
PHYSICAL REVIEW VOLUME 1SO, NUMBER 4 28 OCTOBER 1966
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Old-fashioned perturbation theory is applied to a relativistic theory in a reference frame with infinite total
momentum. It is found that many undesirable diagrams disappear. The contribution of the remaining dia-
grams is described by a new set of rules with properties intermediate between those of Feynman diagrams
and old-fashioned diagrams, e.g., energy denominators become covariant, and Feynman parameters appear
naturally. The new rules are used to derive some integral equations.

I. INTRODUCTION

HIS article is concerned with the use of recent
technical developments in the theory of current

algebras to construct a dynamical formalism which
combines some of the best features of Feynman dia-
grams and old-fashioned perturbation theory.

The Feynman rules provide a perturbation theory in
which the Lorentz invariance of the 5 matrix is kept
visible at every step. However, this is accomplished
only at the cost of manifest unitarity, by lumping
together intermediate states with di8erent numbers of
particles and antiparticles. Thus, when we try to sum
Feynman diagrams to obtain integral equations like
the Bethe-Salpeter equation, it proves very difFicult
to justify the omission of any particular diagrams, since
there is no one-to-one relation between internal lines
and intermediate states.

For this reason, even after 1949 there continued a
subterranean interest in the use of old-fashioned per-
turbation theory (that is, energy denominators for
intermediate states, instead of propagators for internal
lines) to attack relativistic problems. Occasional out-
croppings of this activity included the Tamm-DancoG
method and the relativistic Faddeev equations. How-
ever, the obvious difhculty with all such attempts is
that the error made in truncating sums over inter-
mediate states depends on the Lorentz frame in which
the calculation is carried out, and there never seemed to
be any reason for choosing one Lorentz frame rather
than another. Furthermore, the vacuum Quctuations
and other topological complexities encountered in
relativistic theories made it dificult to derive useful
integral equations by summing series of old-fashioned
diagrams.

In the last year, difBculties of a very similar sort were
met in the use of current algebras to derive sum rules,
and were surmounted by the use of a Lorentz frame in
which the total momentum I' of the system is allowed
to approach in6nity. ' lt seemed to me natural to ask:
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What happens to the individually noncovariant old-
fashioned diagrams pn a relativistic theory if we let
P~ 00)

The answer is that every individual diagram either
approaches a finite limit or vanishes, the vanishing
diagrams being just the ones, like vacuum fIuctuations,
that caused the worst trouble heretofore. Thus at last
there is some rationale for doing calculations of the
Tamm-Danco6 type in a particular class of Lorentz
frames, those with I' —+ .

When the I' factors are cancelled out of the surviving
diagrams, we are left with a new set of rules for perturba-
tion theory. In place of the invariant propagators for
each internal line which occur in the Feynman rules,
or the energy denominators for each intermediate state
which occur in the old-fashioned rules, we 6nd in the
new rules invariant s denominators for each intermediate
state. In simple cases these s denominators can be
recognized as the result of combining propagators by
use of Feynman parameters, but the work of combining
the propagators is done automatically by the new rules.
Also, in place of the integrals over four-dimensional
momenta in the Feynman rules, or over three-dimen-
sional momenta in the old-fashioned rules, the new
rules require integrals over two-dimensional transverse
momenta and Feynman parameters, the latter appearing
naturally here in place of the longitudinal momentum
components.

Some 6rst attempts at using these new rules to derive
useful integral equations are presented in Sec. V.

IL THE OLD RULES

We will restrict our attention in this article to an
interaction Hamiltonian H' of the form

H'= /P2: X(X),

where X(x) is a scalar, constructed as a polynomial in
one or more neutral scalar causal 6elds, without deriva-
tives. For example, we could take X=gps, or X=gp', etc.
ln such a theory the S matrix for a transition rr —+ p
may be written

Sp =8p —(22r)'2Mp "o'(I'p —P )
IT(o,p) (22r)-2/2(2oo )-r/2 (2)

150 1313



1314 STEVEN %EI N BERG 150

B

FIG. 1. Two old-fashioned
diagrams for scattering in a
theory with X=gqP. Under the
new rules only A contributes.

