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Near-Peripheral p-p Scattering from Simple One-Boson-Exchange Contributions*t'
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We fit the non-S-wave p-p amplitude over the 0- to 345-MeV range with three pole terms utilized in a
simple fashion; the pole terms are equated with the real part of the scattering amplitude. The imaginary part
is then specified by elastic unitarity. The pole terms which give the fit are due to vector-meson exchange
(gvs=2.3, fr/gv= 2 3, mv. = 770 MeV), scalar-meson exchange (g, =1.6, ns, =390 MeV), and pion exchange
(g,s=12 3, nt =135MeV). The coupling constants and masses were found with an automatic search routine
on an IBM 7094 or CDC 3600 computer. For experiment we took the single-energy phase-shift analyses of
Amdt and MacGregor at 25, 50, 95, 142, 210, and 310 MeV. The pole parameters are consistent with other
independent experiments to within the accuracy of the model. The scalar meson is postulated, but may be
responsible for the T=0, S-wave 21=2f correlation observed in the reaction 2I. +p -+ 2r++23- +e at low energies.

r. rmRODUCrrom

'HIS is the Grst of a series of articles which will
treat proton-proton scattering from the stand-

point of multipion resonances. The experiments in ques-
tion range from 22 to 345 MeV in laboratory kinetic
energy of the projectile proton. It is well known that
this interaction is very complicated; nearly every kind
of force allowed by general invariance principles is
present: central, spin-spin, tensor, spin-orbit, and
perhaps quadratic spin-orbit. Yet recently there has
appeared the so-called "pole" model which succeeds in
fitting the major part of the data with just a few properly
chosen one-meson-exchange Born terms or cross-channel
(non-Regge) pole contributions.

A minimum of three pole terms is required: the pion
pole term, a vector-meson (J=1 ) pole term, and a
scalar-meson (7=0+) pole term. Of these, the pion pole
contribution is well understood. The vector pole term is
also pretty well understood, particularly in regard to the
strong central repulsion and the spin-orbit attraction
which comprise part of the interaction. One recalls that
these features led Breit' and Sakurai' to predict a vector
meson in the Grst place. Our J=1 pole term may be
considered an average of the ~, p, and @ pole terms.

The necessity for a third pole term is also clear; the
central repulsion occasioned by the J=1 pole term is
far too strong at impact parameters exceeding 1 F. A
J=O+ pole term is postulated —let us call the Geld
quantum "~"—in order to provide a strong central
attraction at these larger distances. The 0 pole term
could be replaced by other physical processes leading to
an attraction of the same strength and rang" —for
example, the pole contribution of a J=2+ meson —but
we are led to choose the 0+ pole contribution because
the eGective mass appears to lie between 2 and 4 pion
masses, and such low mass favors the lower angular-
momentum quantum number. Actually, not even a

~ Much of this work was carried out while one of the authors
(R. A. Bryan) was a visitor at the Faculte des Sciences, Depart-
ment de Physique Nucldaire, Orsay (Seine-et-Oise) France.

t Work performed under the auspices of the U. S. Atomic
Energy Commission.' G. Breit, Proc. Natl. Acad. Sci. U. S. 46, 746 (1960); Phys.
Rev. 120, 287 (1960).' J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960).

J=0+ pole term, or resonance, is required per se; Scotti
and Wong' Gt the data in one version of their work with
just a T=O, x-m. S-wave attraction parametrized by an
eGective-range formula. But if a resonance is hypoth-
esized, the width is immaterial to the Gt over a very large
range; only the resonance position is critical.

On the experimental side, there appears to be some
evidence for a strong m-m S-wave interaction. Principally
there is the correlation of the outgoing pions in the re-
actions rr +p +rr+-+rr +n Ape. ak occurs in the T=O
~-m effective mass spectrum near 400 MeV. However,
this peak occurs only when the incident pion momentum
is low, say less than 700 MeV/c. When the pion mo-
mentum is greater the peak disappears. Thurnauer'
suggests that this disappearance is only because of com-
petition with the (3,3) resonance which emerges at
600 MeV/c. Assuming the existence of the Err resonance
he considers the extra pion to be produced via either
Erts*(1480)~ X+o or Erts*(1518)~ butts*(1236)+s.
The 0 parameters which best Gt the data are ns, =490
MeV and F=1j.0 MeV.

The fact that Thurnauer's 0 is nearly 500 MeV and
not 400 MeV may explain why the 0. resonance has not
shown up in E,4 decay. Birge et u/. ' have studied
E,4+~ s +z++e++o and lnd that the invariant rr-tr

mass spectrum resembles S-wave phase space and not
the peaked curve that results from the 400 MeV 0,
width 100 MeV, proposed by Faier and Brown. ~ If the
0 resonance position were moved to 490 MeV, however,
the x-x mass distribution should again resemble phase
space.

' A. Scotti and D. Y. Wong, Phys. Rev. 138, B145 (1965).
J. Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 130, 2481

(1963); Yu. A. Batusov, S. A. Bunyatov, V. M. Sidorov, and
V. A. Yarba, Zh. Eksperim. i Teor. Fiz. 43, 2015 (1962) LEnglish
transL: Soviet Phys. —JETP 16, 1422 (1963)j;T.D. Blokhintseva,
V. G. Grebinnik, V. A. Zhukov, G. Libman, L. L. Nemenov,
G. I. Selivanov, Y. Jun-Fang, Zh. Eksperim. i Teor. Fiz. 44,
116 (1963) LEngiish transl. : Soviet Phys. —JETP 17, 80 (1963)j;
R. J. Kurz, B. C. Barish, V. Perez-Mendez, and J. Solomon,
Bull. Am. Phys. Soc. 7, 280 (1962), and (private communication).' P. G. Thurnauer, Phys. Rev. Letters 14, 985 (1965).

