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Linear integral equations for three-particle scattering amplitudes in any Lorentz-invariant local 6eld
theory are written; they are three-particle analogs of the Bethe-Salpeter equation. The kernels of these
equations are oB-mass-shell relativistic generalizations of two-particle and three-particle potentials. Ke
transform the equations by the method of Faddeev so that the two-particle potential no longer appears,
but only the two-particle scattering amplitude. Particular cases of these equations are presented. We then
show that two- and three-particle unitarity is satis6ed provided the relativistic potentials are real in the
relevant energy region.

I. INTRODUCTION

'HERE is a considerable and increasing amount of
experimental data on strongly interacting three-

particle systems. In particular the three-pion system
has four possible resonances —the ce, H (959)', 2 t (1080)',
and As (1300)'. The EEs system has two possible
resonances —the D(1285) and E(1415), the Ercrr
system has C(1220). There are also numerous reso-
nances' with nucleon number 1, whose understanding
may very likely require three- or more-particle inter-
mediate states. Thus we need a theory of three-particle
scattering to explain this data. Such a theory does not
not yet exist, since at the same time such a theory
would require some knowledge of four-, 6ve-, six- .
particle scattering.

An approximation scheme for three-particle scatter-
ing which breaks this inhnite chain is to neglect contri-
butions from connected processes with not less than
four particles in intermediate states. Such an approxi-
mation scheme might be expected to be reasonable for
energies below the production threshold of an extra
particle, which would usually be a single meson. Such
an approximation scheme may be regarded as analogous
to setting the three-particle potential equal to zero in
potential scattering theory. Even when this is done
there are considerable difhculties left in the non-
relativistic potential scattering equations. These dif-
hculties are generated by the presence of the two-
particle potentials in the kernel of the three-particle
Lippmann-Schwinger equation; upon iteration of this
three-particle kernel, resonances or bound states of the
two-particle channels may cause the divergence of the
iteration. Further practical difhculties are that the
two-particle potentials are not as well known as the
the two-particle scattering amplitudes and their
presence in the equations does not allow the use of the
bound states and resonances in the two-particle ampli-
tudes to approximate the two-particle contributions.

These difhculties were all removed by the work of
Faddeev, ' who showed how it was possible to introduce

+ Supported in part by the National Science Foundation.' A. H. Rosenfeld et a/. , Rev. Mod. Phys. 36, 977 (1964).S.Ya.
Nikiten, in I'roceedings of the International Conference on High-
Eaergy Physics, Drsbwo, 1964 (Atomisdat, Moscow, 1965).

'L. D. Faddeev, Zh. Eksperim i Teor. Fiz. 39, 1459 (1960)
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partial three-particle amplitudes which satis6ed integral
equations —the Faddeev equations —whose kernels
were the complete two-particle scattering amplitudes.
He then gave a careful analysis of these kernels, ' and
showed that suitable iterates of them were completely
continuous, and could be approximated by separable
kernels. This essentially means that the two-particle
amplitudes entering the kernels could be expressed as
sums of bound-state and resonance contributions.

The Faddeev equations have been applied in non-
relativistic scattering theory to the 3-nucleon system, 4

for 30. particles, ' for the ewe system, ' and for the Ed
syst.em. "

When we wish to extend these discussions to rela-
tivistic three-particle scattering we meet the difhculty
that we no longer have a unique equivalent of the
Lippmann-Schwinger equation. The lack of uniqueness
arises from the possibility of considering three-particIe
intermediate states either completely on the mass shell
for each particle and on the energy shell for the total
three-particle energy, or oG the mass shell for each
particle but on the total energy shell, or on the mass
shell for each particle but off the total energy shell.
Similar possibilities exist for relativistic two-particle
scattering; the 6rst possibility described above is two-
particle unitarity as practiced by S-matrix theorists,
the second corresponds to using the Bethe-Salpeter
(B.S.) equation, the third the reduction of the B.S.
equation by means of the Blankenbecler-Sugar kernel,
which puts to zero the relative energies of the two inter-
mediate particles in the B.S. equation; it may be de-
rived from the B.S.equation, but has the same structure
and number of variables as the Lippmann-Schwinger
nonrelativistic equation.

LEnglish transl. : Soviet Phys. —JETP 12, 1014 (1961); DokL
Akad. Nauk SSSR 138, 565 {1961);145, 301 (1962) English
transls. :Soviet Phys. —Doklady 6, 384 (1961);7, 600 (1963)j.'L. D. Faddeev, Atomic Energy Research Establishment
Translation, Harwell, England, 1964 (unpublished).

4 R. Amado, Phys. Rev. 132, 485 (1963);R. Aaron, R. Amado
and Y.Yam, ibid 136,B651 (1964).and Phys. Rev. Letters 13, 5/4
(1964).' D. Harrington, Bull. Am. Phys. Soc. 11, 28 (1966).