Although Me is Lorentz-invariant (for Pe=P ),
the contribution of each individual diagram to Mp
is in general not invariant. For instance, in a theory
with 3C=g&2 the contribution of diagrams A and B
(Fig. 1) to two-body scattering (with Pi+P, =Pi'+P, ')
1s

(Pi'P2'I M~
I P1P2) = (g'/»(Pi+P2))

X[~(P1)+~(P2) ~(pl+P2)] ', (5)

where I'& is the total four-momentum, and the product
runs over all particles in initial and final states, with
~„—= (p„'+m„2)'t2. The matrix element Me is a
Lorentz-invariant function of the incoming and out-
going momenta, the factors (2~) 't2 being needed in
Eq. (2) because the states 12, lt are defined with a con-
ventional noncovariant norm, e.g., (p'I p) = b2(p' —p).

The results of old-fashioned perturbation theory
(i;e., the Born series) may be summarized in a set of
graphical rules' for constructing M p .

(a) Draw all possible ordered diagrams for the
transition n ~P. (That is, draw each Xth order
Feynman diagram E.' times, ordering the E vertices
in every possible way in a sequence running from right
to left, with lines for the particles in the initial state
n and the final state P, respectively, entering on the
right and leaving on the left. For examples, see Figs. 1
and 2.) Label each line with a three-dimensional
momentum y.

(b) For every internal line include a factor'

(22r) '(2(u) '

where 01=(p2+m2)'t2. [The external-line factors are
already included in Eq. (2).]

(c) For every vertex except the last (leftmost, ), in-
clude a factor (22r)2 times a momentum-conservation
b2 function. [The (2~)28 factor for the last vertex is
already included in Eq. (2).] Also, include all appro-
priate coupling constant factors.

(d) For every intermedite state p (i.e., a set of
lines between any two vertices) include an energy
denominator

[E-—E.+"2] '

where E—=P ~ is the total energy of the state.
(e) Integrate the product of these factors over all

internal momenta, and sum the result over all diagrams.
This gives M p .

2For a proof that a Hamiltonian like II' gives a Lorentz-
invariant S matrix, see S. Weinberg, in Brundeis 1964 Summer
Institute on Theoreticu/ Physics (Prentice-Hall, Inc. , New York,
1965), p. 424. A more general nonperturbative discussion of the
conditions on II' for S to be Lorentz invariant will be given in a
forthcoming article.' For a derivation of the old rules in a nonrelativistic context,
see e.g., Sec. IV of S. Weinberg, Phys. Rev. 133, B232 (1964).
The only new features here are that particles can be created and
destroyed, .and that factors (2') '/' occur, once for each external
line and twice for each internal line. These factors arise from the
6elds tt (x), and are needed to make the 6elds scalar.

(p'p'IM Ipl )=(g2/2~(p+p))
x[- (pi)- (p,)- (p+p)]-', (6)

where &0(p) =—(m'+P2)'t2. These are not separately
invariant but their sum gives

(Pi'P2
I
M~+Ms I Pip2) g [(~1+~2)'

(pl+p )2 m2]—1 g2[s m2]-1 (7)

and this ~'s invariant. Similar remarks apply to diagrams
A and 3 of Fig. 2.

Since individual old-fashioned diagrams make non-

invariant contributions to Mp, it makes sense to ask
how their contributions depend on the Lorentz frame
in which they are evaluated.

III. THE LIMIT P-+00

Suppose we calculate Mtt- in a reference frame in
which the total momentum P is very large. (We take
Pp= P =P, but do not necessarily assume that
Ee=E .) The momentum of the nth particle in the
initial or final state may be written

pm='9P+%n y

where q„ is transverse

q„P=O,

and, since P is the total momentum of the state,

+„2t„=1,
P„rl„=O,

the sums running over all particles in the state n or P.
The observor is supposed to be moving, with respect to
the center-of-mass frame, at a high velocity in the —P
direction, and will see all particles moving with high
velocities more or less in the +P direction. Hence we

let P~ ~, in a fixed direction, with q„and g„held
fixed and with

(12)q„&0.

