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Old-fashioned perturbation theory is applied to a relativistic theory in a reference frame with infinite total
momentum. It is found that many undesirable diagrams disappear. The contribution of the remaining dia-
grams is described by a new set of rules with properties intermediate between those of Feynman diagrams
and old-fashioned diagrams, e.g., energy denominators become covariant, and Feynman parameters appear
naturally. The new rules are used to derive some integral equations.

I. INTRODUCTION

HIS article is concerned with the use of recent

technical developments in the theory of current
algebras to construct a dynamical formalism which
combines some of the best features of Feynman dia-
grams and old-fashioned perturbation theory.

The Feynman rules provide a perturbation theory in
which the Lorentz invariance of the .S matrix is kept
visible at every step. However, this is accomplished
only at the cost of manifest unitarity, by lumping
together intermediate states with different numbers of
particles and antiparticles. Thus, when we try to sum
Feynman diagrams to obtain integral equations like
the Bethe-Salpeter equation, it proves very difficult
to justify the omission of any particular diagrams, since
there is no one-to-one relation between internal lines
and intermediate states.

For this reason, even after 1949 there continued a
subterranean interest in the use of old-fashioned per-
turbation theory (that is, energy denominators for
intermediate states, instead of propagators for internal
lines) to attack relativistic problems. Occasional out-
croppings of this activity included the Tamm-Dancoff
method and the relativistic Faddeev equations. How-
ever, the obvious difficulty with all such attempts is
that the error made in truncating sums over inter-
mediate states depends on the Lorentz frame in which
the calculation is carried out, and there never seemed to
be any reason for choosing one Lorentz frame rather
than another. Furthermore, the vacuum fluctuations
and other topological complexities encountered in
relativistic theories made it difficult to derive useful
integral equations by summing series of old-fashioned
diagrams.

In the last year, difficulties of a very similar sort were
met in the use of current algebras to derive sum rules,
and were surmounted by the use of a Lorentz frame in
which the total momentum P of the system is allowed
to approach infinity.! It seemed to me natural to ask:
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What happens to the individually noncovariant old-
fashioned diagrams_in a relativistic theory if we let
P— w?

The answer is that every individual diagram either
approaches a finite limit or vanishes, the vanishing
diagrams being just the ones, like vacuum fluctuations,
that caused the worst trouble heretofore. Thus at last
there is some rationale for doing calculations of the
Tamm-Dancoff type in a particular class of Lorentz
frames, those with P — oo,

When the P factors are cancelled out of the surviving
diagrams, we are left with a new set of rules for perturba-
tion theory. In place of the invariant propagators for
each internal line which occur in the Feynman rules,
or the energy denominators for each intermediate state
which occur in the old-fashioned rules, we find in the
new rules invariant s denominators for each intermediate
state. In simple cases these s denominators can be
recognized as the result of combining propagators by
use of Feynman parameters, but the work of combining
the propagators is done automatically by the new rules.
Also, in place of the integrals over four-dimensional
momenta in the Feynman rules, or over three-dimen-
sional momenta in the old-fashioned rules, the new
rules require integrals over fwo-dimensional transverse
momentaand Feynman parameters, the latter appearing
naturally here in place of the longitudinal momentum
components.

Some first attempts at using these new rules to derive
useful integral equations are presented in Sec. V.

II. THE OLD RULES

We will restrict our attention in this article to an
interaction Hamiltonian H’ of the form

= / P i), )

where X (x) is a scalar, constructed as a polynomial in
one or more neutral scalar causal fields, without deriva-
tives. For example, we could take JC= g¢®, or 3C=g¢*, etc.
In such a theory the S matrix for a transition a —
may be written

Sga=0g.— (2m)iM 3.0*(Ps—P.)
IT9 @n)2 Qo) 2, (2
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T
Fic. 1. Two old-fashioned

diagrams for scattering in a
theory with 3C=g¢?®. Under the
new rules only A contributes.

where P* is the total four-momentum, and the product
runs over all particles in initial and final states, with
wp=(p2+my2)"2. The matrix element Mg, is a
Lorentz-invariant? function of the incoming and out-
going momenta, the factors (2w)~"/2 being needed in
Eq. (2) because the states a, 8 are defined with a con-
ventional noncovariant norm, e.g., {p’|p)= (' —p).

