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The quasidiffraction model of Drell and Hiida is applied in an attempt to understand the 1.40-GeV maxi-
mum seen in high-energy, small-angle, inelastic p-p scattering. Reasonable agreement is found in absolute
magnitude, and in dependence on the energy and scattering angle, but the correct position and width cannot
be fitted quite accurately; several different phenomenological form factors are attempted. It is shown that,
at very forward angles, there is a cancellation in dépendence on the off-shell pion mass between the pion
propagator and a kinematic factor arising from the diffraction scattering. This leads to a suppression of
waves with angular momentum j7>% for the recoiling system, and might be an explanation for the promi-
nence at very small angles of the 1.40-GeV bump relative to the disand fisisobars.

I. INTRODUCTION

ECENT high-energy proton-proton scattering ex-
periments at CERN! and Brookhaven? have
shown an interesting structure in the inelastic spectrum.
In addition to the bumps at 1.51 and 1.69 GeV, which
had already been seen by Cocconi ef al.? and identified
with the well-known dy3 and fi; [V isobars, a very
prominent bump at 1.40 GeV is also seen at the smallest
angles (220 mrad). (This bump and the one at 1.51
GeV are not clearly resolved as two distinct peaks?;
rather, as the laboratory scattering angle 6 is increased,
the very large prominence at ~1.40 GeV decreases in
magnitude very quickly, and seems to shift toward
larger mass values, until only a well-defined bump at
~1.51 GeV remains, which can be identified with the
di3.) The 1.51- and 1.69-GeV bumps at the larger angles
(40-60 mrad, for 15-GeV incoming energy) have a
roughly similar dependence on 6. By contrast, the
1.40-GeV object is produced much more prominently
at the smallest angles. For an incoming energy of 15
GeV, and =10 mrad, the magnitude of this bump is
some 2.5 times as big as that of the 1.69-GeV bump;
while already at 25 mrad, it is indistinguishable from
background.

It has been suggested® that the 1.40-GeV peak is due
to the puwN interaction at =1400 MeV. Recent
analyses®5 have shown a rapidly rising phase shift in
this region, possibly indicating a resonance; though the
phase shift does not seem to reach 90°,° and the large
inelasticity in the pi1 7V reaction makes the situation
somewhat unclear. If there is indeed a p11 w/V resonance
near 1.40 GeV, the corresponding bump in the inelastic
spectrum could then be attributed to such a recoiling
isobar, similar to the other two well-known isobars.

* Most of this work was done at Brookhaven National Labora-
tory, under the auspices of the U. S. Atomic Energy Commission.
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However, there remains the problem of the difference
in behavior noted in the previous paragraph between
such a p;; isobar and the two others. A quasidiffraction
model has often been proposed for the structure of the
high-energy, small-angle inelastic spectrum.® The rela-
tive suppression of the production of the di3 and fi5
isobars at very small momentum transfers is then ex-
plained qualitatively as a mismatch of angular momen-
tum at the target vertex, due to the coherent nature of
the forward diffraction scattering."” However, it would
be desirable to have a specific production mechanism
which accounts for this automatically.

The main purpose of this paper is to point out that
such a mechanism already exists, in the quasidiffraction
model of Drell and Hiida (hereinafter DH).8® This
point is discussed in Sec. 4. For the sake of notation and
clarity in the other sections, the DH model is briefly
derived in Sec. 2.

The quasidiffraction model has also been applied by
various authors'® to other processes, in particular with
respect to the question of whether the 4; bump is a
dynamical resonance, or is purely a kinematical effect
of the diffraction. Two experimental groups' have
concluded that, at incoming pion energies of 3.6 and
6 GeV, the 4; bump in the w-p spectrum can be ac-
counted for by the quasidiffraction model. It is therefore
of interest to raise the same question in the present case
of high-energy p-p scattering of whether the bump at

6 W. D. Walker and M. L. Good, Phys. Rev. 120, 1857 (1960).

7 G. Cocconi, in Proceedings of the 1962 International Conference
on High-Energy Nuclear Physics at CERN, edited by J. Prentki
(CERN, Geneva, 1962), p. 883.

8S. D. Drell and K. Hiida, Phys. Rev. Letters 7, 199 (1961).