6 C. Lovelace, Phys. Rev. 135, 31225 (1964).
'H. Hetherington and R. Schick, Phys. Rev. 137, @935.

(1965).' R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).
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In the three-particle case the first and the last possi-
bilities have been pursued. As for the first possibility,
unitarity contributions have been analysed' and three-
particle 1V/D equations have been written down. '0

There is a considerable difficulty in this approach
arising from the unknown analytic properties of the
amplitudes, which has not yet been satisfactorily
solved. " Also it has not been possible to apply this
approach to actual three-particle systems due to non-

separability. The third possibility has been very actively
pursued" and applied specifically to the problem of
generating the co resonance from the three-pion system. "
The numerical results of these calculations give reso-

.nances of too high an energy to the co, though they may
be the A mesons. It is possible that the further approxi-
mations made in these calculations, in particular that
of just taking mm scattering through the p resonance,
may be the reason for this failure to obtain the or, this
is not yet known.

From this brief survey of recent work on the three-
particle problem it would appear useful to see if the
second possibility discussed above, that of off-mass-

shell methods, will give a more satisfactory theory of
relativistic three-particle scattering. That is the
purpose of this and following papers.

In the present paper we wish to set up the general
equations describing the exposure of off-mass-shell

three-particle intermediate states in scattering ampli-

tudes; we also wish to show that we may rewrite these
equations in a form only involving the two-particle
scattering amplitudes. Thus we will have our equations
in a form ready to approximate by neglect of higher
than three-particle intermediate states. We then write
down such approximate equations. and consider their
unitarity properties briefly here.

One might ask if the crucial diS.culties encountered
in oQ-mass-shell theories of (i) too many variables and

(ii) occurrence of conditionally convergent integrals
will prevent us from ever using the equations described

in this paper. We show in the next paper" how both
these- difficulties may be faced and surmounted, at
least under the reasonable approximation of taking
only resonance and bound-state contributions in two-

particle scattering amplitudes.

It. is very pertinent to remark in this introduction
that the equations obtained in Secs. 3 and 4 may be
used as '.the starting point for deriving equations in

9 M. O. Taha, Department of Applied Mathematics and Theo-
retical Physics Report, Cambridge, 1965 (unpublished).I S, Mandelstam, Phys. Rev. 140, B375 (1965).

"The corresponding nonrelativistic problem appears to have
been solved in recent work of M. Rubin, R. Sugar, and G. Tiktop-
oulos, Phys. Rev. '146, 1130 (1966)."D. Freeman, C.Lovelace, and J.Namyslowski, CERN Report,
1965 (unpublished); R. Alessandrini and R. Omnes, Phys. Rev.
139, B167 (1965).
"J.L. Basdevant and R. Kreps, Phys. Rev. 141, 1398; 141,

1404 (1966); 141, 1409 (1966).
~4 H. Cohen, A. Pagnamenta, and J. G. Taylor (to be published).

either the on-mass-shell unitary S-matrix approach or
the off-energy-shell approach using the Blankenbecler
and Sugar kernel. In other words, what we are doing
in this paper is solving the combinatorial problem of
exposing three-particle states in scattering amplitudes.
Once we have solved this problem so that we have the
correct order of the various scatterings, then the re-
sulting integral equations may be obtained for the
cases mentioned above by suitable choice of propa-
gators arid vertices.

The solution of this combinatorial problem was given
in an earlier work of the author. "Since the details for
three-particle scattering were not spelled out in that
paper, there still seems to be considerable confusion as to
the correct solution to this problem. We feel it necessary
to go into this solution in some detail for the three-
particle case here. In particular it appears very necessary
to discuss the manner in which elementary and composite
particles enter, and the role of renormalization. Both
these topics are very scantily discussed in the references
to the three-particle problem made earlier in this paper,
and in some places errors have even crept in due to con-
fusion over the solution of the combinatorial problem
given in Ref. 14. Further, as we remarked earlier in this
section, our off-mass-shell equations may be regarded as
a basis for on-mass-shell approaches. Thus a complete
and careful discussion of the off-mass-shell equations
may be regarded as laying the foundations for these
other approaches as well.

In the next section we describe the method of exposing
three-particle intermediate states in a general scattering
process. In Sec. 3 we show how we may transform these
equations so that they do not involve the two-particle
"potential" explicitly', the next section describes the
resulting equations in detail for various physical proc-
esses, when the three-particle "potential" is taken as
zero. The final section gives a formal derivation of two-
and three-particle unitarity, emphasizing the properties
of the "potentials" on which this unitarity depends.

II. EXPOSING THREE PARTICLES

We discuss here how we may expose three-particle
intermediate-state contributions to scattering proc-
esses."This is done for off-mass-shell as well as on-mass-
shell particles, and the exposure is performed in S-
matrix elements which are in general off mass shell in
all the particle momenta. We base our discussion on the
existence of 6elds p (x), where n is a variable describing
the various types of particle we are concerned with. We
assume that the usual properties of general field theory 6

are valid, that is we have Lorentz invariance, positive
energies, local commutativity, and the existence of a

» J. G. Taylor, Nuovo Cimento Suppl. 1, 857 (1964), in particu-
lar Paper III, pp. 945 6.

~6 See, for example, R. post, in A pplied iVathematics (American
Mathematical Society, Providence, Rhode Island, 1965), Vol. IV;
or R. Streater and A. Wightman, PCT, SPin and Statistics, and
All That (W. Benjamin and Company, New York, 1964).
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unique invariant vacuum. We also require the asymp-
totic condition to be valid, '~ so that o6-mass-shell
S-matrix elements G(pi, ,p ) are defined by

n n

G(p, ,p„)= exp( —i p p, x,)II d4x, (,,'—m,')
j=l j=l (a) (b)

x(ol s(y, (x,) y.(x„)lo).