The results of old-fashioned perturbation theory
(i:e., the Born series) may be summarized in a set of
graphical rules? for constructing M gq:

- (a) Draw all possible ordered diagrams for the
transition a«— 3. (That is, draw each Nth order
Feynman diagram N! times, ordering the N vertices
in every possible way in a sequence running from right
to left, with lines for the particles in the initial state
« and the final state 8, respectively, entering on the
right and leaving on the left. For examples, see Figs. 1
and 2.) Label each line with a three-dimensional
momentum p.
(b) For every internal line include a factor?

(2m)*(2w)™, ©)

where w= (p*+m?)2. [The external-line factors are
already included in Eq. (2).]

(c) For every vertex except the last (leftmost), in-
clude a factor (27)® times a momentum-conservation
8® function. [The (27)% factor for the last vertex is
already included in Eq. (2).] Also, include all appro-
priate coupling constant factors.

(d) For every intermedite state v (i.e., a set of
lines between any two vertices) include an energy
denominator

4)

[Ea—E\+iel™,

where E=)_ w is the total energy of the state.

(e) Integrate the product of these factors over all
internal momenta, and sum the result over all diagrams.
This gives M ge.

2For a proof that a Hamiltonian like H’ gives a Lorentz-
invariant S matrix, see S. Weinberg, in Brandeis 1964 Summer
Institute on Theoretical Physics (Prentice-Hall, Inc., New York,
1965), p. 424. A more general nonperturbative discussion of the
conditions on H’ for S to be Lorentz invariant will be given in'a
forthcoming article.

3 For a derivation of the old rules in a nonrelativistic context,
see e.g., Sec. IV of S. Weinberg, Phys. Rev. 133, B232 (1964).
The only new features here are that particles can be created and
destroyed, and that factors (2w)~1/2 occur, once for each external
line and twice for each internal line. These factors arise from the
fields ¢ (x), and are needed to make the fields scalar.
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Although Mg, is Lorentz-invariant (for Pg=P.),
the contribution of each individual diagram to M g.
is in general not invariant. For instance, in a theory
with 3¢=g¢? the contribution of diagrams A and B
(Fig. 1) to two-body scattering (with p1+ps= p1"+p2")
is

(pt'ps | M 4| p1p2)= (8%/205(D1+D2))

X [w(pr)+w(p)—w(@i+p) ], (5)
(01D’ | M 5| pip2) = (g%/ 202 (p1+p2))
X [—w(pl)—w(pz)—'w(m-{—pz)]_l , (6)

where w(p)= (m?+p*)"/2. These are not separately
invariant, but their sum gives

1'pe | M a+Mp | p1p2) = gL (w1tws)?
— (prtp)?—m* =g [s—m*T?, (7)

and this 7s invariant. Similar remarks apply to diagrams
A and B of Fig. 2.

Since individual old-fashioned diagrams make non-
invariant contributions to M g, it makes sense to ask
how their contributions depend on the Lorentz frame
in which they are evaluated.

III. THE LIMIT P —»

Suppose we calculate M4, in a reference frame in
which the total momentum P is very large. (We take
Ps;=P,=P, but do not necessarily assume that
Eg=E,.) The momentum of the nth particle in the
initial or final state may be written

Prn=1.P+a,, ®)
where q, is transverse
9. P=0, ©)
and, since P is the total momentum of the state,
2am=1, (10)
224.=0, (11)

the sums running over all particles in the state a or 8.
The observor is supposed to be moving, with respect to
the center-of-mass frame, at a high velocity in the —P
direction, and will see all particles moving with high
velocities more or less in the 4P direction. Hence we
let P— 0, in a fixed direction, with g, and %, held
fixed and with

1.,>0. 12)

It will be shown that as P— o« the contribution of
each diagram to Mg, either vanishes or approaches a
finite limit. This is not quite a trivial result, for the
individual terms in M g, are not Lorentz-invariant, and
even the total M g, is only invariant when Eg= E,.

