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Regge-Pole Phenomenology and Forward Disyersion Relations

M. RESTIGNOLI, L. SERTORIO, * AND M. TOLLER

(Received 10 May 1966)

Six sum rules derived from forward dispersion relations are used to improve the analysis of the forward
m-N, E-N, and K-N scattering amplitudes in terms of Regge poles. A numerical analysis shows that these
sum rules are not in disagreement with the available data regarding total cross sections and forward charge-
exchange differential cross sections. It is also shown that they are rather eftective in improving the accuracy
of the determination of the Regge-pole parameters. The position of the second Pomeranchuk pole and the
possible existence of a third vacuum singularity are discussed.

ECENTLY, Phillips and Rarita' have shown that
the available data on m.-A, E-E, and E-lV scatter-

ing at high energy and low momentum transfer can be
fitted using a five-Regge-pole model. These authors
have determined all the Regge-pole parameters from the
analysis of the high-energy experimental data, taking
into account the theoretical constraints.

Our aim is to exploit some additional independent
information, deriving from another-firm source of con-
straints, that is provided by the forward dispersion
relations. Thus, confining ourselves to vanishing mo-
mentum transfer, we are able to write some relations
between the Regge-pole parameters and the low-energy
scattering data. We shall show that a considerable
amount of information can be extracted from these
relations.
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The method we use is a modification of the method
used bv Igi' ' to prove the necessity of introducing a
second vacuum pole. We start from the assumption that
above a certain energy both the imaginary and the real
part of the forward amplitude can be written as a sum
of Regge-pole contributions4. The expression that we
use is the following:

TABLE I. Evaluation of the right-hand sides of Eqs. (2), {3),and (5).

Calculated
quantity

I(:

(GeV/i)

Contribution of the integrals (mb)
Physical Unphysical
region continuum Poles

Contribution
of D(y)

(mb)

Final
result
(mb)

4m—U(m+P)
kp

166.3&0.19 —0.65 —0.08+0.23 165.6+0.3

V(m+P)
&p

4'—U'(@+p)
kp

—19.8+0.2

125.7~0.55 6.5

1.24

—1.4 &3.2 17.2 &0.9

—18.6+0.2

148.0~3.3

v(a+p)
&p

4m.—U'(X+n)
kp

4
-—v(x+n)
kp

—84.4~1.95

213.7&1.12

—46.1&3.1 —1.7

0.9 %2.5

—1.4 &3.2

0.9 &2.5

7.4 +1.3

—89.2~3.2

121.6&3.6

—46.9+4.0

*Present address: Department of Physics, Iowa State Unversity, Ames, Iowa.
R. J. N. Phillips and W. Rarita, Phys. Rev. 139, 81336 (1965).

2 K. Igi, Phys. Rev. 13Q, 820 (1963).' K. Igi, Phys. Rev. Letters 9, 76 (1962).
4 Note, however, that W. R. Frazer [Phys. Rev. 131, 491 (2963)g has given some arguments in favor of the assumption

that the real part approaches the value given by the Regge-pole expansion less rapidly than the -imaginary part. Our point of view
is a somehow stronger interpretation of the Regge-pole model.
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where k and E are the momentum and the total energy
of the meson in the laboratory system, and F+(E)
=D+(E)+iI~(E) are the forward amplitudes for the
scattering of positive and negative mesons on nucleons.

In the model that we consider, n, for i=1, , e
means nr, ng. , orna, and for i =n+1, , rt+m means

a, or a„. A similar convention has been used for the
residues a;. Equations similar to Kq. (1) have to be
written for s.+-p, K+-p, and K+ ns-cattering. The

parameters n; are the same for the three cases, but the
residues u; are in general different. They satisfy some
relations due to isotopic-spin conservation, which we
take into account in our calculations, but do not write
here explicitly. In particular, for s+-p scattering we
have ag =0 and a„=0.

As shown previously, ' the consistency of Eq. (1)
with dispersion relations requires that the following
three sum rules be satisfied:
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where p is the meson mass and k= (E' y') 'l'—
Note that the functions I+(E) contain delta functions

which give rise to pole terms which have not been
written explicitly. In the case of K-E scattering, the
integrals written above contain also a contribution
from a nonphysical continuum. However, as can be
seen in Table I, the largely dominant contribution
comes from the physical zone, where the absorptive
parts are given by the optical theorem.

