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The Mandelstam iteration is analyzed for a strip model of the four-line connected part that conforms to
most known strong-interaction experimental requirements at both high and low energies. It is shown that,
with the Froissart limit as a supplementary condition, asymptotic behavior is controlled by Regge poles, the
amplitude being meromorphic in the right-half angular-momentum complex plane. The results support the
practicality of the Mandelstam iteration as a numerical technique for realistic bootstrap computations.

I. INTRODUCTION

'T has been realized for a number of years that the
~ - Mandelstam iteration procedure is appropriate for
dynamical calculations which concentrate on the strip
regions of a Mandelstam diagram. ' The motivation for
M' manifests itself in two ways: (a) In the s physical
region there may be strong peaks in low-energy cross
sections; these peaks are associated with s poles of
delnite J, whose residues have a corresponding poly-
nomial dependence on s,=cos8, and thus on t (or I).
The inevitable dying out of such peaks above about 2
GeV in center-of-mass energy indicates that even if
resonances continue at high s the partial widths for
individual two-particle channels are small. (b) When
there exist low-s poles on or near the physical sheet,
emphasis of these regions is experimental. It has been
observed that four-line connected parts are large within
three narrow strips, as shown in Fig. 1.The strip labeled

Fxo. 1.The strip regions of the Mandelstam diagram.
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peaks are systematically observed in the t and u re-
actions near the forward (or backward) direction where

is( is small. These peaks have widths in (s~ of the
order 3 GeV2 and persist to inde6nitely high values of
t (or I), as one might expect from the s pole position's
independence of crossed-channel invariants. Outside
such forward and backward peaks, high-energy four-
line connected parts are very small. By suitably per-
muting the variables s, t, I, equivalent statements can
be made about the strips labeled M' and M". To sum-
marize: In physical regions, four-line connected parts
are experimentally observed to be small unless the
absolute value of at least one of the three-channel in-
variants is no larger than a few GeV.2

Since the existence of the three strips seems to have
a connection with poles, it is tempting to construct a
model

kf (s,t,te) =ft/f'(s, t,u)+M'(s, t,st)+M" (s, t,N), (1.1)

where M' contains all the s poles, M' contains all the
t poles, and M" all the I poles. If we, in addition,
assume that M' is large only when (s~ is small, with
corresponding properties for M' and M", the required
strip structure is immediately achieved. (It is, of course,
not certain that the strip structure holds in unphysical
regions. If it does not, the model will fail. ) To further
de6ne the model, another experimental fact may be
invoked. Within the s strip, where s poles are prominent,
the most important s normal thresholds are for two-
particle channels —provided we include unstable par-
ticles. Only at large values of s, above the strip, do
multiparticle channels become dominant. Since poles
and nearby important branch points inevitably inter-
act, it is natural to concentrate all two-particle s
thresholds inside the s strip into M', along with the s
poles. In a similar fashion, M' absorbs the low-t two-
particle thresholds and M" the low-I two-particle
thresholds. Conversely, since M' and M" dominate at
high s, it is natural to assign all multiparticle s thresh-
olds to these two components, leaving such singularities
out of M'. Similarly M' will contain no multiparticle
t thresholds and M" no multiparticle e thresholds.

' G. F. Chew, S. C. Frautschi, and S. Mandelstam, Phys. Rev.
126, 12Q2 (1962).
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At this point the relevance of the Mandelstam
iteration becomes apparent. This iteration allows us to
construct that part of the amplitude containing s poles
and two-particle s thresholds if we are given the t and
I singularities that are independent of two-particle s
thresholds. In other words, if we know V'=M'+M"
(which may be called the generalized "potential" for
the s reaction), Mandelstam tells us how to compute
3f'. Evidently, we are also told how to compute M'
from a knowledge of M'+M", as well as M" from a
knowledge of M'+M'. This reciprocal dynamics con-
stitutes the bootstrap.

The model outlined here does not ignore multi-
particle thresholds, but at the same time it fails to take
direct account of the associated discontinuity formulas.
Only two-particle discontinuities are individually and
accurately treated. Multiparticle cuts in the strip model
arise indirectly, via the Mandelstam iteration. Provided
that individual multiparticle discontinuities are small
and only the sum is large —from the accumulation of
many different channels —there is a chance for such an
approach to make sense.

