"-gg' 1 -"- de' 4w
1=

g'Es s ii (0) s. 4'.~ W' —M,' q'

&(I 3 sin'3„&'&+ —, sin'3, 's' —-', sin'3, i'i]. (17)

This is Adler's sum rule. ",

III. XK SUM RULE

A sum rule for EE scattering can be made if one
makes the hypothesis that

cjs(Ps )s= Crr &px+ q (18)
"Adler's equations (73) and (77) Lsee Ref. 1$ are in error insofar

as he has s'o" instead of (3/3)0". This does not change his conclu-
sions. I wish to thank Dr. S.L. Adler for a private communication.

(W' —M s)2W4s.—(sin'h, ts& —3 sins' oi) (14)
g

where 8& & represents the phase shift in isobaric spin
state I and the partial-wave summation is restricted
to the 5 and the I' waves only.

As for the first term in the bracket of Eq. (13), it
can be related to the imaginary part of m vr+~x'm'
in the "forward" direction. One may note here that
because of the indistinguishibility of the final state
particles there is no distinction between the "forward"
and the "backward" scattering amplitudes. Conse-
quently, only even partial waves will enter the sum
rule due to this term. In fact
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where q~+ is the Z+ Geld. The value of C~-determined Above the EE-threshold with K meson on its mass
by working out (A I 8„(Pst)„lp& in the same way as done shell and in the center of mass, we have
by Adler' is

g~'(MIv+Ma)Mxs
Cz= —--

First we shall work out the single-particle contribu-
tions. Here we invoke SU(3) symmetry as an additional
assumption. The well-established resonances that can
contribute to the summation below KE threshold are
the p and the co mesons. The physical co and y states,
labeled

I to& and
I tp&, are mixtures of a pure unitary

singlet tto ) and a pure unitary octet state
I

&p'&. This
mixture ls written as

l~'&= l~&cos(l —I ~&»nfl
(22)

I
&'&=

I &&cose+ leo&sine.

The coupling of the co and y states to the EE'. system
is given, in SU(3) scheme, as"

g~xz=+gl xz stn(l,

g„xff=v3g, zg cose,
1gPZR= ggP2f m ~

(23)

In the limit s ~ ~ (we have put the E meson on its
mass shell, and we hope that the o6-mass-shell factors
for the pEE and the EAPvertices largely can.cel each
other out), the contribution of the &o and p meson is

Now taking the expectation value of

L~'(f) ~I'(g)j=~r'(g)-~s'(g)
= I+e

between E+ states, and following Adler's procedure,
one gets a sum rule

fgga(Mrr+Ma)Mzsg' 1 " dW'
2—

Gaxrs w 4srx' (Ws —Mz')

X (oz+z (W) -ox+x—+(W))+ (single particle

contributions below EE threshold). (21)

«'z (W)= -I ~.™—(W)+o' '(W)+F(W)~o' (W)j
q2

(26)

where F(W) is the off-the-mass-shell correction factor.
From threshold arguments similar to those of Adler's,

F(W) =E' (0)q'(0)/q',

wllclc q(0) 1s tllc magnttude of tllc 3-momentum 111 tile
center-of-mass system vrith Mz ——0. An estimate of
F(W) gives

F(M&)=SEaxp (0).

Assuming tp meson dominance in the I=O, p state,
@re have

12rry„sq'/(q'+Mz')

d'or~(W)=

(M' Ws)+&.'q'/—(q'+Mx')

= 12 ytr„b (W' M,') (2—9)
(qs+M 2)1/2

in the narrow resonance approximation. The relation
between the reduced width y„and g„~g is" "

2 gy~g 2gpx. g cos 8
VfP

3 4~ 4m
(30)

~ -(W)= —,Z."-'+Z."- .
q I L

We shall retain only the 5 and the I' waves. Further
we shall approximate the P-wave scattering in I=o
state by the tp-meson pole and neglect the P wave-
scattering in I=1 state. We get, with E meson o8 the
mass shell,

-Mp' —2&If-.' M„'—23'~'
C sg z&s

'
+3s;nrem

"
(24) The sum rule, with the inclusion of the to meson,

(M,s—Mz')' (M„'—Mz')' Anally reads

(tg,s(Mz+M, ))~ Ms —2-Mxs (M s—2Mxs) (M s—4Mxs)Its
2= g,xzs +3 sin'8 +F(M,)ss cos'8

