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Et is suggested that the form factors in the helicity decomposition of the effective coupling of a vector
meson to baryons are proportional. This result is shown to follow, within the framework of an SU(6)~-
invariant theory, from a speculation closely related to this group. By assuming p-meson dominance of un-
subtracted dispersion relations in the helicity decomposition of the isovector nucleon electromagnetic
current, reasonable values of the isovector charge and magnetic moment are obtained simultaneously, thus
conhrming the above suggestion. A discussion is given of the problems arising in this approach concerning
analyticity of the form factors and their behavior both asymptotically and at the threshold points q'=0
and 4m'.
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There are, of course, an in6nite number of similar de-
compositions of the current, but the above two will be
sufhcient for the purposes of the present argument.

With these observations it is clear that a group-
theoretic argument, or similar guiding principle, of
genuine physical content has to be made if some rela-
tionship is to be obtained between two of these form

*The research reported in this document has been sponsored
in part by the Air Force OfEce of Scientihc Research OAR through
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I. INTRODUCTION

HENEVER a calculation is made in which
~

~ ~

~ ~ ~ ~

~

dominance by exchanged vector mesons is
assumed, the question arises as to what form the
vector-meson —baryon coupling should take. The ef-
fective coupling of any vector meson (with C parity
= —1) to a baryon can be written in momentum space
in the form

factors; for the general prescription of pole models which
"evaluates the coupling on the meson mass shell" will
produce diferent results according to which particular
choice of the above current forms is taken. LSpecifically,
this would produce the form equality of Gz and G~
with the current taken as in (1), or of Fr and Fs with
the choice (2)). That considerations of analyticity (and
the related questions of subtractions and asymptotic
form) do not resolve this question is clear, and will be
taken up in detail for the specific case of the nucleon
electromagnetic form factors in Sec. IV.

For a short time it seemed that perhaps an answer
could be given within the framework of a higher sym-
metry' containing spin, U(12), but it now seems clear
that the highest symmetry (of those proposed to date)
which can be applied to the three-point function' is that
known as SU(6)s, which allows exactly the original
freedom of choice speci6ed above. ' In retrospect it is
perhaps fortunate that the U(12) prescription should
have proved untenable, for this implies' the form
equality of F& and. Fs in the expression (2) for the
current, and leads in a natural way (through a vector-
meson-dominance model) to a similar relationship
between the isovector Dirac and Pauli electromagnetic
form factors of the nucleon which is known to be
incorrect. 4

The purpose of this paper is to clarify a speculation
put forward earlier' for the resolution of this problem.
This speculation (treated in detail in Sec. II) is closely
related to the SU(6) s group of invariance of the strong-
interaction three-point vertex, and leads naturally to
the well-known equalities4 between the nucleon electro-
magnetic form factors. In Sec. III a more detailed
qualitative check is made on the general method by
calculating the nucleon isovector charge and magnetic

'R. Delbourgo, A. Salam, and J. Strathdee, Proc. Roy. Soc,
(London) A284, 146 (1965);B. Sakita and K. C. Wali, Phys. Rev.
Letters 14, 404 (1965).

~K. J. Barnes, P. Carruthers, and Frank von Hippel, Phys.
Rev. Letters 14, 82 (1965); H. J. Lipkin and S. Meshkov, i'.
14, 6'l0 (1965); K. J. Barnes, ibid 14, '/98 (1965). .

'K. J. Barnes, Phys. Rev. 139, B947 (1965); 140, B1355
(1965).

4 T. Janssens, R. Hofstadter, E. B.Hughes, and M. R. Yearian,
Phys. Rev. 142, B922 (1966).
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momentfromunsubtracteddispersionrelations. Finally, like 4, if 8 is deGned within the Dirac algebra so that
in Sec. IV, a detailed discussion is given of the problems
of analyticity and asymptotic behavior which are
relevant to these calculations.