It turns out that the sum rule (4) is not useful for
our purposes because the right-hand side is a small dif-
ference between large quantities and therefore is
subject to a large error. For m-X scattering we use only
the conditions (2) and (3). For K %scattering, i-nstead

of condition (2), we use a linear combination of Eqs.
(2) and (4), which offers the advantage of being less
dependent on the properties of the absorptive part in
the unphysical region. The formula obtained in this
way ls

n k ~~ p n+m n; l' k

a=r n, ks ks a=+i n,—1(ks
= II'= s~D+(I )+s—

scattering lengths for E+-X interaction have been taken
from Stenger et ul. ~ The contribution of the hyperon
poles to the K pamplitud-e has been taken into account
using the effective pole residue given by Cook et al. '
The nonphysical continuum has been treated in the
same way as in Ref. 8, i.e., by extrapolation of the
amplitude below the threshold using the S-wave zero-
effective-range analysis of Humphrey and Ross. ' The
errors introduced by this procedure should be compen-
sated by the effective pole residue.

The pole contributions to the E-m amplitude have
to be evaluated by means of some hypothesis. They
vanish for isoscalar poles, and for isovector poles they
are twice the corresponding contributions to the Kp-
amplitude. We have arbitrarily used the same effective
pole residue used for the K-p case. A more detailed
analysis is not required for our purposes.

Besides the quantities U, U', and V, we have used in
our analysis the total-cross-section data of Galbraith
et al. ,

" the charge exchange rr-p differential cross
sections of Stirling et al. ,

"and Mannelli et al. '~ extrapo-
lated at zero scattering angle, and the forward differen-
tial cross section for the reaction K +p —+K +n
taken from Astbury et ul."

Ip(E) I (E)-
+ dE. (5)

s E—p E+p

~ V. J. Stenger, W. E. Slater, D. H. Stork, H. K. Ticho, G.
Goldhaber, and S. Goldhaber, Phys. Rev. 134, B1111(1964).' V. Cook, D. Keefe, L.T. Kerth, P. G. Murphy, W. A. Wentzel,
and T. F. Zipf, Phys. Rev. 129, 2743 (1963).' W. E.Humphrey and R. R. Ross, Phys. Rev. 127, 1305 (1962).

"W. Galbraith, E. W. Jenkins, T. F. Kycia, B. A. Leontic,
R. H. Phillips, A. L. Read, and R. Rubinstein, Phys. Rev. 138,
B913 (1965).

"A. V. Stirling, P. Sonderegger, J. Kirz, P. Falk-Variant,
O. Guisan, C. Bruneton, P. Borgeaud, M. Yvert, J. P. Guillaud,
C. Caverzasio, and B.Amblard, Phys. Rev. Letters 14, 763 (1965)."I. Mannelli, A. Bigi, R. Carrara, M. Wahlig, and L. Sodickson,
Phys. Rev. Letters 14, 408 (1965)."P. Astbury, G. Finocchiaro, A. Michelini, C. Verkerk, D.
Websdale, C. West, W. Beutsch, B.Gobbi, M. Pepin, M. Ponchon,
and E. Polgar, Phys. Letters 16, 328 (1965).

' L. Sertorio and M. Toiler, Phys. Letteis 18, 191 (1965),
~ J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737

(1963).

The contributions to the expressions U, U', and V for
the processes we are considering are given in Table I.
The integrals over the total cross sections have been
calculated numerically using the best data available.
The low-energy parameters for x-E scattering have
been taken from Hamilton and Woolcock' and the
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TABLE II. Results of least-squares fits.

Input

m+Ã only

K+N only

Sum
rules No.

