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Single-Channel Calculation of ~~ Scattering
Using the Mandelstam Iteration*'
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(Received 27 April 1966)-

The Mandelstam iteration with appropriate cutoff is shown to be a practical technique for the study of
strong-interaction dynamics in the framework of the strip approximation. Comparison with known potential
(nonrelativistic) scattering problems shows that the method is accurate enough to allow workable numerical
calculations. Calculations of single-channel relativistic m~ scattering with an elementary p potential are
reported.

II. CALCULATION METHOD

The iteration technique involves the integration of

the pair of coupled equations, '

g(s)
p'(s, t) =

2n q '(s)

Mt*(t', s)Mg (t",s)
dt'dl" , (2.1)

E't'fqem(s); t, l', t"j
1 ds

Mt (t,s) = V,'(t,s)+— p'(s', t),
'7l 0$ —S

(2.2)

with

&(q', y,y', y")=y'+y"+y'" —2''+xy"+y'r")
—by'3")/q') (2 3)

g(s) =q (s) (2.4)

*Work performed under auspices of the U. S. Atomic Energy
Commission.
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'Naren F. Bali, Geoffrey F. Chew, and Shu-Yuan Chu, pre-
ceding paper, Phys. Rev. 150, 1352 (1966).

~ G. F. Chew, Phys. Rev. 129, 2363 (1963); G. F. Chew and
C. E. Jones, ibid. 135, B208 (1964).' We use the notation of Ref. 1.
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I. INTRODUCTION
" 'N a previous paper' the Mandelstam iteration tech-
' ~ nique was analyzed in the context of the strip ap-
proximation and shown to be, in principle, a workable
method for the calculation of strongly interacting
amplitudes. In this paper we describe some preliminary
calculations which use this technique to study a single-

channel zero-spin case .(or-sr), and which assures us

that this approach is numerically feasible.
In Sec. II we describe the calculation method in

detail. Section III is devoted to a comparison of solu-

tions of potential problems obtained by the iteration
method and by integration of Schrodinger's equation.
Section IV describes some preliminary calculations in

the fully relativistic x-~i problem. These solutions are
compared with solutions of the equivalent problem
obtained by the E/D technique of the "new strip
approximation. "~

for potential scattering, and

g(s) = (2q, (s)/(s)' ')h(s, si) (2 5)

in ~Mi'(t, s)
~

= ln
~
p(s) [+Rea(s) Int,

arg(Mi'(t, s))=arg(p(s))+Imcs(s) lnt, (2.g)

by simple least-squares straight-line fit to ln~ M, '(l,s) i

and arg(M, '(t,s)) over a sufficiently large range of lnt.
The functions u(s) and p(s) can now be used to define

by analytic continuation the scattering amplitude

1 Mt(l, s)
M'(s, t) = dt'—

t' —t
(2.9)

' B.M. Bransden, P. G. Burke, J.W. Moffat, R. G. Moorhouse,
and D. Morgan, Nuovo Cimento Bo, 207 (1963).
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for relativistic scattering, where

q s(s) = —,'s—1. (2.6)

Here h(s, si) is a cutoff function equal to unity below
s1 and rapidly going to zero above s1. As usual t' and
t" 'integrals in Eq. (2.1) are carried over the region
where E is positive.

A detailed study of the solution of a similar set of
equations has been made by Bransden et g/'. ,4 and it is
continued here.

A computer program designed to solve these equa-
tions has been written, and it operates as follows:
Given an initial potential discontinuity function V; (t,s)
for all s and l, it can, using (2.1), compute p'(s, t) for a
limited range of t. Equation (2.2) then allows one to
compute Mi(t, s) for this same range of t, which upon
return, to Eq. (2.1), can be further extended. The trick
is that, because of the nature of the region of integration
in Eq. (2.1), to compute p'(s, t) for t, say, equal to ti,
only values of Mi(t, s) for t less than li are required.
This "iteration" process can, in principle, be repeated
indefinitely. However, after a sufhcient number of
iterations, we can expect that the power behavior of
the discontinuity function M,'(t,s) will emerge, domi-
nated by the leading Regge pole in s,

M. ,'(t,s)=p(s)t t'& (2.7)

and it is unnecessary to proceed any further. The
trajectory function n(s) and residue function p(s) can
then be obtained from the relations
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even if the above integral:does not -converge, as will
be the case if a resonance is, present.