IL SPECIFICATION OF THE VERTEX

It has become increasingly clear over the recent past
that the symmetry SU(6)& is (for some mysterious
reason) a reasonable one for treating strong-interaction
three-point vertices, and that perhaps the easiest way
to apply this prescription is to write down formally
U(6,6)-invariant vertices and insert the two indepen-
dent momentum spurions in all possible ways. ' For
the purposes of the present work it will be sufhcient to
consider the quark-meson vertex, and internal vari-
ables may be completely ignored. All that it is necessary
to know is that the quark is represented by a Dirac
spinor U(p) in momentum space, and the mesons by an
irreducible mixed spinor

C'= 4'B(r )=~1+qn'a+I" l 5&V "7l+V'l 7"+2I'l .&""
~ (~)

where P and its subsidiary Geld. F» d.escribe a pseudo-
scalar, while @„and its subsidiary Geld F„.describe a
vector meson. ' (8 would represent a scalar meson but
will later be eliminated from the analysis. ) A general
transformation of the three-parameter invariance group
may be written in inGnitesimal form as

U(p) ~ U(p)+inAe" pBpc'o DBU(p), (8)

where p and p are unit four-vectors along the directions
of the incoming and outgoing quarks, exactly as in
Sec. I, and the usual Dirac matrix notation has been
conveniently extended into Gve dimensions by adding a
Gfth space-like direction. Thus

~A —(70 ~l ~2 ~8 ~5) CAB Li(~ApB YB7A)

and the multiplication table reads

pyAVC gAC j~AC

pACCD —i(gAC7D gAD~C) 1~ACDBEc (1O)

~AB~CD gA. CgBD gADgBC ~ABCDE~

+i(~ADgBc cAcgBD+cBcgAD cBDgAc) (1 1)

where g"B has diagonal elements (1, —1, —1, —1, —1),
and. eABcD& is totally antisymmetric with &0»» ——1. It
is perhaps worth pointing out that with this invariance
alone, the meson Geld

C'= 01+0AVA+4 ABACA

is reducible into Gelds and subsidiary helds as indicated
by this notation; since J3C 8 ' transforms exactly

' R. Delbourgo, M. A. Rashid, Abdus Salam, and J. Strathdee,
in Proceedings of the International Conference on High Energy
Physics and E/ementary Particles (International Atomic Energy
Agency, Vienna, 1965), p. 455.

(13)

(14)

The introduction of transformations which have as
generators products of the above "spin" generators with
SU(3) generators' removes this degeneracy (and speci-
Ges the ratio of D and F couplings of mesons to baryons),
and in the following work we assume that C is ir-
reducible, as it would therefore be under this larger
SU(6)s group. Thus the general quark-meson vertex
which is "spin"-independent takes the form in mo-
mentum space

U(p')A. U(p)C" (q), (13)

where, a priori, with all particles off the mass shells,

A, = pp'r, pp'+bpp'r +b'r pp'+ pr,p+ p'r p'
gdPrBP+ eP rBP+brB+fPP rBP
+fp'r, pp'+gpp'rBp'+g'pr, pp'+&pr

+u'r, p'pip'r, +l'r p, (16)

and the a, b, b', , l', are real analytic functions of
scalar variables, such that under the substitution
p ~ p', a, d, e, k are invariant, while b ~ b' etc. Here
the only principles applied have been that the resulting
interactions should be charge-conjugation —invariant,
and that the current is Hermitian. (Notice that 4' has
been t."ken, as usual, to be self-adjoint, and that the
incoming and outgoing quarks are assumed to belong
to the same representation. ) At this stage )and this
is the SU(6)~ result) it requires only somewhat
lengthy but straightforward algebra to reach the con-
clusion that the insertion of the momentum spurions
P and P' has destroyed the U(12) prediction' of the form
equality of Ill and Jim in the vector current La result
obtained by taking only the term hrB in Eq. (16)j and
has restored the arbitrariness evident in the general
forms (1) and (2). To remove this arbitrariness the
following speculations are proposed:

(A) AB is the sum (with, a Priori, arbitrary functions
of scalars as coeflicients) of the unit operator and the
"spin" generators.

(8) No scalar particles shall be generated.