9 M. M. Islam, Phys. Rev. 131, 2292 (1963); Y. Takada and
M. Bando, Progr. Theoret. Phys. (Kyoto) 33, 657 (1965). These
authors, as well as Drell and Hiida, apply the DH model only at
larger 0 and ||, where only the di5 and f15 resonances are seen.
Islam also performs partial-wave projections, and attempts to
account for final-state interactions. But his calculations shed no
special light on the region of very small 8 (|¢| Z0.1 GeV?), and
are not concerned with the main point we wish to make in Sec. 4.

10 R, T. Deck, Phys. Rev. Letters 13, 169 (1964); U. Maor and
T. A. O’'Halloran, Jr., Phys. Letters 15, 281 (1965). These authors
apply the diffraction model to the reaction 7+p — p+m—+p. The
kinematics are such that here the diffraction occurs at the lower
vertex (in our terminology); what contributes is essentially the
exchange graph of Fig. 1.

1B, C. Shen et al., Phys. Rev. Letters 15, 731 (1965); V. E.
Barnes et al., ibid. 16, 41 (1966).
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1.40 GeV might not perhaps be already accounted for
by the kinematics of the DH process. This is precisely
what Drell and Hiida attempted to do originally; but
they examined energies of 16 and 25 GeV, and angles
of 40 and 56 mrad, where the bump comes in the range
1.55 GeV to 1.70 GeV; and we now know that in
this region there are two bumps, at 1.51 and 1.69 GeV,
and readily attribute these to recoiling isobars. On the
other hand, we are interested here in much smaller
angles (0-15 mrad), where the DH peak occurs at
~1.40 to =1.45 GeV. This is discussed in Sec. 3.

2. THE DH MODEL

Figure 1 is the diagram for the DH model. ¢,¢’ are the
four-momenta, respectively, of the initial fast proton,
and the scattered proton. p,p’ are the target, and recoil
protons; £’ is the produced pion. ¢,p will also stand for
the magnitudes of the corresponding three-momenta,
t=(g—¢')? is the invariant momentum transfer in the
diffracting system; A2=(p—p’)? is the invariant mass
squared of the virtual pion. W?= (k'+2")?, so that W is
the energy of the recoiling &',p’ system, and is the
“missing mass” in the experiments. All symbols with
superscript W indicate the corresponding quantity
evaluated in the W center-of-mass system; the latter is
defined by k'"+4p'7=0. Quantities without super-
scripts are evaluated in the laboratory system p=0.
0 is the (laboratory) angle between the directions of q’
and q. The metric is such that A2,2<0.

Let the invariant amplitude M be defined by

S=1—i(2m)%( X paL@m)*/I] QE,) ] M .

Then the doubly differential cross section do=d%/
dQqdq’ is
md g%V 1

o= -2
2(27)5 qE W 4 spins

a0V | M 2.

The invariant mass squared of the diffracting system is
s=(¢’+k%")?, and the corresponding center-of-mass
momentum, for a physical system, is

k=L (net )AL= (m—w T/ 24/
The model takes for M

r

”2__ A2

M=Mu(s,t) a(p')ysu(p) 1)

where M 4 is the invariant amplitude for the diffraction
scattering, and sets further

(411-\/ s>2da; S,t)

@

3 2 | M=

spins

m

with o4 the physical diffraction cross section. Now
doa(s,t)/ dQ=[do a(s,0)/a]g (©) ,

DIFFRACTION DISSOCIATION AND

1.40-GeV o N PEAK

q

Fic. 1. The DH model. Further
notation and definitions appear in

the text. A

where g(£) is the shape of the physical diffraction peak,
and is independent of 5.2 Under the assumption of a
pure imaginary elastic amplitude, and using the optical
theorem, we obtain

ddd(S,O)/dﬂ= [(k/%)atot (S):F‘ .