The program to carry out this calculation is rea-
sonably straightforwward, if a bit complicated. Ac-
curacy in the integrals is of great importance if stable
solutions are to be obtained. Particular care has to be
exercised in Eq. (2.1) close to the boundaries of the
t' and t" integrals, as the denominator vanishes there
like an inverse square root.

As is evident from this description of the calculation,
only the leading trajectory is detected. In principle,
once this trajectory were known, its effect could be
subtracted, and lower trajectories could then be calcu-
lated. At present it seems unlikely that the over-all
accuracy of the method is enough to allow this sub-
traction to be carried out successfully.
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V, '(t, s) =
(t—t„)2+ p

for t)4m ',
(3.1)

III. POTENTIAL PROBLEM

The potential-scattering problem involving the ex-
change of spin-zero particles can be solved by this
method without a cutoff. This allows us to check the
accuracy and reliability of the iteration solution by
comparing it with solutions obtained by direct inte-
gration of Schrodinger s equation. For this purpose,
an attractive potential with the discontinuity

Fre. 1.Real and imaginary parts of 0. for A = i5.0, & =3.0,
tg=6.0, ———Iterative Schrodinger.

it was noted that the residue functions of potentials
whose trajectories did not rise much above zero were
rather poorly determined. This is probably due to error
buildup in p(s, t), which in these case does not increase
much as a function of t.

All trajectories shown were obtained at t=19600m '.
It is necessary to go that far in t to eliminate oscillations
which appear in M, (t,s) from interference with lower
trajectories.

All these calculations were performed in a CDC-6600
computer, and required about 7 min per set.

=0 for t&4m '
IV. RELATIVISTIC ~-m SCATTERING

was chosen. It corresponds to a superposition of Yukawa
potentials of range close to 1/(t~)'" and it attempts to
model the exchange of a spin-zero particle of width ~.

Although a single Yukawa potential would perhaps
have been preferable, its corresponding discontinuity
is a. 8 function which makes its numerical treatment
awkward.

The same potential can then be used to integrate
Schrodinger's equation. Since we are mainly interested
in "comparing trajectory and residue functions, this
integration can be best performed numerically, using
a modi6ed version of Burke and Tate's TREGGE
program. 5

In Figs. 1—6 we exhibit n(s) and. P(s) for the iterative
and the Schrodinger solution of this problem for
different values of the width e, and strength A. It is
seen that the agreement is in general quite good
throughout the ranges of s explored. In particular, the
iterative calculation seems to give reasonable residue
functions P(s), which are usually more diiTicult to
calculate than the trajectory functions n(s).

As can be expected the agreement is poorer for
narrower or stronger potentials, the errors arising
mainly from inaccuracies in the (2.1) integration. Also

" ~ Philip G. Burke and Cecil Tate, University-of California Radi-
ation Laboratory Report No. UCRL-10384, 1.962 (unpublished).
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Having ascertained the accuracy of the iteration
procedure in nonrelativistic problems, we turn to the
interesting case, relativistic mx scattering. As pointed
out in Ref. 1, the major difference between the potential
and relativistic problems is the necessity of introducing
a cutoff, as otherwise the integral in Eq. (2.2) cannot be
performed. The cutoff procedure adopted is the one
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I xo. 3. Real and imaginary parts of a for A =35.0, a=3.0,
tg =6.0, ———Iterative Schrodinger.

suggested in Ref. 1, which has the advantage of both
being mathematically tractable and at the same time
modeling closely the "strip" structure assumed for the
amplitude. To this end, the function h(s, sr) in Eq. (2.5)
was set to

The input potential was taken to be

/ 4 'i'I' &'~z
Vg'(t, s}r=2Pr'3Pr~ 1+—

~

12 k4 —4~ (t t,)'—+I'err

where tg and F are the mass and the width of the input
p particle, and Pn is the familiar s-s crossing matrix.
The leading factor of 2 is introduced to take into
account the effect of the potential in both the t and I
channels. The parameters F, s~, and 6 were then ad-
justed to obtain reasonable output trajectories, con-
sistent with the physical situation. It was found,
however, that 6 has little eGect over the lower part of
the trajectory, which is mainly controlled by I' and sl.

i.0—

h (s,s&) =
1+expL(s—sr)/hj

(4 1)

The solutions of the relativistic problem can be
expected to depend rather critically on s~, as it pre-
sumably represents the extremely complicated higher
s structure of p'(s, t) arising from the increasing number
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FIG. 5. Real and imaginary parts of a for A =50.0, a=3.0,
4,=6.0, ———Iterative — Schrodinger.
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FIG. 4. Real and
imaginary parts of p
for: A =35.0, &=3.0,
4,=6.0, --- Iter-
ative Schro-
dinger.