Notice that these conditions are not group-theoretic
statements (although the Grst seems closely related to
the group invariance) and that they generalize in an
obvious manner to the full SU(6) B group. It is perhaps
pertinent to point out that it is by no means clear that
this prescription Dn particular condition (A)j can be
applied without obtaining internal inconsistency, nor
is it clear that (if it may be applied consistently) it
will remove the basic arbitrariness under consideration.
The hope, of course, is that this latter will indeed be

6M. Gell-Mann, Phys. Rev. 125, 1067 {1962); Y. Ne'eman,
Nucl. Phys. 26, 222 (1961).
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Although the latter form (21) is perhaps the most con-
venient expression of the results, the earlier form (20)
has the advantage of showing directly the appearance
of the "spin" generators in the vertex. This may be
made even more explicit by rewriting the vertex in
the Breit frame where I'I'= (2E,0,0,0) and ql'= (0, 0, 0,—2k), and the resulting form is

E 2Eki
-4mq'gU'(p') ~0+

X( 40»&1+4'170&2+4 |ra) ~(p) . (22)

' K. J. Barnes, Phys. Letters, I, 166 (1962).
8 V. Sargmann and E. Wigner, Proc. Natl. Acad. Sci. U. S. 84,

2i j. (1948).

the case and that moreover the form equality of Gz and
and G~ will be achieved in the vector current, so that
a simple pole model will lead naturally to the experi-
mentally4 well verified form equality7 of the correspond-
ing electric and magnetic nucleon isovector form factors.
As the simplest form for A&, namely hF&, leads to the
U(12) result and its undesirable consequences, con-
dition (A) represents the only obvious simple alterna-
tive, speciGcally, that Az lies in the set of symmetry
generators.

In practice these conditions are most easily applied
in the more concrete form

(A.1) A=ypA. typ,.

(A.2) The commutators [h.,p] and [h.,p'] are each
zero;

(B.i) A—=0 when I'g ——1.

With these conditions the vertex reduces to the simple
form

U(P')(g(q, [p',p'K)+g'&|t, [p,cpl})~(p) (17)

where (A,B)=AB+BA. Written out in detail with
the quarks on the mass shells, and making the Sarg-
mann-Wigner identiGcations

pqA'/I ~

I' .= (zip) (qy qy. )— (19)

(where p is the meson mass), the effective vertex finally
takes the form

In this frame (where $0 =0) the SU(2) 1r scalarity of the
interaction shows clearly that the SU(2) s scalar is pp,
while P is the third component of the SU(2) s vector
(W-S Qip). 0 Moreover, the exact phase of the transverse
parts of the vector Geld when considered as components
of an SU(2) s vector is directly exhibited.

The point of view advocated here is that whatever
further approximations are made to the effective vertex
(e.g., the pole prescription of evaluation at qp=pp,

except in perhaps certain kinematical factors) they
should be made to this explicit form (21), and that
in particular the direct proportionality of the I'I' and
r& types of vector-meson coupling should be maintained.
The author advocates strongly the philosophy that
whatever relative momentum dependence is predicted by
symmetry or related arguments) between the various
types of effective coupling in some basic vertex [such
as in (21) above(, it should be maintained in any
related process in which dominance is assumed by the
particles whose couplings are so related. (in particular
for electromagnetic coupling). The prescription of evalu-
ating the effective vertex at the meson pole and de-
manding pole dominance in an arbitrarily chosen form
of the current (rather than the one indicated by the
original form of the effective vertex) seems, to the
present author, to entirely negate the whole philosophy
employed in d.etermining symmetry (or similar type)
restrictions on the e6ective vertex in the Grst place.
Indeed, for the case of the strong interactions, the above
"philosophy" is no more than a strong restatement of
what is meant by the effective vertex in the case where
a vector meson is coupled to the baryons. For the
electromagnetic case, this point of veiw is essentially
the argument that (apart from the strength of the
coupling) the photon interacts with the baryons in the
same way as the neutral members of the SU(3) octet
of vector mesons. In the simplest pole model, where the
interaction of a photon with baryons is described by a
direct transition of the photon into a neutral vector
meson which then interacts with the baryon, this result
depends only on the momentum dependence introduced.
at the photon-meson transition "vertex" being the
same for the two helicity states. (Most models, of course,
introduce no momentum dependence at all in such a
transition. )

III. ISOVECTOR NUCLEON FORM FACTORS

Gjr /v P G3E /I1N y

Gs~= Gjr~/yz,

(24)

(25)

,~ H. J. Lipkin and S. Meshkov, Phys. Rev. 143, 1269 {1966).