What obstructed the original strip model proposal
of Chew and Frautschi?' Fundamentally it was a
matter of asymptotic behavior. In realistic situations,
where the potential may contain poles corresponding
to spin 1 or greater, the Mandelstam iteration becomes
unstable and in the absence of delicate cancellations
leads to nonsensical results. ' In particular, there is no
tendency for M' to become small at large

~
s. It thus

seems probable that the ultimate dynamical origin of
the experimentally observed strip structure involves a
more intimate interaction between two-particle and
many-particle channels than is included in the model.
In other words, the strip structure must be imposed;
it will not automatically emerge. Nevertheless, it
remains plausible that, if strip structure can be built
in, the model may have great utility.

An attempt to impose strip structure via a cutoff
prescription was made by Bransden et ut. ,

' with results
that were generally encouraging. The underlying
mathematical character of their prescription was never
established, however, so it was not sure that the iter-
ation was converging to the limit assumed. The purpose
of our paper is to formulate a cutoQ procedure that is
susceptible to analysis and that guarantees manageable
asymptotic behavior in the iteration. The following
paper describes certain numerical tests of the procedure
that con6rm its practicability.

Before we proceed to detailed analysis a word is in
order about the "new form of strip approximation"4
that attempted to bypass the Mandelstarn iteration,
going directly to N/D equations. The physical moti-
vation of both "old" and "new" forms is identical, the

' R. H. Bransden, P. G. Burke, J.W. MoBat, R. G. Moorhouse,
and D. Morgan, Nuovo Cimento 30, 207 (1963).

4 G. F. Chew, Phys. Rev. 129, 2363 (1963); G. F. 'Chew and
C. E. Jones, ibid. 135, B208 (1964).

advantage of the "new" being the reduction of the
problem to functions of a single variable —the Regge
trajectory and residue functions. A great deal has been
learned by studying the new form, ' but its inadequacies
have proved serious. Like other E/D methods it does
not permit a proper treatment of the left-hand cut in
the partial-wave amplitude, and the joining of elastic
to inelastic regions on the right is awkward. A crucial
aspect of the former deficiency is the inability to
calculate reliably when the (direct reaction) angular
momentum is larger than 1. The "old" form with a
suitable cutoff has no trouble with such questions and,
as described in the following paper, does not require
appreciably more computing time. The disadvantage
is that functions of two variables are unavoidable.

From a concrete practical standpoint we hope by,
returning to the Mandelstam iteration, to remedy the
following specific inadequacies of alternative procedures.

(a) It has not so far been possible to confidently
follow Regge trajectories to angular momenta greater
than 1.

(b) It has been impossible to include the generalized
potential the repulsive effect of trajectories like the
Pomeranchuk, where "ghosts" occur. '

(c) Multiparticle production at intermediate ener-
gies (i.e., the upper half of the strip) has never been
included in the dynamics. Ke shall see that the Mandel-
stam iteration handles all three of these points in a
natural fashion.

IL THE MANDELSTAM EQUATIONS
WITH A CUTOFF

A preliminary study by Drummond' of the complex
normal thresholds associated with unstable two-'particle
channels shows their qualitative similarity to ordinary
stable-channel thresholds. There are of course compli-
cations, but Drummond finds it possible to preserve
the key elements of the strip model. The discussion
here will proceed, therefore, as if one had to deal only
with stable channels. The inclusion, furthermore, of
any 6nite number of two-particle channels in the
dynamics creates no difhculties beyond those already
present with a single channel. The calculations merely
become more lengthy. For pedagogical reasons, then,
we write down only those equations appropriate to a
single two-particle channel, with zero spins for'both
channel particles.

The first step is to introduce the standard "one-
sided" functions corresponding to M(s,s,), V'(s, s,),
and M'(s, s,). Each of the new functions has only a
right-hand cut in s„a superscript (+) conventionally

' ' V. L. Teplitz, Phys. Rev. 137, B136 (1965); P. D. B. Collins
and V. L. Teplitz, ibid. 140, B663 (1965); P. D. B. Collins, ibid.
142, 1163 (1966).' G. F. Chew, Phys. Rev. 140, B1427 (1965);Phys. Rev. Letters
16, 60 (1966).