The cutoft point s~ is expected to be anywhere from
about (200 to 600)m ', the width of the resonance
region which characterizes the strip approximation, '
and I" is known experimentally to be 0.9m .~

For parameters in this region, it is possible to obtain
a continuuxIl of solutions which yield a tlajectoly wMl

Reu(28) =1 in the I= 1 partial wave, including one for
I' slightly higher than the physical width of the p
meson. The real and imaginary parts of 0, for two such
examples are shown in Figs. 7-10 corresponding to
(a) 1'=i.im and sr=400m ', and (b) F=1.6m and

sr ——256m '. For case (b) we also show the effect of
changing the parameter d from 30.0m ~ to 100.(bm ~.

of inelastic channels open to the reaction. However, if
the strip approximation is a sensible one, the dependence
on d should not be too severe.

In these preliminary calculations, the iteration tech-
nique was used to calculate the trajectory and residues
of the p and Pomeranchuk (I=1 and I=0) trajectories
in m-m scattering with an "elementary" p exchanged in
the I and t channel as potential. No attempt to obtain
self-consistent or "bootstrap" solutions was made, as
the presumably important Pomeranchuk repulsion'
was entirely neglected. These calculations are not
expected to reproduce too closely the physical values
of the position and widths of the resonances involved.

~ G. F. /he~, Phys. Rev. 140, $1427 (1965}.

Fzo. 6. Real and
imaginary parts of p
for 3=50.0, e=3.0,
|'@=6.0, --- Iter-
ative — — Schro-
dinger.
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~ A. M. Rosenfeld, A. Barbaro-Galtieri, gf. M. Sarkas, P. L.
Bastien, ).Kirz, and M. Roos, Lawrence Radiation Laboratory
Report UCRL4030, Part I (unpubhshed).
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Fxo. 7. Real part of ce, ~7I- problem, case (a), ———I=1;
I=0;——N/D solution.

since the imaginary part of o.(s) should go to zero outside
the strip.

We also show for comparison the 0&s part of the
trajectories calculated using the new form of the strip
approximation and the 1V/D method. ~ It is seen that
for this particular potential, it is not very dift'erent
from the iterative solution. However, this is quite
reasonable, as we are dealing with a purely attractive
elementary potential, where the 1V/D solution can be
expected to perform rather well. Even so, the tra-
jectories are Qatter than the corresponding iterative
ones, indicating that it will probably be easier to obtain
steeper trajectories required by experiment with the
new technique, once a better input potential is used.

As can be readily seen, this has little effect for low
positive energies, but becomes more important towards
the high end of the strip and at large negative energies,
where this calculation is not expected to be accurate
anyway. Although neither set of trajectories is very
.close to the physical one, the second one seems to be
the better, as it is initially steeper, more in accordance
with the experimentally determined trajectories. ' In
case (a) the I=0 trajectory rises up to J= 2 to produce
the f' resonance while in case (b) the trajectory does
not reach J=2 for a real value of s but probably does
for a slightly complex one. Also, as expected, no tra-
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Fro. 8. Imaginary
part of ar, xm prob-
lem, case (a), ---
I=1;— I=O.
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jectory above J=0 is observed for l=2, as in this case
the p potential is repulsive.

The width of the output p meson is in both cases too
large: 3.7m in case (a) and 2.7m in case (b). This is
not surprising, as we have not yet included the effect
of the Pomeranchuk trajectory, which can be expected
to narrow this resonance.

As we approach the high end of the strip all tra-
jectories bend downwards, as they can be expected to
do if they satisfy a dispersion relation of the form

1 Imo. (s')
n(s) =n(~)+— ds', (4.2)

7I gp s —s

' C. Chiu, Lavrrence Radiation Laboratory (private communi-
cation).
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Fre. 9.Real part ofo, , m~ problem, case (b), ———I=1,6=30.0;
I=O, b =30.0; ~ ~ ~ ~ I=1,6=100.0; ——I=0, 6= 100.0;——E/D soiution.
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lem, case (b), ---
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I= 1, n= 100.0;~~ ~~ I=O,
a=100.0.
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'P. D. B. Collins and V. L. Teplitz, Phys. Rev. 140, 3663
(1965).