We denote the connected part of G(pi, ,p„) by

~'(2 p )M'(pi p-);
j=l

M'(Pi, ,P ) is denoted graphically by the bubble
Q'e, and the propagators iDF(p), iD~'(p) is denoted
by (—) and (+), respectively. We wish to expose the
three-particle intermediate states between the sets of

/

/

FlG. 1. A counterexample to the use of the "last cut" lemma
without removal of suitable intermediate states. The wiggly and
dashed lines cut two overlapping three-particle states, and there
are no other three-particle intermediate states.

particles e and m in an amplitude nO'm. The method
for doing this was based in Ref. 15 on the "last cut"
lemma. This lemma proves that it is possible to expose
a three-particle intermediate state in a unique fashion
which is closest to the set of particles m or the set of
particles m (this intermediate state being the "last
cut"). This is only possible provided that intermediate
states involving fewer particles have been removed. If
this prior removal is not eBected, then the "last cut"
need not be unique. This is evident from a study of
perturbation diagrams, of which a possible counter-
example is given in Fig. 1. In that 6gure the dashed and

wiggly lines intersect. The propagators in three-particle

FIG. 2. The contribution to a process involving
m+m external particles without any one- or
two-particle intermediate states between e of
the particles and the remaining m.

states, but neither of these lines is nearer the left- or
right-hand, sides. Such a diagram is not allowed if all
one- and two-particle intermediate states have first been
removed. It may also be forbidden by selection rules,
such as occur in xmm or x~E scattering, though not in

m XEscattering. We will return later, in Sec.4, to the case
when such selection rules occur, but initially such selec-
tion rules will not be assumed. The contribution without
one- or two-particle intermediate states is termed onc-

e.nd two-particle irreducible, and denoted as in Fig, 2.
We may now expose the three-particle intermediate

' H. Lehmann, K. Symanzik, and Vil. Zimmermann, Nuovo
Cimento 1, 205 (1955). This condition has been partly derived
from the earlier conditions by the work of Haag, Ruelle, and
Hepp. This is carefully discussed, for example, in Jost's book in
Ref. 16.

FIG. 3. The general form of overlapping three-particle inter-
mediate states. Case (a) involves a common "horizontal" line,
case (b} a common "vertical" line.

states in between e and ns and choose a unique such
state nearest to e or m. For if we cannot do this, then
the two three-particle states "overlap" in the manner
of Fig. 3. There are two possible overlaps. In case (a)
we may choose a three-particle state nearer to the left-
hand side; in case (b) a two-particle state may be
exposed between left and right, and this is not allowed—hence our result.

A similar result on the exposure of one- and two-
particle intermediate states is immediate. We also need
to remove the possible self-energy contributions on
external lines. This may be achieved by amputating
each momentum with respect to the complete propa-
gator: We multiply the function M'(pi p„) by

n

IID (p)/D '(p)
j=l

which does not change the on-mass-shell observable 5
matrix element; Dp(p) = (p' —m') ', and Di '(p) is the
complete propagator

Dp'(p) = d'(x —y)e-'&&' »(Q '—m')(g '—m')

x «I r(y(*)y(y))
l
o).

Thus we de6ne

M(p. . .p-) = LII D.(p,)/D. '(p, )jM'(pi
j=l

If we now use the M functions throughout in place of
the M' functions, we will at the same time have to use
complete propagators for internal lines. The process of
removing self-energies on both internal and external
lines has now been achieved if we only use M functions,
and not 3f' functions. We note here that if we try to
expose a two-particle intermediate state, for example,
in the complete amplitude, and not in the one-particle
irreducible amplitude, then renormalization sects may
explicitly arise. Thus if we consider exposing the two-
particle intermediate state in eQ'-p nearest to the
particle of momentum p we have the equation of Fig. 4.

I 2 1~l p y'

FxG; 4. The graphical equation exposing two-particle intermedi-
ate states in the complete amplitude between a single particle of
momentum p and n other external particles.
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~=(&t + ( +g
FxG. 5. The graphical equation exposing two-particle inter-

mediate states, in the amputated amplitude, between a single
particle of momentum p and n other external particles.

We take (0 ~$(0) ~0)=0 in Fig. 4, so that the sum over r
in the last term does not include the values r=0 or n.
The right-hand side of Fig. 4 evidently contains self-

energy additions to the propagator of momentum p;
these are automatically taken care of if we expose the
corresponding two-particle intermediate state in eO-p,
as in Pig. S. Only for e= 1 will self-energy effects arise in

Fig. 5, and these can be removed by differentiation and
integration on the external momentum, as carefully
discussed elsewhere. ""Before that can be done other

Frc. 6. The exposure of single-particle intermediate states in
the amputated amplitude between n and ys particles.