'f I. Drummond, Phys. Rev. 140, B482 (1965).
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1 "dt'
V'(s, t) =— V, '(t', s), —

g,
t' —t

(2.3)

with similar expansions of 3E and M' in terms of their
t discontinuities 3fg and Mg', respectively, so that from
Eq. (2.2) we have

M g (t,s) = Vg'(t, s)+M g'(t, s) . (2.4)

The lower limit to of the t spectrum in the potential
necessarily lies below the beginning of the t spectrum
in M' because all t and I poles and two-particle thresh-
olds have been assigned to V'.

The double spectral function p'(s, t) is defined to be
the s discontinuity of Mg', that is,

1 ds
M, (t,s)=- t (s', t),

«(g) $ —$

where the lower limit sp(t) is related to tp by

t 2

tt, '(sp(t)) =
t—4to

(2 5)

(2.6)

if q, (s) is the barycentric system momentum. (The
reader is assumed to be familiar with the Mandelstam
representation. ) The fundamental equation derived by
Mandelstam then is

g(s)
p'(s, t) =

2z.gP (s)
where

M',*(t',s)M ((t",s)
Ct'Ct" , (2.7)

K'"(q '(s); t,t', t")

and
g(s) =2g. (s)/V's (2.8)

&(V' X X'y") =y'+P+~"' —2(»'+vv"+XY')
—(yy Y'/V'), (2 9)

designating a function of this type whose even part in
s, coincides with the even part in 'an original "two-
sided" function, and a superscript (—) designating a
function whose odd part so coincides. Thus, for example,

M(s,z,) =-,'LM+(s, z,)+M+(s, —z,)j
+-,'$M—

(s,z,)—M (s, —z,)j. (2.1)
The relation

M+(s, z,) =. V'+(s, z,)+M'+(s, z,) (2.2)

will hold, just as for the original functions. In fact, all
the equations to follow have a form independent of the
(+) signature, . so we shall suppress these clumsy
superscripts.

By definition the functions M' are supposed to
contain all the s poles as well as the normal threshold
branch point at so ——(m,+m~)'. The potential V' lacks
this branch point although it contains multiparticle s
thresholds. The potential may be expressed as a Cauchy
integral over its cut (and poles, if any) in z, or equi-
valently in t:

the range of integration in (2.7) being confined to the
region where K is positive. From Eqs. (2.4) and (2.5)
we have

1 ds
Mg(t, s) = V;(t,s)+ — p'(s', t), (2.10)

«(g) s —s

giving a pair of equations in (2.7) and (2.10) on which
a Mandelstam iteration may be based, starting from
knowledge of V', or equivalently of Vg'.

The Raw in the above equations is the abserice of
any guarantee that the function

1
M'(s, t) =-

%2

p'(s', t')
ds dt

(s'- s) (t'—t)
(2.11)

should become sinall for large
~

s ~. Such a requirement
is essential to the consistency of the strip model, but a
study of Eqs. (2.7) and (2.10) shows on the contrary
a tendency for each successive iteration to increase more
strongly at large $ than its predecessor, if for any real
positive t the potential itself grows faster than the erst
power of s.' Since particles certainly exist with spin
greater than one, there will at least sometimes be poles
in t whose dependence on s goes with a corresponding
large power; and delicate cancellations will be required
to prevent the Mandelstam iteration from "running
away. "

A crude but simple prescription that might circum-
vent the dilemma is to replace the tw'o-particle phase-
space factor g(s) in Eq. (2.7) by a modified factor
gi(s), equal to g(s) for s(si but dropping rapidly to
zero for s)si. Although the parameter si (naturally
dubbed the "strip width" ) is not an arbitrary param-
eter in a complete bootstrap calculation, where only
energy ratios are significant, the introduction of such
a crude cutoff cannot be regarded as satisfactory and
inevitably will serve as a focus for e6orts to improve
the model. At the same time it is of importance to
know whether this prescription, crude or not, suffices
to ensure that the Mandelstam iteration approaches a
sensible limit that can be given a physical interpre-
tation. In the following section we attack this question,