No 1 0.10 &0.36
Yes 2 0.663+0.035
Yes 3 0.41 &0.15

No 4 0.62 +0.24
Yes 5 0.64 &0.10
Yes 6 0.53 &0.30

0.559&0.032
0.588&0.006
0.588+0.006

0.39 +0.29
0.38 &0.12
0.38 +0.12

0.410+0.063
0.425+0.030
0.425+0.031

0.38 +0.16
0.297+0.064
0.297&0.064

P"

~ ~ ~

0.11

~ ~ ~

0.33+0.50

Degrees of
freedom

22 10.25
24 14.18
22 12.22

23 45.62
27 47.04
25 47.03

x+1V and K+N No 7 0.45 ~0.14
Yes 8 0.658&0.033
Yes 9 0.40 +0.13

0.556+0.031
0.587+0.006
0.587&0.006

0.388+0.045
0.402+0.027
0.406&0.029

0.34 +0.18
0.286+0.054
0.289+0.054

~ ~ ~

0.07

47 57.67
53 64.60
50 62.58

The Regge-pole parameters a;, n, have been de-
termined from these quantities by means of the least-
squares method.

In order to test the consistency of the model and to
understand which data are more effective in determining
the parameters, we have performed several least-squares
6ts with different input data, as shown in Table II.
Moreover, in order to investigate the usefulness of
introducing a third vacuum pole, we have performed
fits Nos. 3, 6, and 9 with the same input data used for
the preceding ones, but with one more vacuum pole.
From the last column, we see that the decrease of X' due
to the introduction of the new parameters is never
sufficiently large to justify this complication of the
model.

For every 6t we give the resulting values of e;. If
we call the adjustable parameters x; and take

82X2

Bx&'Bx&

the errors quoted in the Table are an estimate of
P(~ ')l j'"

The value of X' should not be very different from the
. number of degrees of freedom. However for the first
three 6ts it is signi6cantly smaller, probably because
the errors of the experimental points are not statistically
independent. For the other fits the value of X' is too
large. This is due to the fact that the experimental total
E-X cross sections present fluctuations which cannot
be fitted by a smooth curve (see Ref. 1).

Comparing the results of fits which differ in that the
sum rules are present as input data, we note a strong
decrease of the errors. This is a proof of the usefulness
of the sum rules.

The consistency of the sum rules with the other data
is proved by the fact that X' does not increase much
more than the number of degrees of freedom when the
sum rules are introduced. The worst case from this
point of view is given by fit No. 2. Here the increase of
X' is significant a,nd is related to the strong change of the
value of ng . Note that the new value of 0.~ is in accord
with the value obtained independently from the E-

meson scattering data (fits Nos. 4-5). The consistency
with the results of Ref. 1 is acceptable for O.„and O.g,
but our va, lues of ng and n, are greater than those given
by Phillips and Rarita, and the difference is large
compared with the errors. However, the errors given in
Table II must not be taken seriously. This differenc is
not unexpected, because the high accuracy in the de-
termination of these parameters is obtained in two
completely different and independent ways in the two
approaches. We increase the accuracy by using disper-
sion relations and a stronger interpretation of. the Regge-
pole hypothesis, whereas in Ref. 1 the smallness of the
errors is due to the fact that they use the data at non-
vanishing momentum transfer and a somewhat arbi-
trary expression for the dependence of the Regge-pole
parameters on t.

Another kind of data regarding the high-energy pion-
nucleon scattering is given by the real part of the
forward scattering amplitude measured by Foley et al. '4

We have not used these data in the 6ts of Table II.
The real part calculated from the parameters obtained
from any of the fits Nos. 2, 3, 8, 9 does not differ
significantly from the one calculated in Ref. 5, and is
substantially in accord with the calculations of Bara-
shenkov" for energies between 5 and 10 GeV. The
accord of all these calculations with the experimental
data of Ref. 14 is rather poor (see also Hohler and
Baacke'6)

We have also tried to insert these data into the least-

TABLE III. Values of the parameters (4m/ko)a; (expressed in
millibarns) obtained from the best fit No. 8. The values given
refer to the ~+p and E+p elastic scattering. The values for the
other reactions follow from isotopic spin conservation.

Reaction (4m/ko)e~ (kr/ko)ap (4m/ko)n, (4~/ko)n„(kr/ko)ag

17.48 17.85 0
16.35 6.81 2.06

0—7.97

'4 K. J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum,
W. A. Love, S. Ozaki, E. H. Willen, R. Yamada, and L. C. L

. Yuan, Phys. Rev. Letters 14, 862 (1965)."V. S. Barashenkov, Phys. Letters 19, 699 (1966)."G. Hohler and J. Baacke, Phys, Letters 18, 181 (1965).



squares 6ts (together with the sum rules). The resulting
parameters are not appreciably affected by the presence
of thc ne~ data. This seems to mean that the parameters
cannot be modi6ed in such a way as to 6t the data on
the real part without destroying the accord with the
sum rules and with the data on the total and charge-
cxchangc cross sections. Thc intl oduction of a third
Pomeranchuk pole does not improve the situation.
More accurate experimental data on the real part of the
amplitude are needed for a conclusive analysis.