'R. W. Birge, R. P. Ely, Jr., G. Gidal, G. E. Kalmus, A.
Kernan, W. M. Powell, U. Camerini, D. Cline, W. F. Fry, J. G.
Gaidos, D. Murphree, and C. T. Murphy, Phys. Rev. 139,
31600 (1965).

7H. Faier and L. M. Brown, Bull. Am. Phys. Soc. 10, 467
(1965).
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Another possible T=O J=O+ x-m resonance which
has appeared on the experimental scene is the co, at or
near 700 MeV. However, 700 MeV is too high a reso-
nance position to allow a fit to the data according to our
calculations. But there is nothing to say that the c

could not contribute along with a lower eGective mass 0.
The basic pole terms have been treated in a variety

of ways in the literature. A common requirement in all
attempts is the necessity of generating a unitary ampli-
tude from the Born terms which are of course real. One
method has been to treat the Born terms as a potential
in a Schrodinger equation; it turns out that the result-
ing amplitude can diGer drastically from the potential
in P states. This is due to the ladder diagrams. While
this need not be incorrect in itself, there may be a
problem of double-counting, as the multipion resonances
appear in both the ladder terms and the pole terms. A
diKerent approach has been to introduce unitarity cor-
rections via partial-wave dispersion relations, either by
solving the E/D equation for the partial wave ampli-
tudes" or by simply including in some fashion the
integral over the "physical, " or unitary" cut. '~" In
so doing, however, it is necessary to preserve the
threshold behavior inherent in the pole terms and there
is considerable arbitrariness in how this may be carried
out. Furthermore, in all treatments, a cutoff has to be
introduced to which the results can be quite sensitive.

To avoid these ambiguities and yet learn as much as
possible about the problem, we have elected to study
P-p scattering in a 6rst approximation, namely, to
represent the real part of the amplitude by the pole
terms alone, and let the imaginary part be speci6ed
solely by elastic unitarity. This procedure has been
termed "geometric unitarization" by Moravcsik. "The
results obtained will subsequently be used as a 6rst
approximation to a dispersion-theoretic treatment which
will appear in later publications.

With geometric unitarization we must exclude the 'So
state at the outset as clearly this approximation is in-

adequate to treat a nearly bound state. For P states and
higher, however, the approximation may prove to be
much more successful; l& 1 phase shifts in p-p scattering
are rather small on the average, and only the'P& phase-
shift ever exceeds 20'.

Sawada, Ueda, Watari, and Yonezawa" have treated
p-p scattering using a different version of geometric
unitarization, equating the pole terms with the E matrix
(Bt= tan 8t). Because the phase shifts are small, this treat-
ment is similar to the one we employ (Bt= cosbt sin8t).

In Sec. II partial-wave projections of the pseudo-
scalar, scalar, and vector pole terms are given. The
physical consequences of the pole model are presented
and discussed in Sec. III. A summary of principal end-
ings is given in Sec. IV. The reader disinterested in
details may skip to Sec. III with little loss in continuity.

IL POLE PROJECTIONS

In this section we present a method for projecting
the pole contributions into the individual angular-mo-
mentum states. One may begin with Stapp's expansion
of the nucleon-nucleon 3E-matrix elements into partial
wave amplitudes as in Table III of Stapp, Ypsilantis
and Metropolis (SYM).to However, we prefer to employ
the unsymmetrized form of the JI matrix; this is ob-
tained by multiplying Stapp's formulas by —,'and taking
the sum over all / values. One then inverts these formulae
and obtains expressions for the partial wave amplitudes
in terms of the M's.

In carrying out this inversion, one projects out 1 by
multiplying through by PJ~*' ~'~ (cos8) and integrating
over 8; this gives terms like

1

—,'d(cos8)

XPti ' 'i(cos8)M „,(cos8, /=0).
One then projects out j by summing over the M&, „,
with the appropriate Clebsch-Gordan coefFicients. This
yields the following formulas;

p-tnt=Mt, „,
p tntt=Mt, tt+l t(1+1) tv2Mt, pr —l '(l+1)—'Mt, tt,

P (2l+3)ntt+t= (l+,2)Mt, u (l+1) (1+2)VZMtpt+(l+1) , Mt, tt+V2Mt, or+(l+1)Mt, pp,

P '(2l+3)(l+2) 't'(l+1)'t'nt+'= —(l+1)Mt, tt+v2Mt, pt —(l+2) 'Mt, tt+v2Mt, ot+(1+1)Mt, tt,
P '(2l—1)nt, t-t= (l—1)Mt,u+l '(l 1)V2Mt, or+1 'M—t, u V2Mt, ot+—lMt, po,

P '(2l —1)(l—1) "'l't'n' '= lMtu —V2Mt, t——(l—1), 'M ut—~Mt, lo+1Mt, pp ~

R. A. Bryan, C. R. Dismukes, and W. Ramsay, Nucl. Phys. 45, 353 (1963). For a later potential model treating the complete
p-p and n-p amplitude (except S waves) see R. A. Bryan and B.L. Scott, Phys. Rev. 135, B434 {1964},or R. A. Bryan, Colloq.
Intern. Phys. Theor. Bordeau, 1, 1 (1964).