One immediate consequence of the cuto8 is worthy
of notice. We are requiring that at high energies the
entire s discontinuity should approach that of the
potential. Thus, to the extent that experimental data
at high energies has been successfully fitted by Regge-
pole expansions, ' the model is in good shape if it can be
demonstrated that the high-s behavior of V'=M'+M
is dominated by Regge poles (in J& and J„). Such
domination will emerge by crossing considerations from
the analysis to follow. In other words, we shall demon-
strate that M' has only pole singularities in the right-

8 S. Mandelstam, Ann. Phys. {N. Y.) 21, 302 (1963).' See, for example, R. J. N. Phillips and W. Rarita, Phys. Rev.
139, 1336 (1965).
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half J,. plane and- that the large-t behavior of 3f' is
controlled by these poles. Crossing then-implies that
Aft is controlled at large s by poles in Jt, and .M" by
poles in J„.

III. THE POWER BOUND IN t

There are three elements in the demonstration that
iteration of Kqs. (2.7) and (2.10), with a cutoff phase-
space factor, leads to simple Regge behavior at large t:

(1) We first employ Mandelstam's direct analysis of
the iteration~ to establish that M~(t, s) is bounded by a
finite power of t, say F. The Froissart-Gribov formula
then defines the analytic continuation in J, for ReJ,&L.

(2) E/D equations of the kind proposed by Frye and
Warnock, "but including the cutoff phase-space factor,
are next shown to be Fredholm in character and to
allow continuation through the right-half J, complex
plane. The only singularities allowed by this con-
tinuation are poles.

(3) The Sommerfeld-Watson transform then leads to
simple Regge asymptotic behavior at large t, if the
partial-wave amplitude vanishes su%.ciently rapidly for

, Res, )0.
What are the differences between our problem and

that already analyzed by Mandelstamk' They are
relatively minor:

(a) We make no requirement that the potential
should vanish at large s. In fact, by crossing we expect
the potential to exhibit Regge behavior, sometimes
increasing with a large positive power of s.

(b) Because his potential did not increase with
energy, Mandelstam was able to show that he needed
no cutoff for his two-particle phase-space factor if the
generalized potential was suKciently weak. As noted
above, we do need a cutoff, but there is then no limi-
tation on potential strength.

(c) Mandelstam did not concern, himself with the
imaginary part of the potential, which corresponds to
multiple production (inelastic scattering). The model
considered here is more realistic than that of Mandel-
stam, but we shall see that the essentials of his analysis
manage to survive.

The first step, the establishment of a finite power
bound in t, can be tak.en over almost without change.
The point is that because of the cutoff factor in Eq.
(2.7), the behavior of the potential for s))sq is irrelevant
to the development of M,*(t,s). Thus, for the investi-
gation of the latter function- we can introduce a modified
potential equal to the original throughout the strip but
ultimately cutoff at very large s so as to satisfy Mandel-
stam's requirement. The fact that our double spectral
function p(s, t) is also cutoff does not hinder any of his
arguments; it only makes then simpler.

' G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1962).

The analysis to establish the power bound-on M&(t;s)
does not 'require the potential to be real. This property
Mandelstam invoked only for step (2), which we take
up in the following section. It is essential that the
potential itself have a power bound in t, but such a
property is an intrinsic feature of the strip model. In
fact, we see by crossing that, since M' falls off at large
s at least as fast as 1/s, the potential V' will fall off at
large t at least as fast as 1/t

Being assured the existence of a maximum power
behavior &t~, we may define the Froissart-Gribov
partial-wave amplitude for ReJ&L by the contour
integral"

As(s) = ds,Qs(s, )M(s,s,),
2%2

(3 1)

the contour c passing around the cut in s, of M(s, s,).
An equivalent form is

zg (s, tp)

QJ'(s,)M~(t(s„s),s) . (3.2)

The object of the final section is to continue the partial-
wave amplitude so defined as a meromorphic function
throughout the entire right-half J, complex plane.