Conchlding wc think that our best Gt No. 8 gives
the most reliable values of the parameters which can be
obtained from the Regge-pole hypothesis and the dis-

persion relations without using the cross sections at
no@vanishing momentum transfer. The values obtained
for the parameters a; are given in Table III.
Note added sg proof. Note, however, that J. Scanio
[University of California Radiation Laboratory Report
No. UCRL 16766 (unpublished) j obtains a large value
for rr& (0), namely, 0.69.
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Sum Rules and a Scalar Unitary Singlet
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The sum rules relating the axial-vector coupling constant to 21.x and mN total cross sections are derived

using the commutation relations between the chiral currents x+(t) and x'(t) The s.um rules obtained are the

same as those obtained by other authors using the commutation relation between x+(t) and x (t). It is also

shown that the assumption of the existence of the 0. meson as a scalar unitary singlet helps in saturating the

+m and Eg sum rules. A definite conclusion cannot be arrived at about the existence of o. meson from the
21.x sum rule, since the sum rule can equally well be saturated by postulating a large low-energy 2r21- scattering
in I=0 state, but the EE sum rule does seem to require the presence of a particle with properties similar

to those of the 4r meson. SU(3) symmetry is assumed in the latter case.

L DTTRODUCTION

' 'N the recent past, some interesting sum rules for
~ - hadrons have been derived by various workers'~ on

the assumption of the partially conserved-axial-vector-
current hypothesis (PCAC). s ' These sum rules, as in the
case of Adler' and Keisberger, ' have had spectacular
success in the calculation of g~, in remarkable agreement
with experiments. Here the information on the total
w+p and w p scattering cross section is used as input.
In other cases, like mx scattering, reliable information on

total cross section does not exist, and one can use the
sum rules with the experimental value of g~ as input
to deduce the size of the xx scattering cross section.
Such sum rules have been investigated by authors in

Refs. 1-4. The purpose of the present paper is twofold:
First, to show that the same sum rules as those of
Adler' can be derived. using current commutation
relations which have not been exploited so far (the
reasons will be evident later); second, to see if a
scalar unitary singlet makes sense when put in the sum

rules for the ~m and EE scattering.

' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.
140, 8736- (1965}.' W. I.Weisberger, Phys. Rev. Letters 14, 1047 (1965);Phys.
Rev. '

3.43, :1302 (1966).
~ L. K. Pandit and J.Schechter, Phys. Letters 19, 56 (1965).
' V. S. Mathur snd L. K. Pandit, Phys. Rev. 143, 1216 (1966).
' M. Gell-Mann and M. Lbvy, Nuovo Cimento 16, 105 (1960).
' Y. Nambu, Phys. Rev. Letters 4, 380 (1960}.

Sections II and. III are devoted to the derivation of
xm and EE sum rules, respectively. In Sec. IV we have
looked into the implications of thc cxlstcDcc of a
scalar unitary singlet (the o meson) with regard to the
sum rules. In Sec. V the mX sum rule of Adler' and
Keisberger' has been rederived using a di6erent current
commutation relation.

II. ee SUM RULE

The notations for the currents and. "charges" will be

A '(t) =s d'x[V '(x t)]e

Bts(t)=s d' Pa' (tstx)js,

where V and I'~ are the vector and the pscudo-scalar
octet of currents. The commutation relations assumed
are Sr V

)

[Aj '(t),A t'(t) $= btsA t'(t) bt'Ate(t), —

[8'(t) Bts(t)) =b'A &'(t) —b, 'A '(t)
with

A '(t) =I+(t), Est(t) =x+(t),
Ats(t) =I-(t), Bts(t) =X-(t),

At'(t) —As'(t) =21s(t), 8,'(t) —Bss(t) = 2xs(t)
'I M. Gell-Mann, Physics I,"63 (3.964}-;-