We note first that the virtual particle momenta may
be parametrized just as in Egs. (8)-(11), with one
crucial exception: The virtual momenta at P= o are



150

not related by a Lorentz transformation to any other
set of finite momenta, say at P=0, but rather are either
variables of integration or are fixed by momentum-
conservation & functions. Hence when we use Eqgs.
(8)-(11) to define the internal ¢’s and n’s we sometimes
find that some of the internal 9’s are negative.

The importance of this possibility becomes apparent
when we compute the energy denominators (4). The
energy of the nth particle in any state is

Wp= [nn2P2+ qn2+mn2]”2

= || P+Las+m2]/2P |1, +0(P2), (13)
so the total energy of the state is
1 Lqn24ma2]
E=\P+—3%, +0(P~), (14
2P [ 7]
where
A=2n [a] . (15)
Note that the total center-of-mass energy squared is
[qn2-ma?]
s=—(Ln p)?=E—P2=0A 3, ——, (16)
1]
so that Eq. (14) may be written
E=\P+s/2\P+0(P-2). (17)

Now, if all 5 are positive, then Egs. (10) and (15)
give
A=1

(all 9,>0). (18)

This is true in particular of the initial state a, so that
if some intermediate state v also has all 9,, positive, then
the momentum P will cancel in the energy denominator,
leaving us with

[Eo—E +ie]™ — 2P[sa—s,+ic]? (all n,>0). (19)

On the other hand, Egs. (10) and (15) show that an
intermediate state vy with some negative 5’s will have

A>1  (some 1,<0), (20)

so that in this case the coefficients of P in E, and E,

do not cancel, and we are left with
[Eo—E,+iel™ — P1(1—)\,)!  (some 7,<0). (21)

We now count powers of P. The internal-line factors
under the old rules (b) and (e) become P-independent :

dSPn Pd?’]ndzqn d2qn
— = .
(2m)3 (an) (2m)%2P|n.| 2 ] nnf (2m)3

dnn,

(22)

The vertex factors under the old rule (c) become
(2m)8 (AL p)= 2m)'PI5(AX )#(AL ¢), (23)

where A refers to the difference in the sums before and
after the interaction. For an Nth order diagram there
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F1c. 2. Two old-fashioned
diagrams for scattering in a

>©< A
theory with 3¢=g¢* Under the
new rules only A contributes. §
B

are N—1 of these [one delta-function having been
factored out in (2)] so they contribute a factor P—¥+
to the matrix element. If all 5, in all intermediate states
are positive, then this factor will be just cancelled by
the N—1 energy denominators (19), leaving us with
a finite limit. On the other hand, if v of the N—1
intermediate states contain negative n’s we get from
the energy denominators only N—2y—1 factors of P,
and when multiplied by the factor P~¥* from the
vertex factors (23); this gives a matrix element which
vanishes as P=. We conclude therefore that ¢t is just
those diagrams which have all internal as well as external
'S positive which make finite contributions to Mg, as
P — o, other diagrams being smaller by powers of P2,

Where some of the #, are variables of integration,
as in diagrams with loops, this means that as P — o
the integral becomes restricted to a range such that all
71,>0. Possible complications in interchanging the
order of integration and the limit P— « are being
ignored here, though it is not entirely clear that this
is always justified in the presence of ultraviolet
divergences.

IV. THE NEW RULES

Since all P factors cancel in the leading diagrams, we
can now forget about them and summarize our results
in rules for what amounts to a new form of perturba-
tion theory:

(a) Draw all ordered diagrams (defined as before)
for the transition o — 8. Label each line with an 5 and
a two-vector q. (Some diagrams will not contribute;
see below.)