GaxI s (Mps —Mx') (M„'—Mz')' M, (M„'—Mz')

dS"+-, L
' (W)+"-'(W)-.*".(W)3 (»)

4„xs (Ws —Mz')

"It is worth pointing out that some time sgo the present author made an estimate of g,xx from s.s ~EZ data LNucL Phys. 54,
242 (1964lj. Using g„'=40, somewhat larger than the presently known value, s value g,xx'=5 was obtained. If a more accurate
value g, '=25 is used gp~~' is raised to =8, in good agreement with 5U(3).

~ J.J. Sakurai, Phys. Rev. Letters 9, 472 {1962).
"R.F. Dashen and D. H. Sharp, Phys. Rev. 133, 81585 (1964}.
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4s y,'/(q'+M ')
0. '~(W)= (35)

(~ 2 +72)2+p mq2/(q2+ Jf 2)Rz~'(0)
14ICgrr p (0) (32)

What evidence there is for the existence of the 0.

meson suggests that its mass is quite close to the two-

pion threshold and the 0 resonance is not very narrow;
thus, a narrow-resonance approximation would not be
a good one. We carried out the numerical integration
of the left-hand side of Eq. (34) with

with a Il/D mixing parameter f=0 35 T. he. off-mass-
shell factor E~rr~(0) drops out of all our numerical
estimates because of our o8-mass-shell correction. We
shall simply ignore it. Using the p —~ mixing angle"
such that sin'8=0. 38 and cos'=0.62, we get 3f =3M,

(36)I' =70 MeV,fg~J'(3E~+Mg)j2 1 " dW'
2 = 0.45+

G~zs' ~ 4~~ ~—~z' implying

(37)2 ~

Numerical estimates can now be made. The value of assumption
gz" is known reasonably welP' to be =0.83, and SU(3)
gives

XLa ~(W)+r ='(W) —o.rc+rr+(W)]. (33)

One might be tempted to conclude that there is a
large S-wave EE scattering. We shall see, in the next
section, that this is not necessarily so.

A work of caution must also be spoken. Because of
the relatively large mass of the E meson, the off-mass-
shell corrections, in the absence of a better way of
handling them, become somewhat unreliable. The
question we now wish to investigate is: Does the assump-
tion of the existence of a scalar unitary singlet, the
o meson of Brown and Singer, "help us in any way with
the mx and EE sum rules' implying

3f =2.67M,
1',=80 MeV,

(38)

The estimate of the left-hand side of Eq. (34) was
=0.6, not in very satisfactory agreement with the
right-hand side of Eq. (34). Evidently either a much
broader resonance must be postulated or the position
of the resonance must be pulled closer to the two-pion
threshold. The numerical estimate turns out to be
very sensitive to the variation in the position of 0-

meson. We evaluated the left-hand side of Eq. (34)
with

p(r 2 ~ (39)
IV. A SCALAR UNITARY SINGLET AND

THE SUM RULES

4M~' 1

g~x~ 2x
-'0- I~=0.9.

TV' —3E '

We now assume the existence of a scalar unitary
singlet, the 0- meson, which we shall identify with the
particle postulated by Brown and Singer. " We can
work out the left-hand side of Eq. (34) with the

'4 R. P. Feynman, in Symmetries Az E/emerftary Purtic1e Physics,
edited by A. Zichichi (Academic Press Inc. , New York, 1965),
156-157.

"L. M. Brown and P. Singer, Phys. Rev. Letters 8, 460
(1962); Phys. Rev. 133, 3812 (1964).

' H. J. Schnitzer, Phys. Rev. 125, 1059 (1962); J. Kirz, J.
Schwartz, and R. D. Tripp, ibid, 126, 763 {1962);N. Schmitz,
Nuovo Cimento 31, 255 (1964); A. N. Kamal, Ph.D. thesis,
University of Liverpool, 1962 (unpublished).