Also, o101(s) will be given its asymptotic value, and
taken independent of s. With

3 X |a(p ) vsu(p)|?=—A0/4m?,

spins
finally, we have
G,-2 14 (t) g 1;01,2 ql2k/ w
0' —
8(27)® m  qE W

/ A 7 sk (— A7) (u2— A%) 2.
©)

Neglecting the pion mass u in sk?, this factor simplifies
to 1(s—m?)2 If the polar axis is chosen along p¥, A? is
independent of the azimuthal angle ¢%. The integration

1 2
— / A" (s—m?)=h
81l' 0

can then be explicitly performed:
h=(E¢WEw"+q¢VE'" cosX? cosfy V)2
+3(¢'7E' sinX" sinf 7)?,
cosX¥=[E," (E¢"+W)
3 W2WEL ™YY p7Y . (4)

The final W system can be px% or n#a*; this gives a
factor 3 in Eq. (3). However, the diffraction scattering
at the upper vertex is a scalar process, mediated by a
“vacuum-like” exchange. This is in accord with the
idea of coherent forward scattering. This has already
been implicitly assumed above by replacing the diffrac-
tion vertex by the scalar function (s*/2%k/m)[ g (£) J/?otot-
Since no isospin exchange is allowed,® the isospin of
the W system must remain that of the target proton,

=1. A form factor F(A?) is also introduced to account
for off-shell effects. This is discussed further below.
So 8o becomes (¢/Ey=~1) )

9G2 g(O)ow ¢ BV 1
402t m g Wi,
Xh(— A% (u2—AD)2F (A2).  (5)

12 That this is a reasonable procedure has been confirmed in the
bubble-chamber experiments of Shen ef al., Ref. 11.

18 This argument for only T'=0 exchange, leading to a suppres-
sion at high energy for all recoiling systems of T4}, was originally
put forward by A. P. Contogouris, S. C. Frautschi, and H. Wong,
Phys. Rev. 129, 974 (1963).

d(cosfi W)
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Fic. 2. (a) Plot of Eq. (6) with
F(A*)=1, incoming momentum ¢=20
GeV.1:0=0.II:9=10 mrad. III:6=20
mrad. The ordinate scale here and in
succeeding graphs is in b/sr GeV. (b)
Plot of Eq. (6) with F(A?)=1, as a
function of ¢, for the fixed values §=0,
W =140 GeV.
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(K=p'+Kk,K=|K]), this can also be written
9 G2gowiq 1 B
NG m g Kla
X (— A% (u*— A)2hEF (A7) ;
A=2E,"E, ¥ —m2—p¥E'")
B=2(E,"Ep " —mi2 pVE™).

This is the formula given by DH.8

The following numerical values will be used in the
subsequent calculations. G/?/4r=14.4, ow=28 mb,
g()=exp(9+2.5¢)." The conversion of the right-hand
side (with all momenta in GeV) to b/sr GeV requires a
further factor 2.55X 1073,

d(— )

(6)

3. SOME NUMERICAL RESULTS

Figure 2 shows &0, given by formula (6) and with
F(A?) set equal to 1, for several values of ¢ and 6. The
following features can be noted: (i) The angular distri-
bution is very sharply peaked toward small §. This is
guaranteed by the rp diffraction factor g(#), and is a
basic feature of the DH model. (ii) The cross section
at 6=0 increases quadratically with ¢. This is to be
sharply contrasted with a simple one-pion-exchange

UK. J. Foley et al., Phys. Rev. Letters 11, 425 (1963); 15, 45
(1965).

20 30
q (GeV)

(b)

(O.P.E.) model with recoiling isobar, which is well
known to be constant with ¢

(8% dQdq' ~ X &o /didg' ~ X g2) .

Furthermore, this latter model, at ¢=20 GeV and
6=>5 mrad, gives a contribution =~0.028 b/sr GeV (this
last estimate is obtained for a recoiling $1; isobar which
resonates at W=1.40 GeV with no inelasticity) ; while
formula (6) with F=1 gives 3.26 b/sr GeV, which is
somewhat larger than the experimental value of ~1.5
b/sr GeV. Close agreement is not to be expected because
of the effects of F(A?) and of possible final-state inter-
actions; this is discussed further below. However, this
rough agreement in absolute magnitude of the cross
section is gratifying; there were no free parameters
available. (iii) The width of the peak in Fig. 2(a) is
much too large to fit the experimental bump; this
latter at ¢g=20 GeV has a full width T' of ~0.18 GeV,
while the maximum that (6) generates is very much
flatter. Therefore the simple form (6) with F=1 is
inadequate to fit the experimental data.