(b) For every internal line include a factor [see
Eq. (22)] ‘

0(10)/2(2m)*nn

(c) For every vertex except the leftmost include a
factor [see Eq. (23)]

@A M (A @),

where A refers to the difference in the sums before and
after the interaction. Also include appropriate coupling
constants.

(d) For every intermediate state v include a factor

[see Eq. (19)]

(24)

(25)

2[sa—syFie], (26)
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where s for any state is the usual total c.m. energy
squared, given here by (16) and (18) as

S=Zn [‘In2+mn2]/7ln- (27)

(e) Integrate the product of all these factors over
all internal ¢’s and %’s, and sum the result over all
diagrams. This gives M gq.

Momentum conservation has been imposed by
requiring that the initial- and final-state ¢’s and %’s
satisfy (10) and (11). If we also require energy con-
servation, i.e.,

(28)

Sa=388=S,

then Mg, will be Lorentz-invariant, that is, it will
depend only upon scalar products of external momenta,
which can be expressed in terms of the ¢’s and »’s as

— PnuPm* = Wn0m— NN 2=
- (nn/znm) (qm2+mm2)
+ 0/ 21) (@2 + M) — G Qm

[see Eq. (13)]. Hence, when (28) as well as (10) and
(11) hold, all ¢’s and #’s in the total matrix elements
can be eliminated in favor of the scalars pn-pm, and
the resulting formula for M g, will then be valid in any
Lorentz frame. The S matrix in an arbitrary Lorentz
frame can then be calculated from Eq. (2).

The most important distinction between these new
rules, and the old rules listed in Sec. II, is that the
factors 6(y,) under rule (b) eliminate some diagrams.
This happens whenever a vertex has a number of
lines coming in from the right but has no lines going
out to the left, or vice versa, because # conservation
would require that the sum of the »’s of these lines would
have to vanish, and this is forbidden by the requirement
that all #’s be positive. Therefore under rule (a) we need
not draw diagrams in which particles are created or
destroyed out of the vacuum. For instance, diagrams B
of both Fig. 1 and Fig. 2 do not contribute to the
matrix element. Also, there can be no vacuum fluctu-
ation diagrams. In consequence, the connectedness-
structure of the new perturbation theory is the same as
found when old-fashioned perturbation theory is applied
to nonrelativistic problems, that is, every incoming line
in every diagram or part of a diagram is connected to
some outgoing line (and vice versa) although it need
not be connected to all of them or to all the other
incoming lines.

As a first example, look at diagrams A and B of Fig. 1
for two-body scattering in a theory with 3¢=g¢®. The
internal line in diagram B of Fig. 1 has n value —2,
so 1B does not contribute at all under the new rules.
The internal line in 1A has n=+1 and q=0, so this
diagram contribites a term, given by the new rules as

(29)

g g

Sa—Sytie s—mPtie

M4=
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Thus, under the new rules we get from A of Fig. 1 alone
the same matrix element (7) as arose under the old
rules from A of Fig. 1 plus B of Fig. 1.

To see what happens to loops in the new rules, look
at diagrams A and B of Fig. 2 for two-body scattering
in a theory with 3¢=g¢*. Diagram B of Fig. 2 obviously
requires that one or both of the internal lines has <0,
so it does not contribute. The contribution of diagram
A of Fig. 2 is given by the new rules as

2(217r)3 ./o1 n(ldj n)/ o

q2+m2 q2+m2 —1
X I:s—— —— ——-+ie:|
N 1—n

M(s)=

1
2(2x)?