It will be shown that as P~ ao the corttribltiort of
each diagram to Me either sart2shes or approaches a
finite limit This is not qu. ite a trivial result, for the
individual terms in M p are not Lorentz-invariant, and
even the total M p is only invariant when Ep=E .

We note first that the virtual particle momenta may
be parametrized just as in Eqs. (8)-(11), with one
crucial exception: The virtual momenta at I'= are
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[q„'+m„]
E=XP+ Q +0(P '), (14)

whel e

(15)

Note that the total center-of-mass energy squared is

[q„'+m„']
s= —(Q„p„) =2E —2 P2=XQ„, (16)

so that Eq. (14) may be written

E=XP+s/2hP+0(P ') (17)

Now, if all rt are positive, then Eqs. (10) and (15)
give

X= 1 (all q„)0). (18)

This is true in particular of the initial state o., so that
if some intermediate state p also has all g„positive, then
the momentum P will cancel in the energy denominator,
leaving us with

[E~ Ev+2e] '~ 2P—[S S,+ie] ' (a—ll 1t„)0). (19)

On the other hand, Eqs. (10) and (15) show that an
intermediate state y with some negative g's will have

X) 1 (some 2t„(0), (2o)

so that in this case the coefficients of P in E and E~
do not cancel, and we are left with

[E E~+2'e] '~ P '(1—X ) —' (some 2t„(0). (21)

We now count powers of P. The internal-line factors
under the old rules (b) and (e) become P-independent:

Pdg„d'~„d pn
(22)

(2~)2(2~-) (2~)22PI~-I 2ln-I (2~)2

The vertex factors under the old rule (c) become

(2~)'b'(~E p) = (2~)'P '~(~E n)b'(~Z I), (23)

where 6 refers to the difference in the sums before and
after the interaction. For an Nth order diagram there

not related by a Lorentz transformation to any other
set of finite momenta, say at P=-O, but rather are either
variables of integratiori or are axed by momentum-
conservation 8 functions. Hence when we use Eqs.
(8)-(11)to define the internal q's and 2t's we sometimes
find that some of the internal q's are negative.

The importance of this possibility becomes apparent
when we compute the energy denominators (4). The
energy of the eth particle in any state is

—[rt 2P2+q 2+m 2]1/2

=
I ~-I P+[q'+m-']/2PI ~.I+0(P-'), (»)

so the total energy of the state is

FIG. 2. Two old-fashioned
diagrams for scattering in a
theory with X=g&4. Under the
new rules only A contributes.

are cV—1 of these [one delta-function having. been
factored out in (2)] so they contribute a factor P ~+'
to the matrix element. If all g„ in all intermediate states
are positive, then this factor will be just. cancelled by
the 1V—1 energy denominators (19), leaving us with
a finite limit. On the other hand, if v of the N —.

intermediate states contain negative g's we get from
the energy denominators only N —2v —1 factors of P,
and when multiplied by the factor P ~+' from the
vertex factors (23); this gives a matrix element which
vanishes as P '". We conclude therefore that it is just
those diagrams zvhich have a//&&terra/ as me// as exterma/

2t s positi21e which make fin2te contr2butions to Me as
P —+ ~, other dhagrams being smaller by powers of P '.

Where some of the q„are variables of integration,
as in diagrams with loops, this means that as P ~
the integral becomes restricted to a range such that all
g„&0. Possible complications in interchanging the
order of integration and the limit P —+ ~ are being
ignored here, though it is not entirely clear that this
is always justified in the presence of ultraviolet
divergences.

0(~„)/2(2~)2~„. (24)

(c) For every vertex except the leftmost include a
factor [see Eq. (23)]

(25)

where 6 refers to the difference in the sums before and
after the interaction. Also include appropriate coupling
constants.