It is now known to a very good approximation that
the proton and neutron electromagnetic form factors
obey the relationships4 ~

(23)
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where the notation is such that the electromagnetic
current is written in the form

e (Ps rs
~(P')

I
s+ G l&(P) (26)

(1—g'/4ms) (2m 4m'

and therefore Gs(0) is the charge of the particle in
units of e, while Gsr~ ~(0) is the total magnetic moment
(y, ~,N) of the particle in units of e/2m. These results, of
course, follow' directly from vector pole dominance
within the SU(6) w framework, provided that the pre-
scription given in Sec.II is used, as has also been empha-
sized by Freund and Oehme. " Notice, however, that
the calculation performed in Ref. (10) is in flat contra-
diction with the spirit of the present work. These
authors start with the U(12) result' for the strong vertex
(in which the PI' and. r& terms differ in their q depen-
dence) and force the required proportionality of Gz and
G~ for the electromagnetic vertex by demanding pole
dominance in the form (1) of the current (chosen
arbitrarily). In the present work, the choice of the form
of the current in which pole dominance is demanded is
determined by the arguments of Sec. II, and corresponds
to the philosophy that the relative momentum depen-
dence of the two types of coupling of a photon to the
nucleons is the same as for the strongly interacting
vector mesons which are being assumed to dominate
the photon coupling.

The question now arises as to whether this simple
model will stand up to a more detailed investigation.
Consider the isovector nucleon form factors

GE,m~ GE,MP GE,os+

which are expected to be dominated by the contribution
from a single vector meson (the p-meson), and. should
therefore provide an excellent illustration of the present
ideas. Qualitatively the above model will yield the form
equality of Gzv and. Gsr" (in agreement with experi-
ment) and will give for this dependence (m, '—h) ',
where t= q'. This dependence is by no means in exact
agreement with experiment, but is certainly qualita-
tively satisfactory and even roughly quantitatively so
in the region of small t where the model is expected to
be valid. There is, however, one more quantitative test
yet to be applied. If the results (23)—(25) hold for
large momentum transfers, and GE,~~ show no new
and unexpected structure, then it is expected that
GE,~" fall o6" at least as fast as t '. Thus it should be
possible to write Nnsgbtracted dispersion relations for
GE,3f~ and hence calculate the isovector charge and
magnetic moment in terms of the known parameters of
the p-meson and x-E scattering.

Perhaps the best suited calculation for this purpose

' P. G. O. Freund and R. Oehme, Phys. Rev. Letters 14, 1085
(1965).' K. W. Chen, J. R. Dunning, Jr., A. A. Cone, N. F. Ramsey,
J. K. Walker, and Richard Wilson, Phys. Rev. 141, B1267 (1966).

is the one 6rst performed by Singh and Udgaonkar, "in
that the physical input is large, so that hopefully the
inherent inaccuracies of the approximations made are
minimized. (Particularly those contributions to the far
left-hand cut which are parametrized by the method of
Balazs. ") As those authors demanded p-meson domi-
nance in the form (2) of the current rather than the
GE,~ form, their method will be briefly reviewed here
for the convenience of the reader, who is, however,
referred to the original paper and the references con-
tained therein for a more detailed discussion of the
approach.

Unsubtracted dispersion relations are written for the
form factors in the form

1 "
gE, sr(h')Ch'

GIr, sr v(t) =
4 jf'—t

(27)

where the spectral functions gs, sr ——Im(Gs, sr) are ap-
proximated through unitarity in the standard way'4 by

eF *(h—4)sh'
gE,m= I E,JI ~

g(h)1/2
(28)

Here the pion has been adopted as the unit of mass,
F is the pion electromagnetic form factor (normalized
to 1 when h=0) and Fs f+/2m, ——Psr f /4m%—2—, where
f+ are the helicity amplitudes derived by a Jacob and
Wick" formulation of the process ~x ~ EN in a J= 1
state. If the amplitude for s.+s.~ s.+s. in the 7=1
channel is now taken in the form A(h)=N(h)/D(h),
where D(h) has only the physical branch cut for h)4
and. N(h) has singularities only on the negative real
axis, then standard methods' allow the identification