1
/ dn f Palon(1—n)— G —miie] .
0

This is logarithmically divergent, but we can get a
finite result by the familiar trick of differentiating with
respect to s:

1 1
1—
2(21r)3./,,ﬂ( n)

Xin [ EaLon(t—m)— =i

M (s5)=—

The ¢ integral is entirely trivial, and yields

r 1 g(l-m)
M (s)=+ / dy.
2027)3 J o sn(1—n)—m?*+ie

If we used the usual Feynman rules, we should begin by
writing

(30)

1 d*k
uo=—— : —;
@emY [(P—k)y+mi—ie][RR+mP—ic]

s=—Pz,

It would then be necessary to combine denominators
by introducing a Feynman parameter o:

i op o
Ms)= da
) (27r)4,/; f [(P— Yot B (l—a) tmi—ic]

1 1 d*k
= da .
(2m)* ./; ./I:(k—l"oz)z—soz(l—oz)-l—mz—ie:l2

Shifting the %k variable to k’=k— Pao, differentiating
with respect to s, rotating the &’*-contour, and doing
the d%’ integral, we would emerge with

ld a(l—a)
ently  [se(l—a)—mi+ie]

M'(s)= €2Y)
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Comparing (31) with (30), we see that the results are
the same, and that the n parameter introduced by the
new rules turns out to be nothing but the Feynman param-
eter a needed to combine denominators. However, the
new rules short-circuit the work required to give (31),
because they yield formulas for the matrix element with
denominators already combined, and with momentum-
space integrals which are Euclidean and two-dimen-
sional rather than Minkowskian and four-dimensional.

In more complicated examples, the contribution of
individual diagrams to Mg, is not Lorentz-invariant
even when s,=sg, and to get Lorentz-invariant answers
it is necessary to add up all ordered diagrams corre-
sponding to a given Feynman diagram. (The reason
why diagrams A of both Fig. 1 and Fig. 2 give Lorentz-
invariant answers is just that the only other ordered
diagrams which correspond to the same Feynman
diagrams are, respectively, B of Fig. 1 and Fig. 2, and
these perish by the >0 rule.) It should be kept in mind
that the specification of a given P does not uniquely
characterize a Lorentz frame, for apart from rotations
about P there are two other combined rotations and
boosts which also leave P* invariant. What we have done
by letting P — o is to find a class of Lorentz frames in
which a great many unpleasant diagrams like B of Fig. 1
and Fig. 2 disappear; but this still leaves us with some
freedom in the choice of Lorentz frame. This can be a
nuisance, in that when truncating sums over inter-
mediate states we sometimes lose Lorentz invariance,
but it may also be a useful tool in proving exact theorems
about the asymptotic and analytic properties of the
S matrix.

V. INTEGRAL EQUATIONS

We have already remarked that the diagrams which
survive under the new rules have essentially the same
connectedness properties as found in nonrelativistic
theories when we use the old rules. This opens up the
possibility of writing integral equations for strong

1
o' | M| amy=a'n | V]an)+ / dz’ / dn""
0

where

<Q',?7'|Mlq,77>'=—<‘l'm’; —q/,l“"l'lM[‘l,m _qyl_"l>)
2
.

<q,)"7, l Vl q;77>_=—"__—"
I 7]’—77” l

+0(n"—n')[s-

q2+m2
n(l—n)
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F16. 3. The general connected relativistic integral equation in
a theory with 3C=g¢®. Here C is the connected part of the matrix
element, D is the sum of all the disconnected parts, and I is the
“irreducible kernel.”” The sums in the first equation run over the
number of lines in the intermediate state. The sums in the second
equation run over all divisions of the external lines on the left
(right) into the two (three) sets shown. (If there were no particle
creation or annihilation we could regard D and I as already known,
and ID as the inhomogeneous term in the integral equation.)

+

m

interactions, similar to those which have become familiar
in multiparticle potential problems. As an example, the
methods of Ref. 3, when applied to a theory with
Je=g¢*, yield an integral equation shown schematically
in Fig. 3. Putting some limit on the number of particles
in intermediate states reduces this to a set of nonlinear
integral equations which look superficially like linear
equations with connected kernels. Note that no such
equations could be derived using Feynman rules or
old-fashioned rules, because the possibility of spon-
taneous-creation vertices could make the ID term of
Fig. 3 disconnected.