The flatness of the E/D trajectories persists for s)0
where their eGect can be seen by calculating cross
sections. This lack of slope in turn implies that the
1V/D method will require considerably stronger po-
tentials than the iterative method to give the correct
mass to the p and f' resonances. Thus, for s)0 the
E/D calculation yields less binding than the iterative
one.

All trajectories shown were calculated at t= 10000@v '.
The time required to perform these calculations in a
CDC 6600 was about 4 min per value of the isotopic
spin. The time needed to solve the 1V/D equations for
an equivalent range of J is about 1.7 min, so the iter-
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ative method cannot be said to be much more compli-.

cated than the Jt//D.
As a final point, we would like to indicate that these

results are substantially different from those obtained
by Bransden et ul. 4 in a similar calculation using almost
the same input potential. Bransden et a/. were unable
to obtain trajectories rising up to J=i in the I= j.
partial wave for a pure p input, and were forced to
include an elementary fs in the potential. "

The main differences between our calculation and
theirs are improved accuracy and the different cutoff
scheme. Their solution involves the smooth cutoff the
potential V'(f, s) past a given sr, and introduces no
cutoff in p'(s, t). It can be easily checked that both
these differences play an important role in the dis-

crepancy between the two calculations. It is our im-

pression that our cutoff procedure is the more natural
one, as it does not interfere with the power blowup of
the potential in the s direction, and also allows simple
mathematical justification, as seen in Ref. 1.

To summarize, we can say that the above calculations
seem to show that the Mandelstam iteration technique
is indeed a feasible one from the computational point

"This point is rather questionable, as has been pointed out by
Chew Progr. Theoret. Phys. (Kyoto) Suppl. Extra Number, 118
(1965):The inclusion of the f' as an elementary particle vastly
exaggerates its effect.

of view. It is quite able to produce reasonable output
trajectories from a simple elementary-particle input
potential, and it offers many advantages over the more
usual Jt//D approach without an outrageous increase in
the necessary computations.

At present attempts are being made at calculating
fully Reggeized input potentials which will include
Pomeranchuk repulsion effects. Also a more ambitious
self-consistent scheme is being considered whereby the
output p(s, t) function obtained after the above iter-
ations have been completed is used to compute a new

potential U'(t, s) by means of crossing. This potential
could then be used in a "macroiteration" to restart the
whole calculation.
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The application of sum rules derived from current commutation relations to give SU(6)-like results is
developed without the assumption of saturation. We first derive a consistency condition by comparing sum
rules, and then study the sum rules for 1/gz and the isovector charge radii, replacing the assumption of
saturation with a simple dynamical model for the remaining continuuum contribution. This results in several
SU(6)-like predictions which contain important correction factors to the results previously derived assuming
saturation. We have also r'e-examined the experimental data for the sum rule for (rN')v/6, and Gnd that it
converges below 1 GeV like the sum rule for 1/gg' when account is taken of the contribution to the sum rule
of the large resonant M~+ and nonresonant Eo+ multipoles in pion photoproduction, and of the N~~ (1520).

I. INTRODUCTION

ECENTLY, several exact sum rules have been
derived'' from the algebra of current commu-

tators. ' These have been used together with the avail-

~ Work supported in part by the U. S. Atomic Energy Commis-
sion. Prepared under Contract No. AT(11-1)-68 for the San
Francisco Operations OfBce, U. S. Atomic Energy Commission.

f National Science Foundation Post-Doctoral Fellow.
f. Alfred P. Sloan Foundation Fellow.
)On leave of absence from Brandeis University, Waltham,

Massachusetts.
S. Fubini and G. Furlan, Physics 1, 229 (1965); S. Fubini, G.

Furlan, and C. Rossetti, Nuovo Cimento 40, 11'j1 (1965).

able experimental data to check-the agreement of the
sum rules with experiment, as exemplified by the work
of Adler and Weisberger. ' Other applications have been
the use of sum rules to obtain SU(6)-like predictions
by assuming saturation of the sum rules by the low-

lying 56-piet of baryons or 36-piet of mesons. However,
the assumption of saturation is suspect since, for ex-

ample, the value of 1/g~' derived under the assumption

' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.
140, B736 (1965);W. I. Weisberger, Phys. Rev. Letters 14, 1047
(1965); Phys. Rev. 143, B1302 (1966).

3 M. Gell-Mann, Physics 1, 63 (1964).