1 Ch'D(h')Im[f+(h')7
fkD

t' —t
(30)

where @=4(1—h/4m'), and the inelastic right-hand. cut
has been neglected. In the region 0(t&u the only con-
tribution to Im[f+(h) j is from the nucleon pole in the
crossed channel, giving

—8 sfm'(
s' —h2)'

ImLf+(h'))N =
(4ms h') sfs(4 h') sh—s— (31)

"V.Singh and B.M. Udgaonkar, Phys. Rev. 128, 1820 (1962)."L.A. P. Bali,zs, Phys. Rev. 125, 2179 (1962)."W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960)."M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
"Dispersion Relations, edited by G. R. Screaton. (Oliver

and Boyd, Edinburgh, 1961),p. 227.

in this approximation (no four-pion or heavier inter-
mediate states). Moreover it is possible to write'4 a
dispersion relation



STRONG AND ELECTROMAGNETIC VERTI CES 1335

—4%2m'f'
Im[f (t')]N ——

(4nP —t')»'(4 —t')»'

[(4m' —t') (4—t') —(2—t')'j (32)

where
f+(t)D(t) =I +(t)+I +(t), (33)

where f 0.08 is defined in terms of the coupling con-
stant by f'= g„'/16~m', and. the rescattering correction
and the e6ect of the inelastic processes are nonzero
only'4 for t& —11.

Following Singh and Udgaonkar" the integral in (30)
is written in two parts:

TABLE I. Data from m-E scattering.

Source of data f+(0) f (0) f+'(0) f '(0)

. Ball and. Wong~ .0.9568 0..09939 . —. 0.2664 . 0,0334
Hamilton 0.967 0.0300 —0.2839 0.0554

a Reference 18.
~ Reference 19.

are the well-known function de6ned by Chewand
Mandelstam. "

The constants, ao, a1, ag may now be determined by
observing that in the resonance region A has the form

and

1 ' D(t')Im[f+(t') j~
I~+(t) =- dt',

8

(34) (42)

(35)

This then allows the Balazs approximation" to be used
in the form

1 4 50(3.32+0.16t') 6.25(3.82+0.02t')
(36)

0.14 t+ 21t+ 196

to obtain the result

p+
Ig+(t) = +

t+21 t+ 196
(37)

( or o2
N(t) =up+(t —to)

i
+

Et+21 t+ 196'
(38)

where n+ and P+ are unknown constants. Notice that
this approximation is mathematically no more than a
straight-line approximation to a hyperbola of small
curvature in the region of interest, and that physically
it corresponds to a two-pole parametrization of the far
part of the cut, where the positions of the poles are
known. This same approximation may also be employed
in conjunction with the standard X/D treatment" of
the m-x amplitude to yield

and ensuring that this yields the correct mass (767
MeV) and width (120 MeV) for the p meson, while

E(4)=0 to give the required threshold behavior. (The
physical values have been chosen exactly as in the
original calculation of Singh and Udgaonkar" to allow

easy comparison. ) All that remains is to evaluate the
constants n+ and P+ in Eq. (37) by constructing f+(0)
and f'+(0) = [(d/dt) f+(t)j~o in terms of these constants
and comparing with the values obtained from forward
m-X scattering data. The data of Ball and Wong"
and a more recent set of data produced by Hamilton's
group" have been used for comparison, and these data
are given in Table I. Furthermore, the present author
has performed by hano the integrals in Eq. (34) which
were machine integrated by the original authors, and
this is believed to have introduced an additional error
of some 5%. (For reasons which will be made clear in
Sec. IV, the 6rst and second entries in the Gnal column
Table III are expected to be in fair agreement, and it is
believed that the discrepancy con6rms that the extra
error induced by these approximations is not too severe. )
The resulting values for the constants n+ and P+ are
given in Table II.

Finally, approximating the p-meson resonance by a
Dirac 5 function,

and
(t—to) t' 4»2 N(t—')

D(t) =1— dt dt', (39)
(t' —t)(t' —t,)

ID(t) I'

s y[tg(tg —4)]'I'
h(t, —t),

1P(tg)
(43)

where ao, a1, a2 are constants, and a subtraction has been
made at t=to, chosen to be —4. (The nearby part of
the left-hand cut of the ~-x amplitude has been shown"
to have only a weak effect, and is neglected here. )
Substituting (38) into (39) gives

D(t) =1—(t—t,)[o~(t,t,)
+azE(t, —21)+agK(t, —196)]) (40)

TABLE II. Values of a+ and p~.