Bs(s)= (g') 'At(s) (4.1)

and break. this function into two components corre-
sponding to Eqs. (2.2) and (2:4):

Bs(s)= Vs'+By'. (4.2)

The "potential" component,

(c.') '
VJ'(s) =

e(& tp)

ds,Qg (s,) V, '(t (s, ,s),s), (4.3)

is immediately defined and analytic for ReJ& —1, i.e.,
throughout the holomorphy domain of Qz(s, ). In fact,
if V&'(t, s) decreases for large t faster than any power,
as will follow from most cutoff prescriptions, then J
singularities of Vg' can at most be fixed poles at the
negative integers —these poles arising from the corre-
sponding poles of Qs. The difficulty in continuation
throughout the right-half J plane lies in the function

(q 2)—J' oo

Bs'(s) = ds, Qs(s, )M('.(t(s„s),s), (4.4)
zz(a, 4tp)

"M. Froissart, La Jolla Conference' on Strong and Weak
Interactions, 1961 (unpublished); V. N. Gribov, Zh. Eksperim;, i
Teor. Fiz. 41, 1962 (1962) )English transl. : Soviet, Phys. —'

JETP 14, 1395 (1962)g.

IV. MEROMORPHY IN THE RIGHT-HAI F COM-
PL'EX ANGULAR-MOMENTUM PLANE

Let us deine the "reduced" partial-wave amplitude
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which is immediately dehned only for ReJ&L. For
future reference we note that, since Mi'(t, s) is of order
1/s for large s, B~'(s) is of order (1/s)~+', and for
ReJ&L

Although no explicit use is to be made of the following
nonlinear equation, it may help the reader to keep track
of what has been said so far:

(1)J+1

Bg(s) - V~'(s)+orderI —
Ig~ 00 ks&J fixed

1 d$

(4.5) B~(~)= l'~(~)+B~" (~)+— — p~'(~')
7l zp $ —$

Thus, we do not require our partial-wave amplitude to
vanish at large s (which would be contrary to experi-
mental indications), but we do require it to approach
the potential plus a remainder that vanishes.

In order to extend the region of J analyticity of BJ'
and thus of BJ we consider the quotient

Bg(s) =Kg(s)//Dg(s), (4.6)

and attempt to de6ne the numerator and deominator
so that each is analytic in J. The denominator Dz(s)
is to have only a right-hand cut from the elastic thresh-
old so to +~, while the numerator Eq(s) carries not
only the left-hand cuts but is also cut from the inelastic
threshold s; on the right to +~. Following the pro-
cedure of Frye and Warnock, " we shall be able to
derive Fredholm equations for EJ and DJ in which
both the inhomogeneous terms and the kernels are
determined by Vt' and N t'.

To begin the derivation observe that in the physical
region along the upper side of the right cut it follows
from Eqs. (2.7) and (2.10) that

Sg' ——1+2ipg'(s)Bg (s) . (4.10)

This artificial function is equal to the elastic S-matrix
element for $&$& but goes rapidly to 1 for $& $&. Let us
then require that in the physical region the denominator
function should have a phase equal to the negative of
half the phase of SJ'. That is,

Sz'= nz'(Dz'/Dz) ) (4.11)

where p J' is the absolute value of SJ'. Comparing Eqs.
(4.11), (4.10), and (4.6) it follows that in the physical
region

gJ DJ DJ 2&PJ +J y (4.12)

X IB,(")I
. (4.2')

The first two terms on the right side of Eq. (4.2') are
analytic throughout the right-half J plane. Together,
these terms will determine the inhomogeneity and the
kernel of the linear Fredholm equation that is being
sought.

To proceed with the Frye-Warnock method we delne
a function SJ' by the equation

ImBg'(s) =pg'(s) I Bg(s) I',

where the cutoff phase-space factor

w'(~) = (v.')'gi(~)

(4.7)

(4.8)
(1

E 2psi &

s)s;, . (4.14)

ImDg ———
I Ip J' Rex', s) sQ, (4.13)
E1+qg'&

goes rapidly to zero for $&$&. The discontinuity of BJ'
on the left arises, according to Eq. (4.4), from the dis-
continuity of Qz(s, ). The integral over this discon-
tinuity is given by a straightforward calculation to be

1 dSB~"(~)=- (—V.') '
I

leading to
ImB~= p~'I B~I'+Im~~',

'I:1—(n~')'3=w' Im~~* (4.15)