Fzo. 7. The exposure of two-particle intermediate states in the
amputated amplitude between two-particle states.

equations have solutions, though at least for quantum
electrodynamics approximate solutions seem to make a
great deal of experimental sense. Even if there do exist
solutions it would be best if we could derive equations

relating off-mass-shell 8-matrix elements, which involve

as little as possible of the details of the local interactions

specifying how we are to go off-mass-shell; in such equa-

tions we expect there to be minimal effects from re-

normalization. These two properties, for our equations,

KZ=gZ Fat& X.Z
FIG. 8. The exposure of two-particle intermediate states in the

amputated amplitude between three-particle states.

"K.Symanzik, in J.ectzfres on High Energy Physics, edited by
3. Jaksic (Gordon and Breach, Science Publishers, New York,
1966).

renormalizations have to be performed on any possible

vertex functions. Vertex functions enter equations such

as Fig. 5 in the last term on the right of Fig. 5; re-

normalization of these terms can again be achieved by
differentiation and integration on the external

momenta. ""
The renormalization effects can only be taken ac-

count of explicitly in the case that we have a particular
set of local-field equations, arising, say, from some

Lagrangian. It is not yet known whether or not such

that is (i) of being independent of the particular local
interactions present and (ii) of being independent of re-
normalization effects, are evidently desirable. We at-
tempt to derive equations describing three-particle
scattering which possess these properties to the highest
degree.

Prom the remarks of the previous section we use the
amputated M functions, and expose e-particle inter-
mediare states after exposing (I—1)-particle intermedi-

,
Z" C

FIG. 9. The exposure of two-particle intermediate states in
the amputated amplitude between a two- and a three-particle
state.

ate states. The exposure of single-particle intermediate
states is given in Fig. 6. We use M functions here, so
the last term on the right-hand side of Fig. 6 automati-
cally contains no further one-particle contributions than
that exposed in the complete propagator. We remark
that the exposure will always be by complete propa-
gators, which is just a manifestation of what we else-
where termed complete unitarity. "

It is necessary to underline here the fact that there
must be consistency in our process of exposure; if we

FIG. 10. The exposure of three-particle intermediate states in
the amputated amplitude between a two- and a three-particle
intermediate state.

have exposed a certain particle in the last term of the
right-hand side of Fig. 6, then the same particle is absent
in the first term on the right-hand side of Fig. 6. To
obtain a set of equations with properties (i) and (ii)
mentioned above we want to avoid distinguishing which
particles are elementary and which are composite. By
elementary particles we mean those related to fields
with dynamical terms in a local Lagrangian; composite

FIG. 11.The exposure of three-particle mtermediate states in
the amputated amplitude between three-particle states.

particles are "composed" of the elementary particles
and are related to fields which are local functions of the
elementary-particle fields. '

The process of exposing particles does not distinguish
between elementary or composite particles; it only

'9 The definition of, and distinction between, elementary and
composite particles is more fully discussed by M. M. Broido and
J.G. Taylor, Phys. Rev. 147, 993 (1966).See also references given
therein to related works.
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depends on the concept of "particle, "as made specific
in terms of a particle propagator which describes the
way simple poles occur in various S-matrix amplitudes.
Thus we may expose either composite or elementary
particles or both by means of the last-cut lemma; if
we expose a particle at any step, then we cannot, at a
later stage, require it to arise as a composite-particle
pole in the same channel from which it was originally
removed"

FIG. 12. The irreducible amplitude analogous
to a nonrelativistic amplitude in an e-particle
scattering process.

We now proceed to expose two-particle intermediate
states. We will not explicitly distinguish between dif-
erent particles, but assume that a11 our particles are
distinct; we will discuss the equal-particle case later.
We have, for two-particle scattering, the equation of
Fig. 7. The three-particle scattering case is shown in

Fig. 8. We also discuss the two ~ three particle ampli-
tude in Fig. 9. The equations expressed by Figs. 7, 8,
and 9 are seen to follow from the last-cut lemma by
recognizing that each involves exposure of a two-
particle state furthest to the right, and that discon-

FIG. 13. The irreducible amplitude analo-
gous to a potential in an n-particle scattering
process.

nected scattering either before or after that two-
particle state may occur.

We now expose the three-particle intermediate state
in the one- and two-particle irreducible amplitudes as
in Figs. 10and 11.Let us now try to relate the equations
expressed by Figs. 7, 10, and 11 to potential scattering
equations. A simple approximation for the two-particle
irreducible term in Fig. 7 is just that given by single-
particle exchange; this term thus plays a role analogous

FIG. 14.The amplitude solutions
of the equations expressed by Figs.
8 and 9.

to that played by a potential in potential-scattering
theory. This is, indeed, well known from analyses of
the nonrelativistic reduction of the B.S. equation
expressed by Fig. 7."We see that the same two-particle
potential enters the last two terms of Figs. 10 and 11;
we may thus regard the three-particle irreducible ampli-

~ We can, if we wish, impose the condition of being composite
on a particle; this will correspond to taking the wave function
renormalization constant to be zero, as was more fully considered
in Ref. 19.I E. E. Ssipeter and H. A. Bethe, Phys. Rev. S4, 1232 (1951);
G. C. Wick, s5stg. 96, 1124 (1954).

s +&6a s+3,
I

ys

FIG. 15. The symmetrized form of three-particle exposure in
three-particle scattering for identical particles.

tude as the relativistic analogue of a three-particle
potential, and Figs. 10 and 11 as the relativistic
analogues of three-particle Lippmann-Schwinger po-
tential-scattering equations. We note that we expect
the analogy of relativistic theory to potential theory
to be good for the irreducible diagrams of Fig. 12; this
is due to the fact that in potential scattering, particles
cannot be created or destroyed. This situation is just
that which occurs in the equation for the term in Fig. 12,
if that in Fig. 13 is considered as a given potential; in

FIG. 16. The three-particle exposure in two ~ three particle
scattering when the three-body potential is neglected.