A. Scotti and D. Y. Wong, Phys. Rev. Letters 10, 142 (1963); and International Conference on Nucleon Structure (Stanford
University Press, Palo Alto, California, 1963), p. 298.

R. A. Amdt, thesis, University of California Radiation Laboratory Report 12211 (unpublished), and Phys. Rev. (to be published}."M. H. MacGregor, Phys. Rev. Letters 12, 403 (1964).
'~ P. B.Kantor, Phys. Rev. Letters 12, 52 (1964).
"M. J. Moravcsik, Ann. Phys. (N. Y.) SO, 10 i1964).
'4 S. Sawada, T. Ueda, W. Watari, and M. Yonezawa, Progr. Theoret. Phys. (Kyoto) 28, 991 (1962). For a pole 6t to just the

higher partial waves, see W. Ramsey, Phys. Rev. 130, 1552 {1963).For a later treatment of p-p plus n-p scattering, see S. Sawada
et a/. , Progr. Theoret. Phys. (Kyoto) 32, 380 (1964); T. Ino, M. Matsuda, and S. Swada, ibid. 33, 489 (1965).

'~ H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev. 105, 302 (1957).
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M~, „results from integrating over the singlet ampli-
tude M„. The n~;, 0.&, and O.g are deGned to be the 0.'s
of SYM divided by 2i; p is the magnitude of the center-
of-mass momentum of either nucleon. Thus

ni= exp(ihi) sinai,

nii= exp(isii) sinsii,

ni; = (2i) '[cos2e; exp(2i8i;) —1],
n = ','sin-2c; e xp(i8;, ,;+ib;+i,;).

To project a given pole term into the 0.'s, one may
expand the pole term into 2-particle products of 2&(2
Pauli spin matrices and thence deduce the M „,~ terms.
One then computes the 0.'s using the above formulas. In
practice this results in very complicated expressions
which largely cancel at the end of the calculation.

The mathematics is simpler if one starts with ampli-
tudes similar to those introduced by Wolfenstein. "%e
deGne the set

3E(x)=A(x) 1+8(x)trt trs+tC(x)(tri+trs)
.P+G(x)S,s+H(x)(trz P)(trs P), (2.2)

where N=PXP' and Sit=3(tri g)(trs g) —trt trs,' p and
y' are the initial and Gnal three-momenta in the center-
of-mass system; q= p' —p; e& and e2 are 2X2 Pauli spin
matrices for particles 1 and 2, and 1 is the unit matrix.

Equation (2.2) projects most naturally into what we
shall call "spin-space" ampl'tudes; O.~,g, 0.~,«, 0.~,~, O, ~, ~g
and 0.~,@,0.~»=0.~ for S=O and 0.~; for S=1;

p ni, c —,'dx P,(x)W(x),

p '... f ', dx p, (x}s(x}-, =-
p-'ni, r= kdx(G(x)I:Pi(*)—s(1—x) '(Pi(x)]

+B(x)(1—x')—'x(pi(x) ),

ni. = i.on+ n&ilsjl tnr il»sj&+ n&»j I S»l »j &

+ni.~s&»AIL S
I »i&+n .o&»il Q I »j& (2 3a)

where

the usual definitions'r; Q has diagonal matrix elements

&»jl Ql»j&= —(—1)' '(2l+1)(2j+1) '.
Its oB-diagonal matrix elements vanish.

The Gfth and last partial-wave amplitude 0,& is
given by

ns=nr'(l= j+1,s, jl Sisl/= j&1,s,j ), (2.3b)
where

I

p 'np' —,
'——dx{G(x)(1—x)-'

-1
X[P;(*)—P, ,(x)—;P;+,(*)]

+-;P(x)(1-xs)-'(P;(x)) .

A. Pseudoscalar Pole

One may now compute the pseudoscalar pole pro-
jections by inserting the pole-term contribution in Eqs.
(2.3a) and (2.3b). The M matrix as defined by Stapp is
related to the Feynman T matrix by the formula

(pV I
r

I p~&= (i/xz)3 «}(p'+n' p —~)&p—'~'I 3f
I pn);

p and ss are the initial four-momenta and p' and ss' are
the Gnal four-momenta; E is the total energy of any
nucleon in the c.m. system.

Let us call the pseudoscalar pole-term contribution
to the M matrix 8 . Then by the standard Feynman
rules

&p' 'l~"Ip )=—~ '—( '/&)g '[ (p')v (p)]
X (q'+ssss s') '[N(ss')ysss(N)];

the Dirac spinors I are normalized so that IN=1; m~8
is the mass of the exchanged meson and m~ is the mass of
the nucleon; ys and all other 4X4 Dirac matrices are de-
fined according to Schweber, Bethe, and de Hoffmann. "

In terms of Geld theory this Born term may be derived
from the interaction Lagrangian

pint —(4tr)llsg @+ y(PS)g

8 8 expanded in 2)(2 Pauli spin matrices yields

Bps= (gs s'/128)(xe —x) '(1—x)(Sts+tri'os),

p
—ini, r, s —— —,'dx (p, (x)2(sin8) —'C(x),

q'+ siss ss2Ps(xe —x), or xe ——1+siss ss/2Ps

with

p= lpl =
I p'I.

p-in, ,o= —,'dx Pi(x)a(x) .