At this point, one may consider the influence of
possible off-shell effects. After all, (6) with F=1 is the
contribution of Fig. 1 at the pion pole A?=yu2, while the
range of A? that contributes is such that A2K<—p?
(B=29p? for ¢g=20 GeV, =0, W=14 GeV). It is
reasonable to introduce the form factor F(A?) in the
integrand of (5) or (6) to account for deviations from
the perturbation theory expression. Unfortunately,
this F is essentially unknown, so that a degree of arbi-
trariness is necessarily introduced. [It must be remem-
bered, though, that the choice F(A%?)=1 is already an
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arbitrary choice, and almost certainly wrong.] How-
ever, since F is constrained by F(u?)=1, and the cross
section is to be fitted in absolute magnitude as a function
of W, for various ¢ and 9, the model is still a meaningful
and, possibly, a useful one.

We have tried sharp cutoffs at —50u?, —30u?, —20p2,
and exponential and Gaussian shapes. Figure 3 shows
some of the results. It is seen that for very small §, where
A =0 independently of W, the effect of the suppression
of large |A?] is also to suppress large W. For larger 6,
A is already larger, and also increases with W, so F is
less effective in sharpening the peak than it is in suppres-
sing the whole curve altogether. However, at small 9,
besides sharpening the peak, F also shifts the position
to smaller values of W. For ¢=20 GeV and 6= 10 mrad,
a sharp cutoff at 20u? shifts the peak to W=1.28 GeV;
the smoother cutoffs act similarly. An F which falls
with |A?| cannot narrow the calculated peak on the
low-W side of the maximum, where also the experi-
mental bump is sharper.

While the possibility that some choice of F exists
which would give a narrow enough peak at the correct
position has not been eliminated, we feel that this is
unlikely in view of the cases actually tried. A steeply
falling F seems to be necessary to suppress the high-W
region appreciably; to narrow it down sufficiently, it
seems unavoidable to also shift the position of the peak
to too low values. We thus conclude that the DH model
(6) is insufficient to account completely for the ob-
served bump at 1.40 GeV; the correct position and
width cannot quite be fitted at the same time.

4. PARTIAL-WAVE ANALYSIS

To consider the possible effects of final-state inter-
actions between the slow nucleon and pion (we ignore
here any interaction between the fast proton and the
other particles, except for the diffraction scattering
which has already been accounted for), it is necessary
to analyze the amplitude into the different partial waves

20—

50"

0 1 1 L
14 1.6 1.8 20
W (GeV)

F16. 3. Equation (6), as a function of W, for fixed ¢=20 GeV,
=10 mrad, and various F(A%). I: F=1. II: F=8(A*}50u),
where G=the step function. III: F=§(A*+430p%). IV: F
=0(A2420p2). V: F=exp[—2.21(u?—A?)]. This function=0.5
at A?=—15p2.
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of the W system. We examine this partial-wave analysis
in this section; the actual inclusion of final-state effects
is not attempted in the present paper.

At this point, the assumption mentioned earlier in
Sec. 2, that M has the form (1) with M s~ (dos/dQ)!/2
and independent of the spins of ¢ and ¢/, is vital. The
effective amplitude leading to the final (#V)W system
is then of the nature “scalar object”+nucleon — pion
--nucleon, where “scalar object” is the effective bubble
at the diffracting == vertex. The projection of angular
momentum j, parity (—1)#!/2 (denoted j=), is then
proportional to 1.

L= / 0T T Pray(&)—J T4’ Py ()]
-1

A2
® panypn,
“2__A2

X
z=cost- ¥,
Jo= (Eij:m)l/?’ J:I:I= (Ep'Wim)”z,
. 1 27
= [ ag7 =)
4r Jo
=E "Eu¥+4q¢7VE'W cosx¥z, 0
The corresponding contribution to the cross section is

9 G,-2 14 (t)o‘mtz q' k,W
T L T Tl ©
24(2m)8 4r A

do FAN

From (7) and (8) it is clear that, if A(u2—A2)~! is
independent of z and F is set=1, there is no contribution
to do except for j=%, i.e., for si and p1; waves. That
at =0, the dependence on cosi” of h and u?—A?
cancel to a remarkable degree we now proceed to show.