(d) For every intermediate state y include a factor
[see Eq. (19)]

2[s s,+ie] ', — (26)

IV. THE NEW RULES

Since all P factors cancel in the leading diagrams, we
can now forget about them and summarize our results
in rules for what amounts to a new form of perturba-
tion theory:

(a) Draw all ordered diagrams (defined as before)
for the transition n ~ p. Label each line with an 2t and
a two-vector q. (Some diagrams will not contribute;
see below. )

(b) For every internal line include a factor [see
Eq. (22)]
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Comparing (31) with (30), we see that the results are
the same, and that the 2t Parameter introduced by the
ne2o rules turns out to be nothing but the Feynman param
eter 0. needed to comMne denominators. However, the
new rules short-circuit the work required to give (31),
because they yield formulas for the matrix element with
denominators already combined, and with momentum-
space integrals which are Euclidean and two-dimen-
sional rather than Minkowskian and four-dimensional.

In more complicated examples, the contribution of
individual diagrams to Mp is not Lorentz-invariant
even when s =sp, and to get Lorentz-invariant answers
it is necessary to add up all ordered diagrams corre-
sponding to a given Feynrnan diagram. (The reason
why diagrams A of both Fig. 1 and Fig. 2 give Lorentz-
invariant answers is just that the only other ordered
diagrams which correspond to the same Feynman
diagrams are, respectively, 8 of Fig. 1 and Fig. 2, and
these perish by the 2t) 0 rule. ) It should be kept in mind
that the specification of a given P does not uniquely
characterize a I.orentz frame, far apart from rotations
about P there are two other combined rotations and
boosts which also leave P& invariant. What we have done
by letting P —+ oo is to 6nd a class of Lorentz frames in
which a great many unpleasant diagrams like B of Fig. 1
and Fig. 2 disappear; but this still leaves us with some
freedom in the choice of Lorentz frame. This can be a
nuisance, in that when truncating sums over inter-
mediate states we sometimes lose Lorentz invariance,
but it may also be a useful tool in proving exact theorems
about the asymptotic and analytic properties of the
S matrix.

V. INTEGRAL EQUATIONS

We have already remarked that the diagrams which
survive under the new rules have essentially the same
connectedness properties as found in nonrelativistic
theories when we use the old rules. This opens up the
possibility of writing integral equations for strong

C: I~C

I~0

FIG. 3. The general connected relativistic integral equation in
a theory with 3!=gqP. Here C is the connected part of the matrix
element, D is the sum of all the disconnected parts, and I is the
"irreducible kernel. "The sums in the erst equation run over the
number of lines in the intermediate state. The sums in the second
equation run over all divisions of the external lines on the left
(right) into the two (three) sets shown. (If there were no particle
creation or annihilation we could regard D and I as already known,
and ID as the inhomogeneous term in the integral equation. )

interactions, similar to those which have become familiar
in multiparticle potential problems. As an example, the
methods of Ref. 3, when applied to a theory with
X=g&2, yield an integral equation shown schematically
in Fig. 3. Putting some limit on the number of particles
in intermediate states reduces this to a set of nonlinear
integral equations which look superhcially like linear
equations with connected kernels. Note that no such
equations could be derived using Feynman rules or
old-fashioned rules, because the possibility of spon-
taneous-creation vertices could make the ID term of
Fig. 3 disconnected.

Another possibly fruitful approach is suggested by the
Low equation. When we let F~ ~ (in the sense of
Sec. III) this becomes an equation of similar form, but
with integrations over q, g instead of y, and with an s
denominator in place of an energy denominator. It is
easy to reduce this new Low equation to a connected
nonlinear equation for the connected part of Mp .