. Pi(x) is the Legendre polynomial of argument x= cos8,
and(pi=(2l+1) '(Pi t—Pi+r); trt trs, Sts, and L Shave

"L.Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952).

'r Thus for s=1 and for j=l+1, l, and l —1, (lsj( Sit(lsj)
=-2l(2'+1) ', 2, and -2(l+1)(2j+1) i, respectively, and
(lsj(f. S lsj)=l, —1, and —(l+1), respectively; (l=j+1,s,j ~

Sit~i= j+1,s, j)=6(2j+1) '[j (j+1)g'}t for s=0,'all matrix
elements of Sts and 1 8 vanish. (lsj (trt at(lsj)=2s(s+1) 3—

"S.S. St:hweber, H. A. Bethe, and F. de HoGmann, Masons
and Fidds (Rove, Peterson and Company, Kvanston, Illinois,
1956},Vol. I.
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Carrying out the integration over x called for by Eq.
(2.3a), one obtains the pseudoscalar pole contribution
to 0.)„., let us call this 8).;&~~'

p
—

tent .(PS) — (g P/12')
x {L(xp—1)Qi(xo) —bt.oj&»jl o I»j&

+I:(x —1)Qi(*o)+l Zt(xp) 3&»j I »p I »j&&

Similarly, Eq. (2.3b) defines the pole contribution to the
off-diagonal element n&; let us call this 8&(

p-'~""=-(g-/24@I e;—.(*.)-2e;(")+e;"(*.)j
X&ja1, s, jl Sipl j~1, s, j&.

B. Scalar Pole

The one scalar meson exchange Born term is

&p-'l~ Ip.&=~ =( -/~&g"L.-(p) (p)&
X(q'+~, p)-'I N(~')N(~) j,

with re8 the mass of the exchanged quantum. The inter-
action Lagrangian in Geld theory is

pint (4w) llpg +gy(s)

The expansion of B~ ~ in Pauli spin matrices is

B(8)= (gs'/SuE) (xp —x)-'L(1—ux)'+i(sin8)u(1 —ux)

X(ei ep) P—u'(1 —x')(ei P)((rp P)j,
In these expressions

where
xp 1+pns2/2P2 and u P2(g+~)—2

Qi(xp) = —,'dx(xi) —x) 'Et(x)

as in Jahnke and Emde. "gt is defined to be (2l+1) '
X(et i—et+i); i)t, p is the Kronecker 8.

The quantity u goes like s)'/c' and remains quite small
for the range of incident proton energies of interest to
us. (For Ti,b ——320 MeV, u=0.04.)

Projection of 8& ~ into angular-momentum states
yields

P '& "'=(gs'/S«){L(1—ux )'e (*)+u(2—u o)~. —lu'b . j+uL2(1—uxo)4(«)+lub. 1&»jl & Sl»j&
+u'Dxo' 1&Qi(xo) —xpb(. p lb—t, il&»j—l QI »j & u'I:xpZ((«—)—ill(, ij&»jl Sipl» j&& (24a)

p-~ =-(g"/s ~)f"Z;(*.)&j~1, , llg. lj~1, , j& (2.4b)

The quadratic (Q) and tensor terms are exceedingly small as they go as u'. Thus the scalar pole behaves
essentially as a sum of central and spin-orbit terms.

C. Vector Pole

The vector-meson pole term is much more complicated than the pseudoscalar or scalar pole term because the
vector-meson —nucleon —antinucleon vertex admits both Dirac and Pauli coupling. Thus

(4 )'w+tLaV oC,o(v)+(f/4~„)~ (~A, (v) ~ 4, (v))3+

However, the pole term can be evaluated somewhat more easily by using the equivalent Lagrangian

~'"= (4~)"'+L(g+f)vA. '"'+(f/2sN~)(4 ("z~.—p~.4.(")3+.
The equivalence can be demonstrated through explicit use of the Dirac equation.

The pole term is thus

&p''I &'"
I p&&= J3'"'= (~~—' /~) {I(—p) ti (g+f)v.—(f/2~~)(p. '+p.)3N(p) }

X(q'+~v )-'{N(N') p(g+f)~„(f/2mN)(—~„'+N„)N(N)),

where my is the mass of the exchanged vector meson. 9& ~ expands in Pauli spin matrices as follows:

8(v) = (SEu) '(xp —x)—'{1 f g'(1+2u—+4ux+u'x')+
+gf(1—u) '4u(1 —x)(1+u+2ux) —f'(1—u) 2u (1—x) (2+u+ux) j

(2 3/) (uSip—2(ri (rp)(g+—f)'(1 x)+ui sin8—((ri+(rp)
XPQ'(3+ ux)+4g f(1—u)

—'(1—u+2ux) —f'2u(1 —u) '(1—x)(3+ux)j
+u' sinse(ei P)((rp P) I gP+ Sgf(1—u)-'+2 fs(1—u)-'(4 —u+ux) j&

with xp =1+ttt vP/2p'.

Note that the central term goes as I, that the spin-orbit, spin-spin, and tensor terms go as u, and that the
quadratic term goes as u'.