Data used

Ball and Wong'
Hamilton"

& Reference 18.
& Reference 19.

32.9 —45.0 33.8 —179
41.0 —119 23.0 —92.0

where
1 " (t' —4) 'i' 1

I~(t,t,)=— dt'i
i t' i (t' —t)(t' —t,)

(41)

i7 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 46/ (1960).
'8 J. S. Ball and D. Y. Wong, Phys. Rev. Letters 6, 29 (1961).' J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick,

Phys. Rev. 128, 1881 (1963).
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TmLE III. The isovector nucleon charge and magnetic moments.

Data used

Ball and Kong'
Ball and Kong
Hamiltonb
Experimental value

IL Reference 18.
b Reference 19.

Form of current

Jig and F2
G~ and G~
Gg and G~

Charge
(.)
1.1
1.8
1.3
1

Moment
{e/2m)

2.8
2.6
5.2
4.7

t
GE(t) =F~(t)+ F~(t)

4m'

"f,(t')1(t'/4nt~) f,(t')Ct'

gp

fm(t')dt' (5.0)
4m'm

Gg~= A. (-;

et'

the final result is obtained in the form At first sight it may appear that such a calculation
should differ from one assuming unsubtracted dispersion
relations for Gg and G~ only by the subtraction of a

(44) constant of magnitude

00

where

e tg
Gu"=4

255 tg —t

(t —4)'D(0)f+(t )D(» )
Xg=

4nt»EN'(»E)

(45)
f&(t')dt'

4m'm- g,

from GE(t). However, one immediately realizes that
the assumption of unsubtracted relations for G~ and

(46) G~ implies directly that Fm behaves asymptotically at
least like t ', and therefore »F~(t) may be dispersed'e in
the form

y(»E 4)'D(0)f —(tE)D(tE)-

442»EN'(»E)
(47)

l "t'f, (t')dt'
»Fy.(t) =

x ~, t' —t
(52)

and therefore

"f,(t')ct'
F'(t) =-

g0

(48)

"fi(t )+f2(t )
Gjr(t) =Fx(t)+F,(t) =— dt', (49)

g,
t' —t

The final results are given with the experimental
values, with Singh and Udgaonkar's" result shown
for comparison, in Table III. It seems reasonable to
conclude from the magnetic moment results (which are
roughly independent of the choice of the form of current)
that the later mX data of Hamilton is more reliable than
the earlier data of Ball and Wong. Furthermore, the
value of the isovector charge is strongly dependent on
the form of current chosen, but the value obtained with
the Hamilton data and the helicity form of the current
is not at all unreasonable. I As has been repeatedly
emphasized, above, this is the form of the current sug-
gested by the speculations in Sec. II, and which leads
to the desired form equality exhibited, in Eqs. (44) and
(45) 3

IV. DISCUSSION

It is instructive to see exactly why the above calcu-
lations give such widely differing results for the value
of the isovector charge in the first two cases shown in
Table I, when exactly the same physical input was used.
If unsubtracted dispersion relations are assumed for
Il j~ and F2~, then with an obvious notation and the
neglect of the isovector index,

Evaluating this expression when t=o gives at once the
sum rule

f,(t')dt'=0,

and the two methods are shown to coincide exactly in
principle. In practice, however, it is clear that domi-
nance of Ii2 by a single pole cannot yield the sum rule
required. Thus the two approaches will give results
which approximately agree on G~, while differing in
their predictions of GE(0) and the t dependence of
GE(t)

For the chosen example of the isovector nucleon form
factors experiment clearly favors the Gg, ~ form of the
current (once single-pole dominance is assumed) for
three reasons:

(i) G~v and GEv have the same shape' (given in
this approximation by the meson propagator).

(ii) Reasonable static (t=0) values of GE,~ v can be
obtained using unsubtracted dispersion relations and
data from m-S scattering and the p meson.

(iii) GE,M (at least for the proton) fall off" as t '.
Thus F~ falls off at least as t ' and satisfies the sum rule.