Figs. 7 or 11 only two- or three-particle intermediate
states occur.

We do not expect the equations expressed by Figs.
8 and 9 to have a potential-scattering analog, and
their structure is not discussed in any great detail.
However, the one important fact about them is that
neither of them involve the .two-body potential of
Fig. 13 for @=2. In fact if the equations expressed by
Figs. 10 and 11 could be solved for the amplitudes of

FIG. 17. The three-particle exposure in three-particle scattering
when the three-body potential is neglected.

Fig. 14, then knowledge of the complete two-particle
scattering amplitude, the complete vertex functions,
and the complete propagators allow the complete
two —+ three and three~ three scattering amplitudes
to be obtained from Figs. 8 and 9 by simple integration.
Thus if we assume that we are given the complete
propagator, vertex function, and two-particle scattering
a,mplitude (in some suitable approximation), then the
main difhculty in obtaining the two -+ three and
three —+ three particle amplitudes is that of solving
the equations expressed by Figs. 10 and 11.In order to
be able to use approximations to the two-particle
scattering amplitude which a,How the two-particle

FIG. 18.The free Green's function Go for
three-particle scattering.
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tj.T(. =,1 $ + gQ FiG. 19.The three-particle
T-matrix T.

bound state and resonance structure to be exploited,
we have thus to transform only Figs. 10 and 11 so as to
replace the two-particle potentials by complete scatter-
ing amplitudes. This is exactly the problem solved by
Faddeev'; we will attempt to use the same method here.
Before we do this let us first discuss the change in
Figs. 7 to 11 when identical particles occur. We consider
first the case when only a single type of particle is
present. We assume the particle to be a neutral scalar,
so no selection rules occur to put to zero the amplitudes
with an odd number of external particles. Then Figs.
7—11 have exactly the same graphical structure, though

Finally we will write down the equattoris resulting
from Figs. 10 and 11 on neglect of the three-body
potentials of Fig. 13 with m=3 in Figs. 16 and 17. It is
these equations which we would attempt to solve below
the production threshold for an extra particle; in
particular for three-pion scattering we hope to use
Fig. 17 later to see if we can obtain an co meson. '4 We

FIG. 23. The three-body
partial amplitude N(').

note that the equations expressed by Figs. 16 and 17 are
linear integral equations with a kernel depending only
on the two-particle potential. We turn in the next
section to replacement of this kernel by one depending
only on the two-particle amplitude.

FrG. 20. The three-particle
potential U~ arising from two-
body scattering.

now they must lead to scattering amplitudes with the
correct symmetry. The symmetry in irreducible ampli-
tudes is in all the momentum variables which enter on
one side or another of the vartical line denoting absence
of up to so many particles in an intermediate state; no
symmetry is expected with respect to variables on either
side of such a line. This symmetry is preserved on the
right-hand sides of Figs. 8—11 by symmetrization over
the external momenta on the left and on the right of the
vertical line; further, each intermediate state of n
particles occurring on the right of 8 to 11 must have a
factor (e!) ' to account for the symmetry. As an ex-
ample of this, Fig. 11, for pseudoscalar mesons, becomes

FxG. 21. The contribution to the three-
particle potential U2 arising from the proc-
ess in which the jth particle is not scat-
tered by the other two particles.

Fig. 15, where the operator 2 denotes symmetrization
over the variables 1, 2, 3 and over 4, 5, 6:

F023) u(4&6)

III. REMOVAL OF THE POTENTIAL

In order to remove the two-particle potential of
Fig. 13 with e= 2 from Figs. 10 and 11 it will be useful
to rewrite Fig. 11 in a form similar to the Lippmann-
Schwinger integral equation. We do this by introducing
the following notation:

(a) The free Green's function Go for three-particle
scattering, as in Fig. 18. We do not insert the variables,

Fn. 24. The graphical expression of Fig. 6 for the three-
body partial amplitudes.

or consider distinct or identical particles, since these
are trivial.

(b) The three-particle T matrix, as in Fig. 19, where
the summation is over all possible choices of pairs of
particles, the third particle being unscattered.

(c) The three-particle potential V~ arising from two-
body scattering, as in Fig. 20, with the summation being
the same as in the definition of T.

(d) The three-particle potential Vg arising from
three-particle scattering, as in Fig. 14 with m=3.

(e) The three-particle scattering amplitude G.

where P~&~ua& denotes summation over all permutations
of 1, 2, 3, of the function on which it acts.

Similar symmetrization and factors (e!) ' arise
when considering the scattering, say, of two identical
particles by a different one, such as in ~mE scattering.
We need not spell out these details further here.