(It should be remembered that Xg also has left-hand
cuts. ) The parameter rlJ' may be evaluated from the
equation

I

X—
zg (e', 4tp)

It follows that pJ' equals 1 for $&$; and rapidly ap-
proaches 1 for $&$&. Evidently, there is a requirement

ds, Pg( s,)M~'(&(s„s'),s')—, (4.9) on the potential that

0~&pJ' ImVJ'~& ~, (4.16)
where sr, is given by z, (sr„4to)=1. Inspection of the
integral here reveals that, if M&'(t, s) is bounded by
t~ for Is I suKciently large, the integral is defined and
analytic in J for ReJ&E—1. The Froissart limit
assures us that %&1, so if we manage to satisfy this
limit the function Bz' ~(s) will be analytic throughout
the right-half angular-momentum plane.

a constraint always to be checked before the dynamical
calculation is begun.

We are now in a position to write down equations
for NJ and DJ, using as a guide the requirement that
for ReJ&L the partial wave must coincide with formula
(3.2). Inspection of the latter shows that there should
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be no physical sheet poles in s and that As(s) must
decrease exponentially as Ref-++ ~. It follows from
the definition (4.10) that the phase of Ss', for sufE-
ciently large J, must be the same at $= $0 as at $= ~.
The absence of physical sheet poles, together with the
phase requirement, eliminates CDD ambiguities" at
least for large ReJ, and if we normalize the denominator
function to unity at $= , its equation immediately
follows from formula (4.13) to be

where

dS
Ds(s) =1— —, ps(s'%)(s'),

$ —$

P&=ps I'Qs

&,=L2n&'l(1+v, ')3 Re¹.

(4.17)

(4.18)

(4.19)

The equation for Ns (or¹)takes longer to derive,
but our problem is formally equivalent to that con-
sidered by Frye and Warnock" except that we have the
asymptotic condition (4.5) in place of a simple vanishing
requirement. The result is the same (and is unique):

1 dS
% (s) =BsL(s)+ , L-&sL(s') —BsL(s)3

8O$ $
&&0 (')& ('), (42o)

In order to see that (4.21) is the formula derived by
Frye and Warnock, it is only necessary to recall Eq.
(4.15) together with the identity

1—if' (1—ri)' 1—ri

I' L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

BsL(s)—Re P'ss(s)+B&s.L(s)

1 " ds' L1—rid'(s')js
(4.21)

7r g.„s'—s 4ps' (s')

The linear integral equation (4.20) for Es(s) is
nonsingular if

and

BsL(s') Bs—L(s) '
dSdS ps(s') p~(s) (~

$ —$

ds ps(s) IB&L(s)
I
s(

With a cutoB at $~ there is no trouble in these con-
ditions from the upper range of integration and also
none at the lower limit $0 if ReJ& —~. Since B~ is
analytic in J for ReJ&0, if we manage to satisfy the
Froissart limit, it follows that the Fredholm equation
(4.20) defines a unique function ¹(s)analytic at least
throughout the right-half angular-momentum complex
plane except for possible fixed poles in J arising from
zeros of the Fredholm determinant. According to Eq.
(4.17) such fixed poles would also occur in Ds(s) and
thus cancel in the quotient yielding Bs(s). Thus, the
only J singularities of Bs(s) for ReJ)0 would be
Regge poles, arising from the zeros of Ds(s).

The final demonstration of Regge asymptotic be-
havior requires, beyond meromorphy in J, an investi-
gation of the limiting behavior of As(s) as J~ s~;
but Mandelstam's' analysis of this latter question can,
fortunately, be taken over directly. Provided that the
Froissart limit is satisfied, one can justify the neglect
of those portions of the distorted Sommerfeld-Watson
contour at

I JI = eo, ReJ)0. The usual Regge formula
for M(s, t) as t~ eo with s fixed, in terms of pole
trajectories and residues, then follows.

The following paper" shows in detail how the
understanding of asymptotic behavior at large t allows
a practical numerical calculation of M(s, t) to be based
on Eqs. (2.7) and (2.10).

'I N. F. Bali, following paper, Phys. Rev. 150, 1358 (1966).
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