The above are exact integral equations, though
approximations are needed to solve them. We can also
write an approximate equation of the Bethe-Salpeter
type:

(q', rt'I M'I q,rt) = (q', 2t'I vI »,2t)+ d'g"
(q'g'

I

p'I q"2t") — q'"+m
d2t" X(q"g"IMI »2t) s— +ie, (32)

2 (22r)2g" (1—rt") 2t" (1—2t")

q&&2+m2 (q~ q~~)2+m2 »~2+m2g
&»',n'I I'l», n)=— tt(n' n") s——

I
n' n"I—

where

&q", I~i«,.)—= (»',.'; -«', 1-.'Ibf I»,', -»,1-.),

+e(2t"—2t') s
»~~2+m2 (q~ q&~)2+m2 »~2+m2 1

q2+m2
s:—

n(1—~)
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For s below the three-, particle threshoM, V is obviously
nonsingular, and the solution of (32) will satisfy two-
particle unitarity, with no need to perform a Wick
iota, tloD. However, thc solution docs not represent a
sum of Fcynman diagrams, and is therefore Qot Lorentz-
invariant. It seems particularly convenient to write
(32) in the Lorentz frame with iI=0, because then
(il', rt'~M

~ ri,rt) depends only upon rf, rt', and q's, and the
angular integrations in (32) can be done immediately;
however, it must be admitted that we have no reason
to suppose that (32) is a better approximation when
p=o than in any other Lorentz frame with I'= ~.

Pote added in proof. (1) Equation (32) is similar to,

though Dot identical with, an integral equation sug-

gested. recently. by R. Slankenbeclcr and R. Sugar,
Phys. Rev. 142, 1051 (1966). (2) Even if some interval
lines carry spin s (or, perhaps, even in general) it is
still time that each old-fashioned diagram makes a 6nitc
or zero contribution to the 5-matrix as I' —+~. I wish

to thank F. Low for a discussion on this point.
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A recently developed approximation method is used to calculate some contributions to the one-meson

propagator at space-like momenta. An SU'(3)-invariant interaction is assumed. The nonperturhative formula
obtained for the propagator as p2 —+ —cc aHovrs one to test the idea of imposing a boundary condition, in
this limit, for restricting the coupling constants. An experimentally plausible inequality is obtained.

1. INTRODUCTION

ECKNTLY, R method was developed' for calcu-
lating strong-lnteractlon dynamics by optlmlzlng

the information contained in low-ord. er Feynman dia-
grams. This has yielded plausible results when applied.
to the two-pion system. ' The present article is a pre-
liminary test of the method's applicability in deriving
essentially nonperturbative restrictions on coupbng
constRnts.

As the source for such restrictions, we shall impose a
qualitative boundary condition on a particle propagator
1Q momentum spRcc. This ls motivated by thc bchav101

of, say, nucleon-nudeon total cross sections, which, at
the highest currently available energies, fail to approach
zero. Perturbation methods, however, would seem to

FIG. 1. The Feynman dia;
grams D~, Df, considered in
this article. The heavy lines
represent baryons, the light
lines meson s.

~ Research supported by the National Science Foundation.
' M. Wellner, Phys. Rev. 132, 1848 (1963).
~ M. Alexanian and M. Kellner, Phys. Rev. 137, 8155 (2965);

140, $1079 (1965).

predict a vanishing high-energy limit to any 6nite order
in the coupling constants. It is therefore not impossible
that one-particle propagators, if they could be observed
directly, would likewise exhibit such a nonperturbative
behavior at large four-momenta. Speci6cally, me usslew
tkat the one pion Green's -fnnctiont, considered at large

space like niornent-a, does not decrease as fast as predicted

by pertgrbation calcllations (The main. reason for con-

sidering space-like rather than time-bke momenta is that
the approximation to be used here works best whenever
the exact result is real and free from singularities. ')

Fol dcdnltcness wc RssuIQc tha, t only thc stlong lntcI'-

actions exist, that they are exactly invariant under

SU(3), and that there are no elementary particles apart
from one baryon octet, containing the nucleons, and
one meson octet, containing the pions. (In such a
model, the other strongly interacting particles must
come out as bound states or resonances. ) The method
used in this article does not depend in any essential

way on such restrictive assumptions, but present-day
experimenta, l knowledge about coupling constants, as
well as available Feynman-diagram calculations, make
more general assumptions pointless.

The total interaction Lagrangian density will be
taken as

&r= —
go Z,e. I' e 4'"VV''"

'togo' Z-,i (4 )'(—4')' (1 1)