First, we note a qualitative argument. At 6=0, the
momenta ¢, ¢, and K are parallel. A Lorentz trans-
formation to the W c.m. system leaves q% and q'7 still
parallel in the original direction, with p¥ antiparallel.
In this system, since p'¥ = —k'¥, and ¢ is degenerate,
one can readily convince oneself that s(z) and A2(z) are
large or small simultaneously, so that there is effective
cancellation. Though each factor separately has a huge
variation with z [at ¢=20 GeV, W=1.40 GeV, u2—A?
goes from u? to 30u? in the range —1<2<1; thisis a
factor 30 in the amplitude, or 900 in the expression (5)
for the cross section], we now show quantitatively that
the cancellation is almost exact. At =0, X¥ =7 and
h=q'-k'. Also, for |q| large and §=0, 1=0 (|¢|<<u?),
while '+ (¢ —¢)=—k'-¢'¢/| 4’|, where

e=E,—Ey~|q|—|dq].
Then, since

A= (¢ +k —gl=t+u+2k" (¢'—q),

we have k- ¢’ (u*—A?)~ | ¢’| /2e=large constant. This
holds only at 6=0, and within the approximations made
[DH model, neglect of terms ~u? and (m/q)? effects].
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Fic. 4. (a) Equation (8), as a function of 6, for o/F=1. The curves labeled I, II, III are, respectively, at incoming momenta ¢=30,

20, 10 GeV. Here, and in (b) and (c), 1/2— refers to 11 and is evaluated for W=1.40

GeV; 3/2— is dys, and is evaluated for W=1.51

GeV;5/2— is fi5, and is evaluated at W =1.69 GeV. The circles are experimental points at ¢=20 GeV, taken from Ref. 1. (b) Equation
(8), as a function of 6, for fixed ¢=30 GeV, and /F=60(A%+3042). This corresponds to a sharp cutoff in_the cross section at —15u%.
The crosses are experimental points at 30 GeV from Ref. 2. (c) Same as (b) except /F=exp[[—1.275 (u2—A?)]. o/F=4/0.5 at A2~ —1342,

Thus, at §=0 and with F=1, do3/p-=0d052-=0 in
this model; for 820 and/or F(A?)> constant, this is no
longer true. But for reasonably behaved F(A?), a strong
suppression of the contribution from angular momen-
tum >3% at very small angles can still be expected.

Figure 4 shows some numerical calculations for
various partial waves, and choice of F, bearing this out.
Gaussian-shaped F, which were also tried, gave similar
results, usually between the sharp cutoff and exponen-
tial cases. A few experimental points have also been
included; these were obtained by subtracting a smooth
background from the experimental peak, a procedure
with very large inherent errors. There is rough agree-
ment in absolute magnitude between the points and
the pq1 partial wave. On the other hand, there is an
approximately equal s1; contribution which has not been
plotted; including it would essentially double the
calculated p1 curves. Considering the experimental
errors due to the ambiguity of the background (and
possibly the overlap with the 1.51-GeV bump), and the
problem of final-state interactions in the si;1 and pu
states, a more accurate comparison does not seem
feasible at present.

5. CONCLUDING REMARKS

We first summarize briefly. In contrast with the small
contribution from the model of O.P.E. with recoiling
isobar, the DH model was seen to give a large effect at
large energies and small angles, in rough agreement with

the magnitude seen experimentally. At a fixed large
energy, it decreases very rapidly with 6, at least as fast
as the 7-p diffraction scattering [or faster, depending
on F(A?)]. Again, this agrees with the experimental
situation, where the observed bump seems to decrease
at least as fast as the p-p elastic diffraction scattering.!®
Though the position of the DH peak shifts to larger W
with increasing ¢ and 6, the shift is very small for
10 GeV<g<30 GeV, 0<6<15 mrad; the position is
roughly between W=1.35 GeV and W=1.45 GeV in
this region (with F=1). This is close to the values for
the observed bump.