FIG. 22. The three-body
partial t-matrix t(').

FIG. 25. The graphical expression of Fig. 7 for the three-body
two-particle irreducible amplitude.

Then Fig. 11 is, in the above notation:

T= V2+Va+TGO(Vs+Vs), (1)
where we are using the obvious notation of integration
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over internal variables in the last term in (1). In order
to remove V~ weuse the fact that V2in Fig. 20is a sum
of terms

Vs —Q V (i) ~

FIG. 29. The two ~ three particle I t yj
disconnected potential V2'. Q o &g Qo

I43

V2(.") is given in Fig. 21 where i = 1, 2, or 3, and denotes
the particle type we are considering (or the momentum

FIG. 26. The two-particle propagators with no
interaction. a

variable, if the particles are identica, l). We may rewrite
(1) formally as

T= LVs+ Vs+TGpVs](1 —GpVs) '. (2)

E=Q GplV&')+I.

Fio. 27. The two -+ three particle
irreducible amplitude T'.

]2,

It is not evident that the kernel (1—GpUs) is invertible;
we certainly are not able to discuss whether it is or not
at present, due to the presence of conditionally con-
vergent integrals. We return to this elsewhere, '4".and
only remark here that our arguments can be put into a
form independent of the invertibility of (1—GpVs); we
do not do that here since some of the simplicity of the
argument is lost in so doing.

We consider X= (1—GpVs) ', so E=EGpVs+I.
Define tV(') so that GpX(') =EGpVs('), so

We have thus obtained a linear integral equation for T,
in which the two-particle potential V2 has disappeared
and been replaced by the "partial" scattering ampli-
tudes N(". There is nothing new in this; it is exactly
Faddeev's trick. ' However, we now interpret the terms
entering (3) and (4) following the identification set up
at the beginning of this section. In graphical form we
may write (3), for example, as follows. We have
Got(')Go as in Fig. 22, and if we denote GON&"Go as in
Fig. 23 (where the curved side makes explicit the side
we are considering the interaction on), then (3) becomes
Fig. 24. This is exactly the expected structure, and the

Fro. 30. The partial contribu-
tion V2 (') to V2'. I 1(~)

solution of Fig. 24 will generate T directly if Va ——0, as
we have seen from (4). Also, (4) becomes Fig. 25. It is
possible to separate out the disconnected parts of each
function N&", but this separation is so evident from
Fig. 24 that we will not perform it here.

We perform a similar removal of the two-particle
potential in Fig. 10 proceeding as before, with Go' as
in Fig. 26, Go'T'Go as in Fig. 27, Go'V3GO in Fig. 28, and
Go Vg Go in Fig. 29, so Fig. 10 becomes

Then T'= Vs'+ Vs+ T'Gp Vs+ T'Gp Vs (5)

/(i) —Pr(t)+~(P)]GpV &()+/(i)GpVs(oyVs(i) As before, this becomes

(3)~(') —[l)r.(a+.~(P)]Gpt( )yt( )

so if t "P= Vs&')L1 —GpVs('&] ' is the scattering amPlitude T'= (Vs'+ Vs+ T'Gp Vs) (1—GpVs) '
when the ith particle does not interact, we have —(Vs+TIGpVs) (p G~(i)+I)

+Vs'(Q GplV&'&+I). (6)

Also if VslV=M= Vs(1—GpVs) ', then

M=+ E")
Fxo. 31. The partial dis-

connected two ~ three ampli- t
l &(t)

tude 5'('). O

FIG. 28. The two —+ three-particle
connected potential V3. qtyt q

We may rewite Vs'(P GpF('&+I) to remove Vs' as fol-
lows. We have Gp'Vs'Gp ——P;Gp Vs ( ) where Gp Vs(')Gp

is as in Fig. 30. Then if

Equation (3) may be solved from knowledge of t&'& we have
alone, and. we may now write (2) as

T= (Vs+TGpVs)(Q GpX(')+I)+Q X(". (4)

Vs'(1 —GpVs) '=H

Vs'+HGp Vs= H.

~' J. G. Taylor (to be published).

FIG. 32. The two-particle
exposure in 5 (')
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+ FIG. 33. The partial amplitude~ ~

f g(~& f' — &, B&'& for two ~ three particle
~ 4 + scattering.

We let H=P H&'&, where H&" satis6es

ye'&i&+HGe ye&o —H&i&

so
H&i& —P'e~&i&G&i&G —1+/H(j&+H&e& jGef&i&

where Ge&'&=(1—G&&Ve&'&) ' is the Green's function
when the ith particle is unscattered. But V2' "G(' Go '
= W')Go ' satisdes the equation

IV. SPECIFIC PROCESSES

We will not spell out the details of equations expressed
by Figs. 24, 25, 34, and 35 for processes of particular
interest. We will also neglect three-body potentials.

1. Three-Pion Scattering

In this case Figs. 34 and 35 become trivial, while

Fig. 24 acquires a factor ~~ in front of the first two terms

I +

~(s)—p/ (&)Goy2(s) —y2 (&)

or graphically, with Go W')Go as in Fig. 31, we have
the equation expressed by Fig. 32. But this is just the
equation for the complete vertex function (which we

FIG. 36. The exposure of three bare particles in
three-particle scattering.