)p E. Jahnke a)id F. Emde, Tables of FNNotsoes (Dover Publications, Inc., New York, 1945).



8&"& projects as follows into partial waves:

(auE) p gB-g„&~g = {g'C(I+4uxo+u'xoo+2u)Qg(xo) (4—u+u'xo) bg, o
—xou'bg, gj

+gf4u(1 —u) 'C(xo—1)(1+2uxo+ u)Qg(xo) —(1—u+2uxo) bg, o
——o'bg, g$

+I4"(1-.)- C(*.-1) (1+-,'-.+l )Q (*)-(*.-2+: *"—:-.-&.)b,.
go—(1+ouxo gu—)bg, g (1—/15)ubg, jo} fu—(»jlgrg grol»j&(g+f)oC(xo-1)Qg(xo) —bg, oj

+ou«~i I&»1»j&(g+f)'C(xo 1)Q—g(xo)+oZg(xo) j+2u(»jlL SI»j&4'C(3+uxo)Zg(xo) —oubg. gl

+4gf(1—u) 'C(1+2uxo —u)Z (xo)—ggubg, gj+f (1 u 'C2u(xo —1)(3+uxo)gg(xo)
—(2 +l ' o-l ')b, —(2/15) 'b, 3—'(t jlQII j&(Cg'+8gf(1 —) '+sf'(1 —) 'j
+If'(1—u)-'Cu(xo —1)(xo'—1)Qg(xo) —u(xo' —xo——,') bg, o

—-', u(xo —1)bg,
=—(2/15) u8g, o$)

—'«jlQII j&&Cg'+Sgf(1- )-'+8f (1- )-'r(*"-1)Q (*.)-*b ..-!b.j
+2f'(1- )-

I (*.-1)(*"-1)Q('.)- ( "-"-l)b.-l (* -1)b. -(2/»). b,.j&
+u'&» jl ~g I»j)(Cg'+Su'(I —u) '+8f'(1 —u) '1Cxo.g(xo) —obg, gj

+2f (1—u) Cuxo(xo —1)gg(xo) —ou(xo —1)bg, g
—(1/15)ubg, og). (2.5a)

The coefigcient for «sjlSgol»j& is divided into two terms; the second, due to integration over H(x), is much
smaller than the erst. The off-diagonal matrix element 8&&~& is

p- B'&'g=(2«)-'{(g+f) CQ; (*.)+Q;+.(x.)-2Q,(x.)1+uCg'+8gf(1-u)-'+sf'(1-u)-'(1+!ux. -!u)j
XQ;(xo)—of'u'(1 —u) 'bg, g)(j+I, s, jlagol j+I, s, j&. (2.5b)

IIB;II=
B;g,; B')

Bg' B'+g gl

fa; g,; a'
Ila II=I

ag ag+g, jl
Elastic unitarity defines the complete amplitude once

the real part is assumed to be equal to J3; thus

Imag= (Imag)'+ (Bg) '
Imagg= (Imagg)'+ (Bgg)'

111. COMPARISON WITH p-p EXPERIMENTAL
AMPLITUDES

It should be pointed out that despite the nonrela- vrhere
tivistic appearance of the operators L S, Sgg, etc., the
pole projections of J3&~8&, 8&8&, and B&~' are fully rela-
tivistic. For pole projections n~„. rather than ai, g, ag, p,
etc. one may refer to calculations by Sawada eI, ul."and
by Perring and Phillips. '0

The pole projections apply to T=O mesons. For 7=1
mesons, replace in the interaction Lagrangians, @ by
~ P, and in the Born terms, g' by ~g ~gg'.

A. Three-Pole Fit Using Geometric Unitarization

Let 8 be the sum of the pole terms identi6ed with the
pseudoscalar, scalar, and vector mesons; i.e.,

B=Q„B&"g, g =gr, V, o. (3.1)
Then we shall physically identify 8 with the real part
of the scattering amplitude, as sketched in Fig. i.This
applies only to states with l&1 as explained in the
introduction. In terms of these partial waves, Eq. (1)
may be written

Bg=Reag, l/0 (singlet)

Bgg=Reagg, (triplet uncoupled) (3.2)

(t»pl«uncoupled)

Imlla ll=(Imlla II)'+IIB II' (33)
In the case of the uncoupled states, the complex ampli-

tude 0.& can conveniently be visualized as in Fig. 2. Geo-
metric unitarization means constructing e'~~ sinb~=0. ~,

line OQ, from Bg=Reag=cosbg sining, line I'Q. Other
forms of geometric unitarization are immediately ap-
parent, such as setting Bg= bg, arc OQ, or Bg= cosbg (the
ggt-matrix method of Sawada ot ul. g4). A diagram analo-
gous to Fig. 2 for the case of the coupled states is given
in the article by Moravcsik. '~

The following pole parameters are adjusted for a best
fgt to experiment: gv', fv/gy, g ', g,~, and ggg, . "Experi-
ment" is represented by phase shifts determined through
phase-shift analysis of the p pscattering dat-a. The

iy
RePIG. i. Geometric unitarization;

the sum of pole terms is taken to
be equal to the real part of the
scattering amplitude.

(v)
~ Rl Ct, v ='gjrogto&

g

~ J. K. Perring and R. J. N. Phillips, Atomic Energy Research
Establishment, Barbell, England, Report No. R-40V, 1962 (un-
published).