First consider the mx sum rule. It appears beyond
doubt that the S-wave scattering length in I=2 state
is small. " It may be reasonable to assume that the
contribution of the I= 2 state to the sum rule is small.
We shall neglect it completely. Adler' has made an
estimate of the p and the f mesons to the 7r~ sum rule,
giving, with our assumed neglect of I=2 scattering
/the reader is referred to Adler's equation (77)7,

+= 2&g &Pt P+&g re& PZ Prr
1'

then by SU(3) symmetry

goZZ= go~~

(40)

(41)

The additional contribution to the EE sum rule is
then

with

Lg~'(~~+~~)]'

~wz p

go XX go KX-2 -2

04
(3frr' —M,')'

(42)
4~

G~rrr'/4~= 14,
M,=2.67.

(43)

If we now assume the 0- meson width to be =70 MeV
we get"

g. ,'/4~ =5. (44)

The 0 contribution to the sum rule is hence =2.0.

'~ L. M. Brown and H. Faier, Phys. Rev. Letters 13, 73 (1964).

The estimate for the left-hand side of Eq. (34)
was =1.4. This is not in disagreement with the sum
rule considering that we neglected all I=2 scattering.

The 0- meson will also couple to the EX system. If
we assume the interaction
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One might well ask if the assumption of a nonresonant
S-wave scattering in the xx and EX systems will not
make large contribution to the sum rules just as o- meson
does in xw case and in KK case. We look at the xw case
first. We make the crude but (we hope) adequate
zero-range approximation

g
cot&«) =-

(g2+/lf' 2)1/2

The fact that the integrals are expected to be dominated

by the low-energy regions makes this assumption a
fairly good one. With this approximation we can write
Eq. (34) as

4MN' 16
ln =0.9. (46)

g.Nr/' 3 ~ '(1—3/2"") 3(1+o"")

A value of
I
a+&

I
=0.93II ' satisfies Eq. (46). Hence as

far as the xm sum rule is concerned a large I=O scat-
tering length will serve to saturate the sum rule just
as well as the 0 meson.

If we try to do a similar calculation for the EX
scattering, we do not have the same degree of success.
Again let us assume a zero-range formula

The evaluation of the EE sum rule is more vulnerable
to criticism owing to the largeness of E-.meson mass
and the uncertainties of extrapolation from zero mass
to the physical mass.

As for the 0 meson itself, no xw calculation that does
not assume its presence from the start has succeeded
in producing a low-energy S-wave resonance. In fact
the dynamical calculations of mx scattering are weighted
in favor of repulsive S-wave (I=O) phase shifts, even
though the semiphenomenological calculations on xx
scattering using experimental xS data seem to imply
strongly attractive S-wave (I=0) phase shifts.

V. THE mN SUM RULE

The sum rule relating g~ to the total cross section
for 2r+p and 2r p can also be obtained using the com-
mutation rule of Eq. (7). Here we use the phase con-
vention of Bethe" for the Clebsch-Gordan coeKcients
to be consistent with Eq. (11).Taking the matrix ele-
ment of Eq. (7) between (Pl and I22& states one gets,
after some manipulations of the kind already indicated
in Sec, II,

~NgA
2g'(22r)26 (q' —q) =V2

gx(o)

so that

g
— cotb(~) =-

(q2+ /i/t' 2)1/2

V(/7 —+ 0) = —arq
M~

(47)
1 1

X (2~)'b(q' —q) g
2.2V' (C' —C'r)'

Q=gj

x I &p(v') I
s (0) I ~&&~ Is+(0) I ~(~)&

—
&p V) I

s+(0)
I q&&q I

J'(0)
I ~(v) &3, (51)

the sum extending over both discrete states and the
continuum. The discrete states contributing are a
single proton state and a single neutron state. With

then, with the S-wave dominance,

1 " dR"
rm(W)+. 1rr=& (W))

4~~~ ~'—~Z' M~'

The contribution to the sum rule with

1 (J2(0) ~

(
(4 0 I/&)1/2 (Jy (0)P

ln + (a&'& a&" I. (49)
1—3/2(0)2 3 (1+a~2&2)

, ~ (q'-q)
2g&L4' —V)'], (»)

2M

is only =0.38. If we raise I/2"&
I

to =6M ', this con-
tribution increases to =0.55. It looks extremely un-

likely that a reasonable choice of
I

a&'&
I

and
I
ao&

I
will

contribute significantly to the sum rule vrithout any
aid from the a meson.