Another possibly fruitful approach is suggested by the
Low equation. When we let P— « (in the sense of
Sec. III) this becomes an equation of similar form, but
with integrations over q, 7 instead of p, and with an s
denominator in place of an energy denominator. It is
easy to reduce this new Low equation to a connected
nonlinear equation for the connected part of M ga.

The above are exact integral equations, though
approximations are needed to solve them. We can also
write an approximate equation of the Bethe-Salpeter

type:

q'2+m? —1
)+ie:| ,  32)

X@%ﬂmeP———*-
) 7,//(1___7,’[

q*+m (@—q")>+m ¢ m?
I

- ‘ie]

7' —n
(q/__q’/)2+m2 q’2+m2 —1
+7:€] ] ’

1" "
n

q"*+m?
’ ’

1_7’/’ 7]"‘_‘17 7
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For s below the three-particle threshold, V is obviously
nonsingular, and the solution of (32) will satisfy two-
particle unitarity, with no need to perform a Wick
rotation. However, the solution does not represent a
sum of Feynman diagrams, and is therefore not Lorentz-
invariant. It seems particularly convenient to write
(32) in the Lorentz frame with q=0, because then
{a’,’'| M | q,n) depends only upon 9, 4/, and q’2, and the
angular integrations in (32) can be done immediately;
however, it must be admitted that we have no reason
to suppose that (32) is a better approximation when
q=0 than in any other Lorentz frame with P= .
Note added in proof. (1) Equation (32) is similar to,
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though not identical with, an integral equation sug-
gested recently by R. Blankenbecler and R. Sugar,
Phys. Rev. 142, 1051 (1966). (2) Even if some interval
lines carry spin % (or, perhaps, even in general) it is
still time that each old-fashioned diagram makes a finite
or zero contribution to the S-matrix as P —. I wish
to thank F. Low for a discussion on this point.
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A recently developed approximation method is used to calculate some contributions to the one-meson
propagator at space-like momenta. An SU (3)-invariant interaction is assumed. The nonperturbative formula
obtained for the propagator as 2 — — « allows one to test the idea of imposing a boundary condition, in
this limit, for restricting the coupling constants. An experimentally plausible inequality is obtained.

1. INTRODUCTION

ECENTLY, a method was developed! for calcu-
\ lating strong-interaction dynamics by optimizing
the information contained in low-order Feynman dia-
grams. This has yielded plausible results when applied
to the two-pion system.? The present article is a pre-
liminary test of the method’s applicability in deriving
essentially nonperturbative restrictions on coupling
constants.

As the source for such restrictions, we shall impose a
qualitative boundary condition on a particle propagator
in momentum space. This is motivated by the behavior
of, say, nucleon-nucleon total cross sections, which, at
the highest currently available energies, fail to approach
zero. Perturbation methods, however, would seem to

F1c. 1. The Feynman dia-
grams D,, Dp considered in
this article. The heavy lines
represent baryons, the light
lines mesons.
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predict a vanishing high-energy limit to any finite order
in the coupling constants. It is therefore not impossible
that one-particle propagators, if they could be observed
directly, would likewise exhibit such a nonperturbative
behavior at large four-momenta. Specifically, we assume
that the one-pion Green's function, considered at large
space-like momenta, does not decrease as fast as predicted
by perturbation calculations. (The main reason for con-
sidering space-like rather than time-like momenta is that
the approximation to be used here works best whenever
the exact result is real and free from singularities.?)

For definiteness we assume that only the strong inter-
actions exist, that they are exactly invariant under
SU(3), and that there are no elementary particles apart
from one baryon octet, containing the nucleons, and
one meson octet, containing the pions. (In such a
model, the other strongly interacting particles must
come out as bound states or resonances.) The method
used in this article does not depend in any essential
way on such restrictive assumptions, but present-day
experimental knowledge about coupling constants, as
well as available Feynman-diagram calculations, make
more general assumptions pointless.

The total interaction Lagrangian density will be
taken as

Lr= — 8o Za.ﬁ,’y raﬁy‘;a75‘pﬁ¢7

—10g0* 2 5(0%)2(¢F)2, (1.1)