Pro. 2. Geometry in the complex
plane; if the phase shift is BI, then the
complex amplitude aI =exp(ib&) sinb~
is hne OQ, and the real part, line I'Q.

' 0
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Tmr, E I. Experimental values for the real part of the p-p scattering amplitudes a~, a~~, o.~;, and a&, where Rem~=cosh~ sining,
Rerx&& ——cosh&& sinb&&, and for j=l+1, Rea&; =cos2e; costI&; sinb&; and Rea2 =z sin2e; cos(B;:,;+8,.+&,;); the 5's and ~'s are Stapp's "bar"
phase shifts. The values of Rea. have been calculated from the bar phase shifts found by Amdt and MacGregor through analysis of the
data at discrete energy bands centered near 25, 50, 95, 142, 210, and 310 MeV. These phase shifts are an earlier version of those re-
ported in Ref. 21.

Reo. , o(' »
R~»(~)
Re &&«»
Re~ (exp)

Reo.2 (exp)

Reise, 2(~»
Re&3, (~)
Re~3' 4(exp)

Re~4(exp)
Re 4«»)
RCafs 4(e~)
Re (exp)

25 MeV

0.095+0.016—0.063+0.008
0.033+0.003
0.012~0.004—0.020~0.009
0.005~0.003—0.004+0.009
0.000+0.009
0.001~0.009—0.001+0.009
0.000+0.009—0.000+0.009

50 MeV

0,204~0.013—0.139&0.005
0.105~0.004
0.037+0.004—0.037+0.006
0.011~0.007—0.006+0.008
0.003+0.003
0.003a0.009—0.003~0.009
0.000+0.009—0.001~0.009

95 MeV

0.217~0.030—0.218~0.008
0.179~0.009
0.061+0.007—0.047+0.006
0.022~0.013—0.028+0.010
0.011+0.004
0.006~0.009—0.008+0,009
0.002+0.009—0.005~0.009

142 MeV

0.109&0.010—0.281~0.006
0.230~0.003
0.090~0.004—0.049+0.003
0.013~0.006—0.036+0.004
0.016+0.003
0.010&0.002—0.001~0.001
0.003~0.001—0.008+0.002

210 MeV

—0.012~0.010—0.342~0.008
0.262+0.004
0.122+0.006—0.046+0.003
0.027~0.006—0.045~0.004
0.040+0.004
0.018&0.003—0.016~0.002
0.008~0.006—0.011~0.004

310 MeV

—0.193~0.027—0.418~0.012
0.269~0.010
0.155~0.012—0.050+0.008
0.017~0.012—0.053~0.012
0.048+0.007
0.024~0.006
0.017a0.006
0.021~0.007—0.025~0.009

particular phase shifts vre use have been found by Amdt
and MacGregor. "These are very similar to phase shifts
found by other groups in analyzing p-p data over the
same range of energies. "" The Amdt-MacGregor
phase shifts are really a collection of six sets of phase
shifts, each set independently determined from scatter-
ing data vrithin a different energy band. Solutions are
provided at 25, 50, 95, 142, 210, and 310 MeV.

%e shall compare our predictions with Ren &' » rather
than 8&' », since it is easier to compute Ren(' » once
from the phase shifts and compare with 8, than it is to
compute 8&'"'"& each time the pole parameters are
changed and compare with 8&' ». Thus we minimize
the quantity

[Reas(T;)—Rens &'"»(2';)]s

(exp) (2".)js
(3.4)

n& is a generic symbol for any of the n&, n&;, or n&. The
sum on k is taken over neo n].g n$2 n2 n n3$ n33 c34,
n4, n', n54, andn55, ' the sum on i is taken for T;=25, 50,
95, 142, 210, and 310 MeV. The Ren~&'"» have been
calculated using Stapp's definitions [Eq. (2.1)1 and are
listed vrith the experimental errors, Ar, &'"», in Table I.
They are plotted in Fig. 3. These Renr, &' » exhibit a
smooth dependence with changing energy: however,
they have not been determined through energy-de-
pendent forms; the phase shift analysis at each energy
is independent from that at any other energy; the
smoothness apparently rejects the consistency of the
data.

~'R. A. Amdt and M. H. MacGregor, Phys. Rev. 141, 873
(1966).~ G. Breit, M. H. Hull, Jr., K. E.Lassila, and K. D. Pyatt, Jr.,
Phys. Rev. 120, 2227 (1960); and G. Breit, M. H. Hull, Jr.,
K. E. Lassila, K. D. Pyatt, Ir., and H. M. Ruppel, i'. 128,
826 {1962).

~ P. SigneO, Phys. Rev. 139, B315 (1965), and earlier work
cited therein.

~ C. J. Batty and J. K. Perring, Nucl. Phys. 59, 141 (1964),
and earlier work cited therein.

~' Yu. M. Kazarinov, V. S. Kiselev, and V. I. Satarov, Zh.
Eksperim. i Teor. Fiz. 46, 920 (1964) LEnglish transl. : Soviet
Phys.—JETP 19, 627 (1964)j, and earlier work cited therein.

Tmx.E II. Values for gP and m„(v=m, V, 0.) which provide
the best agreement between theoretical Real, =+„BJ,(") and ex-
experimental Reeg(e~); the Reo.q(e*» are listed in Table I. my
and m„are prefixed.

g» = 12.3
m =135 MeV

g,~ = 1.6
w, =390 MeV

gy~ =2.3
f~/gI =23

mv =770 MeV

~6R. A. Amdt, R. A. Bryan, and M. H. MacGregor, Uni-
versity of California Radiation Laboratory Report No. UCRL-
14807 (unpublished).