Our calculations, hence, show that the assumption of
the existence of the 0. meson with the position and width
suggested by the vrork of Brown and Singer" is not in
disagreement vrith the xx and EK sum rules. In the
xm case, there is no way of distinguishing the eGect of
the 0 meson from a nonresonant scattering with a
large scattering length. The EE sum rule, however,
cannot be saturated unless vre do postulate the 0. meson.

we get (note that for the 2r22222 vertex —g should be
used) for the discrete part of the sununation

fif~g~ 'rgE: '(»-—«)'
v22q'(22r)'b'(q' —q) 2@2 I, (53)

gK - (2M (/7o —q')2

which in the limit qo
—+ ~ reduces to

2g(2~)V (q' —q) g~2 (54)

This, apart from the diGerent normalization of the
states, is the same quantity as that appearing in Adler's
and Weisberger's sum rules. ' '

' H. A. Bethe and F. DeHoGInann, Masons and Fields (Row,
Peterson, Inc., Evanston, Illinois), Vol. II, Sec. 31(g).
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-M~gg '2%2
V2(2s )'8'(q' —q) 2Ito

gE — 3x'
v2 (2s)'2. q'8'(q' q—)

The contribution of the continuum can be written The continuum contribution finally reads
as follows:

8(w —M, )dwp—
gK s(„+)s. (~~ (Mtm —M'~')'

x{&p(v') lz~(0) li&&ilz+(0) I~K)&

—&p(v') I
~'(0)

I J&&il ~'(0)
I ~(v) &) (55)

[Imj'~2 (8=0)—ImT~12(8= 0)]. (62)
(W' —MpP)'

To make identiication with s.+p and s=p cross sections,
one notices that charge independence implies

One notices at this stage that ImT +„,+~(8= O, W) =ImT'~'(e=o, w), (63)

2 &p(~') l~ (o) l~&&~Is+(0) l~(~)& (56)
q=q.

is related to the imaginary part of the forward ampli-
tude (zero momentum transfer across the nucleons) for
s.+e-+m'p. The precise relation in the center-of-mass
kame is

2S'
ImT„. „.*(e=O,W) =g &P(&') IS'(0)

I J&
int

ImT -~ -~(e=o,w) =-', [ImT'"(8=0,W)
+2 ImT'/'(8=0 W)], (64)

so that

ImT' '(8=0,W) —ImT' '(8=0,W)
=-,'[ImT -~ -~(e=o,w)

ImT +„—+~(e=o,w)]. (65)

The use of optical theorem (we are treating the s meson
off its mass-shell) now gives

ImT ~ „(8=0,W-) = (-W' 3f)r')o „(W—). (66)-

~KgA DV'
(2(to) (2s)'83(q' —q)

gE — K (M~+~ ) W

Afar

1
I
«+&=—

L
—Ik, 2&+v212 2&]

v3 X[o —,(W) —o. ,(w)]. (67)

Using charge independence and the phase convention Making use of Eqs. (65) and (66) in Eq. (62), we 6nally
of +cthe, the I«+) and lp~'& states are written as get the continuum contribution

(states
I I,I3) are eigenstates of 12 and I3):

1
I
p~'&= —[v2I l, l&+ lk 2&].

Equations (58) and (59) imply that

v2
ImT„. „.*(e=O,W) = ——[ImT ~ (8=O)

3

In the same manner

v2
ImT„~ „.-(8=0,W) =—[ImT'~'(8=0)

3
—ImT'~'(8= 0)].

(59) The sum rule is hence

-3f~gA '2 dS"
1=g~'+

gE s- ()s.„+jr.) 2 W' iV)r'—
x[ .-„(w)—.;(w)—.,(w)]. (6s)

This is the same equation as that of Adler' and
Weisberger'.

Note added in proof. If o meson was treated as an
isosinglet member of a scalar octet then g,~g= —

~g „
and the O.-meson contribution to the EE sum. rule
would be cut down to 0.5. Some errors in the unpub-

(61) lished version of this paper have been corrected.