It therefore appears reasonable to interpret this as
evidence in favor of the speculation proposed in Sec. II,
so closely related to the symmetry group (SU(6)s j
whose application to the vertex yielded the good results
of Kqs. (23) and (24).

~'R. G. Sachs, Phys. Rev. 126, 2256 (1962); Phys. Rev.
Letters 12, 231 (1964); A. P. Balachandran, P. G. O. Freund,
and C. R. Schumacher, ibid. 12, 209 (1964).
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and using the identity

Im(AB) =8 Im(A)+ A * Im(B),

this leads to

(55)

Re(G@(4m') —Gsr(4m')]= fs(t')dt'. (56)
4m'm

&o

The right-hand side of this expression would, of course,
be zero by the implied sum rule (53) in an exact calcu-
lation, but will not be so in practice because of the
crudity of the single-pole approximation used. Thus
the price that has been payed in order to obtain reason-
able agreement with experiment using the single-pole
model is the introduction of spurious poles at q'=4m'
in the F~ and F2 form factors. This should cause little
concern, for the approximations used are speci6cally
designed to produce a phenomenology for negative q2

near zero, and not in the region of large positive mo-
mentum transfers. It will be of great interest to have
dehnitive measurements of the proton form factors in
the annihilation region" q'&4m', not only because these

"S. Bergia and L. Brown, in lv ncteon Strnctnre, Proceedkngs of
the Internattonat Conference at Stanford Unteersety, 1963, edited by
R. Hofstadter and L I. SchiG (Stanford University Press, Stan-
ford, California, 1964);W. Alles and S. Bergia, Nuovo Cimento 31,
262 (1964); V. Barger and R. Cahart, Phys. Rev. 136, B281
(1964)."Experiments in progress at CERN LA. Zichichi et al.
(unpublished)j and California Institute of Technology LA. V.
Tollestrup et at. (unpublished)g have established that the cross
section is small in the 6-7-BeV/c range, and give rough upper
limits (of the order of 0.1) for the form factors. (Private communi-
cation from R. Hofstadter. )

The 6nal question in this case is posed by the well-
known equality of Gz and G~ at q =4m which
theoretically ensures that F& and F2 are analytic at
that point, and physically ensures isotropy in the annihi-
lation channel (p+p -+ e++e ) when the baryons are at
rest. Equations (3) and (4) indicate that this equality is
satisied if F~ and F2 are 6rst calculated and Gg and
G~ then formed from them; but this leaves open the
question if Gg and G~ are calculated directly. With the
above dispersion relations for these quantities, one can
at once discover

"gz(t') —gst(t')
GE(4m') —Gsr(4ms) =- dt', (54)

]'—4m'
gp

should be sensitive to possible higher mass contributions
than the presently well-established vector mesons, but
also in order to determine whether the remarkable form
equality of Gz and G~ is maintained in this region.
In this connection it would be particularly instructive
to have results near to the threshold (qs=4ms), where

presumably the form factors (and the cross section)
would have to be zero if the form equality of G~~ and
G~ is still valid while the threshold condition of their
equality must apply. It should be noted, of course, that
a completely different set of approximations would have
to be employed in calculating the form factors from a
dispersion theory in this region of momentum transfers
Lparticularly if the Gt, sr form of the current is used, as
Eq. (56) shows quite clearlyj.

The conclusion of this investigation is that, if the
approximation of vector-pole dominance has to be made,
then the form of coupling most likely to yield satis-
factory physical results in that which has the I'I' and
r& terms proportional. This particular form seems to
have a close connection with the collinear sytnmetry
groups (through the speculation in Sec. II), and
certainly gives agreement with experiment in the one
situation where a clear test is available. Although the
present work has been primarily concerned with the
electromagnetic vertex, it should be noted that the
basic property is one of the strong coupling of vector
mesons to baryons, and that the theoretical reason
suggested for this property is a speculation based on the
symmetry of this strong vertex. It seems clear that the
adoption of the helicity form of the current rather than
the more usual type (2) would cause strong momentum
dependence effects in peripheral calculations in which
a vector meson is exchanged, and might well provide an
even more direct test of the ideas put forward in this
work. The complications caused by absorption and the
relatively unknown strong form factors seem to make
this possibility somewhat remote at the present time.
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