~'The V and 0- are taken in a zero-width approximation.
Calculations, not reported here, were undertaken to establish
the effect of considering the V and 0 exchanges in a non-zero-
width approximation, that is, to give them structure corresponding
to a Breit-Wigner resonance in the N-S channel with some finite
width. It was determined that, so far as the effect on N-N scatter-
ing is concerned, one cannot distinguish between a "wide" (say
150-MeV) resonance and a zero-width pole at a slightly lesser
(25-MeV} mass.

It will be noted that Eq. (4) neglects correlations be-
tvreen the phase shifts. We feel that this is not serious
because we are only concerned with qualitative pre-
dictions of the pole model. However, we have investi-
gated fits to the actual data (not phase shifts) and find
that the pole parameters are only slightly affected vrhen

correlations are included. This will be reported in a
later publication. '6

The quantity in Eq. (4) was minimized by an auto-
matic search code vrhich incorporated both grid and
matrix search routines. The code could be run on
either an IBM 7094 or a CDC 3600. Minimum X.' was
achieved vrith the parameters listed in Table II. The
predictions'~ for the Ren~ are graphed in Fig. 3. The
qualitative agreement with experiment is good.

The pole parameters of Table II also seem reasonable.
The vector-pole contribution represents some average
of the o&, g, and p-pole contributions; fv/gv, found to be
2.3, seems consistent with f /g =0, fe/go=0 and

f,/g, =4 as estimated from the nucleon electromagnetic
form factors. gy', found to be 2.3, is small and in this
sense consistent with g, '=0.5 estimated from p —+ m-x
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Q4-
( )

Re a,

0.2

Ol—

0-

-0.2— Re ua

FIG. 3.Theoretical and experimental
values for the p-p scattering ampli-
tude, real part, plotted versus labora-
tory scattering energy. The solid lines
depict Q„Bg("~=Reo.y„v=~ V, 0., for
pole parameters listed in Table II.
The experimental points are plots of
the Reug(' » listed in Table I.
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decay and universal p coupling to the isospin current,
and g„,s' ——3g, ' (pure F coupling between the baryon and
the vector meson octets); &os refers to the "8"member
of the mixed octet.

The pseudoscalar coupling constant also appears
reasonable. If we assume g„'«g ', as predicted by SU3
and borne out by fits to the combined p-p and I-p data,
then Table II predicts g

' 12. This agrees with 14 to
within the accuracy one should expect from geometric
unitarization.

For the scalar meson there is no well-established ex-
perimental resonance with which to make a comparsion,
but m, of Table II falls in the same energy range as the
s.-s enhancement in the s. +p —+rr +s++I reaction;
390 MeV is certainly lower than Thurnauer's estimate
of 490 MeV for the di-pion mass, '" but in fact the 6t to
the data is not all that sensitive to m, and even a value

as high as 490 MeV still yields a pretty good 6t. How-
ever, 700 MeV for the 0 mass is de6nitely too high; using
this mass the 6t to the experimental amplitudes is very
poor. Thus the m-x resonance observed at this energy
cannot be identi6ed with the ~ of the model; however,
it might contribute along with a low mass or other m-x

effect to yield something equivalent to' o.(390).

S. Spin-Space Structure of Pole Terms

The pole parameters of Table II are similar to those
found by Sawada, Ueda, Watari, and Yonezawa using
their E-matrix version of geometric unitarization. These
parameters are also similar to those of Scotti and Wong. ~

Interestingly, however, they are very different from
those found by Bryan, Dismukes and Ramsay using
the Schrodinger equation; in that case, one 6nds g&' 20,
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FrG, 4. Plots versus energy of the
real part of the spin-space amplitudes
Ne~, g, n~, p, andng, L,B for l=1, anda~ for
1=2; the experimental amplitudes
have been calculated from the Re~g, «~)
listed in Table I using formula (3.5)
of the text. Geometric unitarization is
again assumed for the theoretical
amplitudes; Renq=g, Bq("); theoreti-
cal cases graphed in solid lines are for
(a) .=, ~ith g.m=&4, (b) &=, y,
vrith g '=14, gy'=9. 5, and (c) ~=m,
V, p with g '=12.8, gv'=2 2, fvlgv
=2.5, g,'=1.6, and m, =380 MeV.
Preixed are my =770 MeV and
m =135 MeV.
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fv/gv 0 4, g,' 15, m, . 560 MeV, and g,P 14. Since
gz' is observed to vary by a factor of 10, one might ask
how such diferent treatments of the pole terms could
result in 6ts to the same data. Since it is pretty well
understood how the three pole terms suflice in the case
of the Schrodinger equation, we will present a parallel
investigation for the case of geometric unitarization.

Only the 'Eo, 'E&, 'P2, and 'D2 states will be con-
sidered since it is in these states that the di8erences in
unitarization are greatest. The experimental amplitudes
will be put in the form of the spin-space amplitudes of
Sec. II, Eq. (2.3), because certain features of the pole
terms stand put better then. We take for the I' states

a&,;t'*»= pa& &&'"»+ &p a&'*»(ljl Stpltj)
+a&,z,s &'"»(ljl L S

l
lj), (3.5)

where Pa~, o——a~,o+ag,„.I We neglect aq, o as the pole
term contributions to this amplitude are very small. )
For the 'D2 state, we take 0.~&' » as before. In Fig. 4
are plotted Re'a&, &&'"» Re&,&&'"» Rem&, 1,8&'"», and
Reo.2&' » at each of the six energies.