FIG. 34. The equation for the partial two —+ three-partic]e scatter-
ing amplitudes containing only the two-particle amplitude.

had anticipated by the graphical notation we gave to
W&o). Hence in (6)

H&i) = gal&i&+(H&i&+H(&))Gef&i&

on the right, while the last term on the right has to be
summed over all permutations of the momenta on the
left, and i denotes a given value of the momentum of
one of the pions on the right. The remaining equation
is given in Fig. 11.

There is one essential difference between the struc-
ture of these equations and those considered by Lovelace
et al." It is in the removal of the single-pion inter-
mediate state initially in our equation of Fig. 11 as

If we denote Ge'H&'&Ge as in Fig. 33, then (7) becomes
as in Fig. 34, while (5) graphically is as in Fig. 35.
As with the three ~ three particle amplitude we have
completely removed the two-particle potential from
(5), as is readily seen in the graphical equations of
Figs. 34 and 35. We have also preserved the linearity
of the equations. Again we could separate out connected
parts specifically in Figs. 34 and 35, but we think they
are too evident to do so.

Fze. 35. The graphical representation of Fig. 8.

We also remark that when the three-particle potential
is neglected the value of T' given by (6) is just Q;H&'&,
as would be expected.

We have now solved the problem of exposing three-
particle intermediate states so that the resulting equa-
tions have kernels which depend only on the complete
propagator, the vertex function, and the two-particle
scattering amplitude. In the next section we will specify
in detail the form of these equations for 3m, m~E, and
3E scattering, so that they will be ready for the compu-
tations to be attempted.

FIG. 37. The expression for the contribution to the three-
particle scattering amplitude containing no three-pion inter-
mediate stage.

I'3
Fze. 38. The coupling constants B~.

compared to its being left in the three-particle ampli-

tude in Ref. 12. In order to allow this, one can no

longer put to zero the three-particle potential term

in (1), since it now contains the single bare pion. Thus
we have the graphical equation of Fig. 36 where the

6rst term on the right of Fig. 36, Ae, contains no

three-pion intermediate state, but may contain a one-

pion intermediate state. Thus we have Fig. 37, where

(—) denotes the bare pion propagator, and the term Be
of Fig. 38 is a reduced vertex function. In the approxi-

mation of neglecting three-body potentials we have
Be=constant, and A e= Be(—)Be,.and thus is separable.

However, this term gives explicit renormalization con-

tributions which, taken together with single-particle

contributions in the second and third terms on the
right-hand side of Fig. 36, produces just the single-

particle pole term exposed in the last term of Fig. 6.
Since the actual process of renormalization has to be
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performed, and will lead back to Figs. 6 and 11,we con-
sider it better to start from the one-particle irreducible
amplitude in the 6rst place. It is essential to do this,
for example, in vrEE scattering, for as the example in
Fig. 1 of Sec. 2 shows that the erst term on the right-
hand side of Fig. 36 cannot be uniquely defined for this
case.

++
~ -Q~-0--

FIG. 42. The general
inverse propagator equa-
tion. r, Q
The kernel E denotes the product of the two complete
propagators. We may replace these complete propa-
gators by the free-particle propagators in (8), if we
are only concerned with two-particle unitarity. We
assume M2 is real below the single-particle production
threshold, and is an analytic function of its energy
variables in the expected cut planes"; then we expect
M& to be analytic in the same regions. Arguing formally,
we have

M«=My(1 —iKM2) ',
so

FIG. 39.The equa-
tions for mmg scat-
tering.

&3=

M, M—,'=M, f(1 iK—M,)-' (1—+iK'M )-'5
=iM (K+E*)M *. (9)

If we split up each propagator in E into a principal-
value term plue (in) times a delta-function term then

FIG. 43. The "coupling constant. "

2. ~~M Scattering

Again we take out the single-particle (nucleon) pole
and then we have (with ———denoting a pion, a
nucleon) as in Fig. 39, where the identical particles have
been correctly accounted for. We remark again here that
we will not have a single-nucleon pole contribution aris-
ing in the solutions of Fig. 34; such a pole has been sub-

FIG. 40.The two particle amplitude , ,n;—()i%I and potential i&~.
IX

tracted out. It is not consistent with this procedure to
attempt to force a solution which has this pole, so ap-
parently making the nucleon a bound state.

The equations for three-nucleon scattering are identi-
cal to those for three-pion scattering, so we will not
write them down here.

V. UNITARITY

We finally discuss the manner in which unitarity
is satisfied. We do this erst for two-particle unitarity
in the B.S. representation of Fig. 7. If we denote the
two-particle amplitude by iM& and the potential by
iM& as in Fig. 40, then Fig. 7 may be written

M, =Mg+iMgKM2

M¹-'Z ~, S S ~,"-~' x~~

FIG. 41. The expression for the imaginary part of the
two-particle amplitude 3II.

MI—3f),*=9MgQMg*, (10)

which is the usual expression for unitarity, though as
yet without the single-particle intermediate-state
contribution. "

We 6nally have to add in this single-particle in-
termediate-state contribution; in other words, to the
right-hand side of (10) must be added the imaginary

FIG. 44. The value of
the imaginary part of i
(iD'~) '.

part of this single-particle term, in order to calculate
M—M*, as in Fig. 41. We will have to calculate the
imaginary part of the complete propagator ia&'.