All this makes the DH model an attractive candidate
for the main production mechanism of the observed
bump. However, as seen in Sec. 3, it is not able to
satisfactorily account for the detailed position and
width. The latter is therefore quite likely to be due also
to a final-state interaction of the (xN) W system. The
contributions to s11 and pu are roughly equal in the
range 1.30 GeV <W <2.0 GeV. However, the s1; phase
shift is still small at ~1.40 GeV; it might be rising
rapidly near 1.53 GeV.® But there, the DH contribution
is already smaller for any reasonable F(A?). Neverthe-
less, such an sy interaction might make a non-negligible

15 54, for fixed ¢, is very nearly quadratic in ¢, so do/dt is essen-
tially constant in this model, in agreement with experiment. For
fixed ¢, Ref. 2 indicates do ccexp (18f) on averaging over ¢ values;
while exp(18¢) fits the $— curve of Fig. 4(c) excellently for
0<0<15 mrad. Thus, with this F(A?), the behavior of g(f)

=~exp(9%) is effectively steepened to exp(18f), in very good
agreement with experiment.
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contribution, and this effect should also be examined.
Such final-state interaction effects have not yet been
included in these calculations, because these s3; and pu
interactions are highly inelastic, leading to a rather
complicated analysis. We hope to deal with this problem
separately later.

There are other open questions with regard to the
model. An important one is the possible contribution of
other graphs. Figure 5, the exchange graph to Fig. 1, is
not important because of the kinematics of the experi-
ments which select a high-energy final proton, so the
pion is low energy, and the diffraction scattering cannot
occur at the lower vertex. However, many other graphs
are certainly possible. In particular, Fig. 6 shows two
such possibilities; here, the incoming proton diffraction
scatters off the target proton, with pion emission either
before or after. This scattering off the core of the target,
instead of off the pion in the cloud, should certainly be
considered. We have examined Fig. 6(b). Here, of
necessity, the final 7V system must be p11. Assuming
scalar diffraction, as before, and relating it to g4,t*? now
instead of o™, Fig. 6(b) gives a contribution at
¢=20 GeV, 6=10 mrad, larger than and very similar
in shape to that in Fig. 2(a), i.e., the contribution from
Fig. 1, with F(A?)=1. Here, however, the proton is off
shell and it is harder to find a mechanism that would
narrow the very wide peak. Perhaps such nucleon pole
graphs contribute to the background. The importance
of these and other graphs (such as successive diffraction
scatterings) is at present not known. We do not consider
this further here, the philosophy for now being to
concentrate on Fig. 1 alone, and to calculate its
contributions.

The question of final-state interactions sharpens the
significance of Sec. 4, which is perhaps the main part of
this paper. If the structure of the inelastic p-p spectrum
is in fact due mainly to recoiling isobars, it is hard to
understand @ priori the difference in the behavior of the
1.40-GeV bump from the others, except by invoking
general arguments about the coherence of forward

Fic. 5. The exchange graph to Fig. 1. For E;—E; 21 GeV,
the pion &’ has low energy, so the bubble corresponds to 7N — =N
scattering at W =~1.4 GeV, rather than diffraction scattering. This
is esssentia.lly the graph for the isobar model, briefly discussed in
Sec. 3.
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¥16. 6. (a) Diffraction scattering off the proton, with initial-
state pion emission. If Fig. 1 corresponds to a “¢ channel” pion
pole, this graph corresponds to a “u channel” nucleon pole. (b)
Diffraction scattering off the proton, with final-state pion emission.
This would correspond to a direct “s-channel” nucleon pole.

diffraction scattering. But the process is in fact inelastic,
and the coherence is to be between the initial proton
and the final isobar of mass 1.40 GeV, a 509, increase
in mass; and both particles are physical. It is not clear
that arguments of coherence giving selection rules of
Aj=0 are very convincing under these circumstances.
What was shown in Sec. 4 was that a specific model for
how such quasidiffraction scattering might proceed
exists; and that this model leads in a natural way to
the selection rule Aj=0 (or at least Aj>0 is strongly
suppressed). In this DH model, the coherent diffraction
scattering is for virtual m-+N — 7+ N. Insofar as the
change of the mass of the pion is neglected by setting
F=1, the rule Aj=0 is exact. But allowing for F31
shows that some Aj##0 contribution is allowed at §=0.
It is also interesting to note that a change in parity is
allowed (proton — s11); this is contrary to the predic-
tions based only on coherence, which do not allow the
change of any quantum numbers.

The model discussed can account, in a semiquanti-
tative way, for many of the known experimental facts
about the 1.40-GeV bump. A more careful quantitative
comparison must await further calculations including
final-state effects; in these calculations, F(A?) will be a
(largely) undetermined function. But the results must
then carefully fit experiment for different ¢, 6, . This
should be a severe test for the correctness of the model.
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