The role of the pion pole term is much the same as
before. The tensor term dominates and is long-ranged.

B)s,t'& =—g, '(M/2p) {(m /12M')Q((xp)(lsd l et ep l lsj)
+L(vvP/12M')Qg(up)+ (p /4M )g&(~p)1

x(&sjl g l»j)}. (3.6)
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Valuesof'Bj. ,g& ', B~,p& ', B~,I,~& ', andB2& 'forg '=14
are graphed in Fig. 4. The B's are defined analogous to
the a's of Eq. (5). Comparison of the Bo&~& with the
Reno&'"» (k standing for any of the four amplitudes)
shows that, as before, the tensor contribution is much
too strong and a spin-orbit contribution is missing for
the pion pole taken alone.

One now adds the pole contribution of a vector meson
to provide the spin-orbit term. This time, however, a
gy' of only 9.5 suKces to Gt Ren~, l,a&' » instead of
gy'=30 or more in the case of the Schrodinger equation
(assuming fv=0). The values of Bo& &+Bo&v& are
graphed in Fig. 4; g

' is again 14. It may be seen that
Bj.,»&~) agrees qualitatively very well with Reo, &,»&~».
The Gt to Rem~, p&' » also shows improvement. However,
the predicton for Re30.~,g is now far too repulsive; this
is a consequence of the leading term in the expansion
of B& &.

B&.. " =(M/2p){ —gv Q&(xo)+
—(fv+gv)'(mvo/6Mo)Q&(xo)(fsj~ e& eo

~
Lsj)

+(f.+g.) L( "/12M )Q (")+(p /4M )Z(*.)j
&&(»jII»I fsj)

—(3gv'+4gv fv)(P'/2M')Q&(xo)(fsj~ L S
~
lsj)

+ ") (3.7)

One adds the pole term of a scalar meson, since the
leading term bears the opposite sign;

B&„.& & =g, '(M/2p) {Q,(xo)+
+(p'/2M')$&(xo)gsj~L Sjlsj)+. ).

Let m, =m~ for exact cancellation. Actually, exact can-
cellation is not desired, because while Re~ej, q&'"» is
close to zero, Rea.2&' » is positive, i.e., indicates attrac-
tion. Thus one chooses a somewhat lower 0 mass to
provide long-range attraction in the D state concurrent
with near cancellation in the I' states.

Finally only the pole prediction for Reo.~,~&'"» re-
mains poor. This is greatly improved by adjusting fv A.
best Gt to the four experimental amplitudes is achieved
with gv' ——2.2, fv/gv=2 5, g, '=1.6,. m, =380 MeV and

g, '=12.8. The values of P Bo~"&=Reoo are plotted in
Fig. 4. They now agree with the experimental Re'0.&,z,
Reo;~,~, Rem~, 1,8, and Reo;2 rather well.

As mentioned earlier, the chief difference between the
geometric and Schrodinger equation treatments of the
pole terms is the order-of-magnitude difference in gy'.
On the other hand(gv+ , fv)' is rather stable, since in
the former case gv

——1.5 and fv ——3.5 while in the latter
case gv 4.5 and fv 1.5. That is to say, the tensor and
spin-spin. contributions remain much the same, since
these are weighted by (fv+ gv)', as in Eq. (7). It is the
spin-orbit contribution which is weaker (by a factor of

3) in the case of geometric unitarization. Equation (7)
then dictates that gv be reduced and fv increased. The
central term is weighted by g&' and is therefore very
much smaller; still a Gt to experiment may be obtained
because g,' is reduced correspondingly. But now m,
must be lower. (To see this consider the opposite case
where g, and gy approach . Then m, must approach
mv to yield a 6nite difference. )

There is apparently sufBcient Qexibility in the pole
contributions to allow a fit to experiment whether
Schrodinger equation or geometric unitarization (or a
partial wave dispersion relationo) is employed. In one
sense this is disappointing, as one might have hoped
that one method would prove definitely superior to the
others. In another sense, however, it is pleasing, in that
the same basic pole terms are required irrespective of
the different corrections.

IV. SUMMARY

We have assumed that the real part of the non-S-wave
p-p scattering amplitude is given by a sum of three pole
terms, corresponding to vector (&o,o&,p), scalar (o), and
pseudoscalar (s.) exchange. The imaginary parts are
dictated by elastic unitary (geometric unitarization).
Five parameters are searched (gv, fv, g, ', m„and g, ')
and a good qualitative Gt to the experimental ampli-
tudes is obtained.

The spin-space structure of the individual pole terms
is examined in some detail in order to provide quanti-
tative measure of the arguments leading to the vector
and scalar-meson hypotheses.

The fact that the simple pole contributions very
nearly Gt the physical amplitudes suggests that correc-
tions may prove to be small. However, this is by no
means certain, as there exists the example of the
Schrodinger equation treatment where corrections to
the pole terms are very large. However, the pole param-
eters obtained through Schrodinger iteration seem
less reasonable than those obtained through geometric
unitarization.
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