Im(iDg') = Imi(iDy') '(D~') (D~')~.

Now the general inverse propagator equation is"
given in Fig. 42. We are interested only in two-particle
intermediate states in Fig. 41, so we may take the

» The value of this constant is not given correctly by splitting
each propagator into its principal part and 5-function contribu-
tions, due to the singular nature of the product oi the two principal-
part contributions. This singular contribution can only be some
constant times the product of the two 5 functions; it may be shown
to be equal to that arising from the original product of 5 functions.
The author would like to thank A. Pagnamenta for pointing this
out, and for giving a simple derivation of the correct contribution.

(K*+K) will be the sum of the product of the two
principal-value terms and the product of the delta-
function terms; the assumed analyticity of M& implies
that the erst of these terms gives no contribution, so
K*+K=X««l|, for some real constant X, and
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PIG. 45. The tvro-
particle approximation
to the vertex function.

coupling content of Fig. 43 to be real; in this approxima-
tion we may also replace the complete propagators by
free propagators. Also the first term on the right of
Figs. 42 is (P'—rrr') s4 so we have Fig. 44.

The two-partic1e approximation to the vertex function
is given in Fig. 45 so if I" is as in Fig. 46, and F2 is the
coupling constant of Fig. 43, then I'=I's(1—iKMs) ',
and

2i I—mi(+) '
= il'sL(1 —iKMs)-'K+ (1+iX*Ms)—'Kejl's

I's(1+—iKeMs) '(K+K*)Ms(1 iKMs—) 'KI's

+iI,(1+iK'M,) r(K+K-')r,
= —Xi' QrrrKI's+ Ail'*QI's =Ail'NI'e.

In the last step of (11.) we have used the alterna-
tive vertex-function equation I'=iMrKI's+I's. Thus
—(Dr ') (Dr ')*=——Ail'Ml'*(Dr ') (DF')*. Also

I —I = —r, (1—iKM,)- i(K+K*)M,(1+iK'M,)-
= —Ail'*85M y.

If we write
I'=I'„+iI';, I',=Imi',

then

t' —1(D,')I —1*(D,')*I*j=+XiM,&&I *(D,')*I"
—nil (D, ')I SSI *(D,')*r*+Xil (D,')I SSI,*.

So altogether

M —M'= iXLM,&Sr,*—M,SSI*(D,')'I *—I (D,')I &Sr,
—r(D,r)1'SSI"(D,')'I'*)=AM&SM*,

vrhich is the required two-particle unitarity equation.
It is not possib1e to regard the above as a full proof,

since we have assumed kernels that involved condition-
ally convergent integrals were invertible. However, we
hope elsewhere to give a rigorous analysis of this prob-
lem by means of the energy-analytic representation. "
Our "result" on unitarity gives the details of how uni-
tarity obtains its correct contributions from the dif-
ferent oB-mass-shell terms, and shows under what
conditions we expect unitarity to be valid. This will be
useful in later discussions of approximations.

We should add here that there is a rigorous proof of
unitarity for each partial-wave B.S. equation"; this

Fio. 46. The vertex function.

'4 See paper III, p. 964 of Ref. 15.
~' See paper V of Ref. 15, Appendix I.

Pro. 47. The various
terms entering in the
equation of Pig. 36.

proof has not yet been extended to the full B.S. equa-
tion, though the methods of Ref. 22 should give such
a proof. We now turn to three-particle unitarity. We
wish to prove that three-particle unitarity is satisfied
(along with two-particle unitarity) provided certain
"potentials" or irreducible amplitudes are real. We do
this for the three-pion problem; the extension to the
general case discussed in Secs. 2 and 3 is lengthier but
does not add anything essentially new to the problem.
We also use the nonremormalized equation of Fig. 36,
though, again, the proof may be given for the re-
normalized equation of Fig. 11, with added complexity,
as we elucidated in the two-particle case. Those details
are not given here. We may write Fig. 36, with iE,
iX3, lV, W~, and Es as denoted in Fig. 47,

N= (Ns+Ws)(1 iKs—N's iKs—Ws) '

Then when Ee and JFg are real, we have

N —N*=iN(Ks+Ks*)N*.

The kernel Es+E's =+t P'5+4 J (to within constants),
where P denotes a principal-value operator and b a delta
function. Assuming analyticity in the energy variables
of N, then the part of (Ks+Ks*) involving P'5 will give
zero, since one of the two independent energy variables
can be chosen to have only these principal-value terms,
and not appear in the delta function. Hence

X—N*=ail%'E*,

which is the expected three-particle unitarity", the
disconnected term in F gives no contribution on the
mass shell. Again this "proof" is not rigorous (we will
present a more rigorous proof elsewhere); however, it
shows that we always preserve three-particle unitarity
provided the three-body "potential" is real below the
five-particle threshold.
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"The constant p is again given incorrectiy by the (principai-
part+8-function) splitting of propagators; the correct value may
be reached by similar methods to those needed for two-particle
unitarity mentioned in Ref. 23.


